AccScience Publishing / GPD / Online First / DOI: 10.36922/GPD025400073
REVIEW ARTICLE

N6-methyladenosine: A pivotal regulator in glioma oncogenesis and progression

Jingjing Li1 Xiaoguang Zhang2 Yaoyao Wang1 Chen Dong1 Haotian Li1 Ying Wang3* Shuangyu Lv1,2,4*
Show Less
1 Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
2 Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, Henan, China
3 Department of Anesthesiology, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, Henan, China
4 The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan, China
Received: 1 October 2025 | Revised: 16 December 2025 | Accepted: 26 December 2025 | Published online: 19 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Gliomas are the most prevalent primary neoplasms of the central nervous system and arise from glial cells present in the brain or spinal cord. N6-methyladenosine (m6A) is one of the most frequently occurring modifications in RNA, and its potential implications in glioma have received widespread attention in recent years. In glioma, m6A-related enzymes are capable of modifying target RNAs, influencing their translation, degradation, and splicing, which can promote or inhibit biological processes such as ferroptosis and glycolysis, ultimately impacting the progression of glioma. Furthermore, upstream modulators are capable of regulating the expression of m6A-associated enzymes, ultimately affecting glioma development by modulating m6A modification on target RNAs. In addition, the m6A modification influences glioma resistance to temozolomide, resulting in an impact on glioma patient survival. This review comprehensively delineates the molecular mechanisms by which m6A and its upstream signaling molecules regulate glioma development, emphasizing their potential value in exploring new therapeutic approaches and improving patient prognosis.

Keywords
Glioma
N6-methyladenosine
Epigenetic and transcriptomic modifications
Molecular mechanism
Funding
This work was supported by the Medical Science and Technology Program of Henan Province (no. JQRC2025017, no. SBGJ202502086, and no. SBGJ202502084), the Key Scientific Research Program for Universities of Henan Province (no. 26A320003), the Key Science and Technology Program of Henan Province in China (no. 242102310274), the Open Project Research of the First Affiliated Hospital of Henan University (no. KFZD25005), the Program for Innovative Talents of Science and Technology in Henan Province (no. 23HASTIT043), the China Postdoctoral Science Fundation (no. 2024M750782), the Youth Promotion Project of Zhongzhou Laboratory for Integrative Biology (no. 2024TS0202), and the Open Project of The First Affiliated Hospital of Henan University (no. KFMS25004).
Conflict of interest
Shuangyu Lv is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Zhao K, Li W, Yang Y, et al. Comprehensive analysis of m6A/ m5C/m1A-related gene expression, immune infiltration, and sensitivity of antineoplastic drugs in glioma. Front Immunol. 2022;13:955848. doi: 10.3389/fimmu.2022.955848

 

  1. Pan T, Wu F, Li L, et al. The role m(6)A RNA methylation is CNS development and glioma pathogenesis. Mol Brain. 2021;14(1):119. doi: 10.1186/s13041-021-00831-5

 

  1. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231-1251. doi: 10.1093/neuonc/noab106

 

  1. Smith HL, Wadhwani N, Horbinski C. Major features of the 2021 WHO classification of CNS tumors. Neurotherapeutics. 2022;19(6):1691-1704. doi: 10.1007/s13311-022-01249-0

 

  1. Bale TA, Rosenblum MK. The 2021 WHO classification of tumors of the central nervous system: An update on pediatric low-grade gliomas and glioneuronal tumors. Brain Pathol. 2022;32(4):e13060. doi: 10.1111/bpa.13060

 

  1. Wen PY, Packer RJ. The 2021 WHO classification of tumors of the central nervous system: Clinical implications. Neuro Oncol. 2021;23(8):1215-1217. doi: 10.1093/neuonc/noab120

 

  1. Xiao L, Li X, Mu Z, et al. FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR- 155/23a cluster-MXI1 feedback circuit in glioma. Cancer Res. 2020;80(18):3945-3958. doi: 10.1158/0008-5472.CAN-20-0132

 

  1. Yang L, Huang Z, Deng Y, et al. Characterization of the m6A/m1A/m5C/m7G-related regulators on the prognosis and immune microenvironment of glioma by integrated analysis of scRNA-seq and bulk RNA-seq data. J Gene Med. 2024;26(2):e3666. doi: 10.1002/jgm.3666

 

  1. Casile M, Thivat E, Giraudet F, et al. Non-invasive intracranial pressure monitoring for high-grade gliomas patients treated with radiotherapy: Results of the GMaPIC trial. Front Oncol. 2024;14:1302977. doi: 10.3389/fonc.2024.1302977

 

  1. Jahanshahi A, Salarinejad S, Oraee-Yazdani S, et al. Gliomatosis cerebri with blindness: A case report with literature review. Radiol Case Rep. 2023;18(9):2884-2894. doi: 10.1016/j.radcr.2023.05.037

 

  1. Rilinger RG, Guo L, Sharma A, et al. Tumor-related epilepsy in high-grade glioma: A large series survival analysis. J Neurooncol. 2024;170(1):153-160. doi: 10.1007/s11060-024-04787-z

 

  1. Ueno T, Ballard RE, Shuer LM, Yost WT, Cantrell JH, Hargens AR. Intracranial pressure dynamics during simulated microgravity using a new noninvasive ultrasonic technique. J Gravit Physiol. 1998;5(1):P39-P40.

 

  1. Kivioja T, Posti JP, Sipila J, et al. Motor dysfunction as a primary symptom predicts poor outcome: Multicenter study of glioma symptoms. Front Oncol. 2023;13:1305725. doi: 10.3389/fonc.2023.1305725

 

  1. Tuzesi A, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the epitranscriptome for avant-garde brain tumour diagnostics. Cancers (Basel). 2023;15(4):1232. doi: 10.3390/cancers15041232

 

  1. Li F, Zhang C, Zhang G. m6A RNA methylation controls proliferation of human glioma cells by influencing cell apoptosis. Cytogenet Genome Res. 2019;159(3):119-125. doi: 10.1159/000499062

 

  1. Zhang M, Yang C, Dong W, Zhao Y, Chen N, Gao C. Expression patterns and prognostic role of m6A RNA methylation regulators in non-small cell lung cancer. Cell Mol Biol (Noisy-le-grand). 2024;70(2):67-72. doi: 10.14715/cmb/2024.70.2.11

 

  1. Tao N, Wen T, Li T, Luan L, Pan H, Wang Y. Interaction between m6A methylation and noncoding RNA in glioma. Cell Death Discov. 2022;8(1):283. doi: 10.1038/s41420-022-01075-5

 

  1. Long S, Yan Y, Xu H, et al. Insights into the regulatory role of RNA methylation modifications in glioma. J Transl Med. 2023;21(1):810. doi: 10.1186/s12967-023-04653-y

 

  1. Deng X, Su R, Feng X, Wei M, Chen J. Role of N6-methyladenosine modification in cancer. Curr Opin Genet Dev. 2018;48:1-7. doi: 10.1016/j.gde.2017.10.005

 

  1. Huang AZ, Delaidelli A, Sorensen PH. RNA modifications in brain tumorigenesis. Acta Neuropathol Commun. 2020;8(1):64. doi: 10.1186/s40478-020-00941-6

 

  1. Jiang T, Zhang X, Xu W. [The roles of N(6)-methyladenosine modification and its regulators in male reproduction]. N(6)- 甲基腺嘌呤修饰及其调控因子在男性生殖中的作用. Sichuan Da Xue Xue Bao Yi Xue Ban. 2024;55(3):527-534. doi: 10.12182/20240560103

 

  1. Yen YP, Chen JA. The m6A epitranscriptome on neural development and degeneration. J Biomed Sci. 2021;28(1):40. doi: 10.1186/s12929-021-00734-6

 

  1. Wang J, Sha Y, Sun T. m6A modifications play crucial roles in glial cell development and brain tumorigenesis. Front Oncol. 2021;11:611660. doi: 10.3389/fonc.2021.611660

 

  1. Zheng J, Wang X, Qiu Y, et al. Identification of critical m6A RNA methylation regulators with prognostic value in lower-grade glioma. Biomed Res Int. 2021;2021:9959212. doi: 10.1155/2021/9959212

 

  1. Xie GS, Richard HT. m6A mRNA modifications in glioblastoma: Emerging prognostic biomarkers and therapeutic targets. Cancers (Basel). 2024;16(4):727. doi: 10.3390/cancers16040727

 

  1. Xu Z, Jiang J, Wang S. The critical role of RNA m6A methylation in gliomas: Targeting the hallmarks of cancer. Cell Mol Neurobiol. 2023;43(5):1697-1718. doi: 10.1007/s10571-022-01283-8

 

  1. Yan Y, Wei W, Long S, et al. The role of RNA modification in the generation of acquired drug resistance in glioma. Front Genet. 2022;13:1032286. doi: 10.3389/fgene.2022.1032286

 

  1. Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother. 2023;162:114583. doi: 10.1016/j.biopha.2023.114583

 

  1. Du B, Wang P, Wei L, et al. Unraveling the independent role of METTL3 in m6A modification and tumor progression in esophageal squamous cell carcinoma. Sci Rep. 2024;14(1):15398. doi: 10.1038/s41598-024-64517-3

 

  1. Horiuchi K, Kawamura T, Hamakubo T. Wilms’ tumor 1-associating protein complex regulates alternative splicing and polyadenylation at potential G-quadruplex-forming splice site sequences. J Biol Chem. 2021;297(5):101248. doi: 10.1016/j.jbc.2021.101248

 

  1. Deacon S, Walker L, Radhi M, Smith S. The regulation of m6A modification in glioblastoma: Functional mechanisms and therapeutic approaches. Cancers (Basel). 2023;15(13):3307. doi: 10.3390/cancers15133307

 

  1. Marcinkowski M, Pilzys T, Garbicz D, et al. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life. 2020;72(6):1126-1144. doi: 10.1002/iub.2276

 

  1. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19(1):88. doi: 10.1186/s12943-020-01204-7

 

  1. Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers- YTH domain-containing proteins. Cell Death Discov. 2022;8(1):137. doi: 10.1038/s41420-022-00947-0

 

  1. Piperi C, Markouli M, Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Deciphering glioma epitranscriptome: Focus on RNA modifications. Oncogene. 2023;42(28):2197-2206. doi: 10.1038/s41388-023-02746-y

 

  1. Fan Y, Yan D, Ma L, et al. ALKBH5 is a prognostic factor and promotes the angiogenesis of glioblastoma. Sci Rep. 2024;14(1):1303. doi: 10.1038/s41598-024-51994-9

 

  1. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6(1):74. doi: 10.1038/s41392-020-00450-x

 

  1. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608-624. doi: 10.1038/s41580-019-0168-5

 

  1. Li W, Liang L, Liu S, Yi H, Zhou Y. FSP1: A key regulator of ferroptosis. Trends Mol Med. 2023;29(9):753-764. doi: 10.1016/j.molmed.2023.05.013

 

  1. Bu C, Hu S, Yu J, et al. Fear stress promotes glioma progression through inhibition of ferroptosis by enhancing FSP1 stability. Clin Transl Oncol. 2023;25(5):1378-1388. doi: 10.1007/s12094-022-03032-1

 

  1. Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020;30(6):478-490. doi: 10.1016/j.tcb.2020.02.009

 

  1. Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023;19(7):1982-1996. doi: 10.1080/15548627.2023.2165323

 

  1. Deng L, Di Y, Chen C, et al. Depletion of the N(6)- Methyladenosine (m6A) reader protein IGF2BP3 induces ferroptosis in glioma by modulating the expression of GPX4. Cell Death Dis. 2024;15(3):181. doi: 10.1038/s41419-024-06486-z

 

  1. Sarbanes SL, Blomen VA, Lam E, et al. E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proc Natl Acad Sci U S A. 2021;118(1):e2015794118. doi: 10.1073/pnas.2015794118

 

  1. Dai W, Tian R, Yu L, et al. Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3- induced NETosis in malignant glioma. Nat Commun. 2024;15(1):131. doi: 10.1038/s41467-023-44576-2

 

  1. Kemuriyama K, An J, Motoyama S, et al. Squamous cell carcinoma-derived G-CSF promotes tumor growth and metastasis in mice through neutrophil recruitment and tumor cell proliferation, associated with poor prognosis of the patients. Genes Cells. 2023;28(8):573-584. doi: 10.1111/gtc.13051

 

  1. Zha C, Meng X, Li L, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 2020;17(1):154-168. doi: 10.20892/j.issn.2095-3941.2019.0353

 

  1. Zhang S, Guo M, Liu Q, Liu J, Cui Y. Neutrophil extracellular traps induce a hypercoagulable state in glioma. Immun Inflamm Dis. 2021;9(4):1383-1393. doi: 10.1002/iid3.488

 

  1. Duffy MJ, O’grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154. doi: 10.1016/j.ctrv.2021.102154

 

  1. Lee TC, Ziff EB. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF. J Biol Chem. 1999;274(2):595-606. doi: 10.1074/jbc.274.2.595

 

  1. Dixit D, Prager BC, Gimple RC, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 2021;11(2):480-499. doi: 10.1158/2159-8290.CD-20-0331

 

  1. Wang YB, Tan B, Mu R, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor kappaB (NF-kappaB) signaling. J Biol Chem. 2015;290(16):10395-405. doi: 10.1074/jbc.M114.631689

 

  1. Chai RC, Chang YZ, Chang X, et al. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m(6)A modification to activate NF-kappaB and promote the malignant progression of glioma. J Hematol Oncol. 2021;14(1):109. doi: 10.1186/s13045-021-01124-z

 

  1. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29(6):783-803. doi: 10.1016/j.ccell.2016.05.005

 

  1. Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med. 2022;7(1):9. doi: 10.1038/s41536-022-00209-8

 

  1. Yang J, Wu X, Wang J, et al. Feedforward loop between IMP1 and YAP/TAZ promotes tumorigenesis and malignant progression in glioblastoma. Cancer Sci. 2023;114(5):2053-2062. doi: 10.1111/cas.15636

 

  1. Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo signaling pathway in gliomas. Cells. 2021;10(1):184. doi: 10.3390/cells10010184

 

  1. Xu X, Chen Y, Wang X, Mu X. Role of Hippo/YAP signaling in irradiation-induced glioma cell apoptosis. Cancer Manag Res. 2019;11:7577-7585. doi: 10.2147/CMAR.S210825

 

  1. Chen W, Li Y, Ruan GX, et al. Adenosine deaminase acting on RNA-1 is essential for early B lymphopoiesis. Cell Rep. 2022;41(8):111687. doi: 10.1016/j.celrep.2022.111687

 

  1. Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: Structures, pathogenesis, and potential therapeutic approach. Front Pharmacol. 2023;14:1194884. doi: 10.3389/fphar.2023.1194884

 

  1. Liu H, Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene. 2022;822:146325. doi: 10.1016/j.gene.2022.146325

 

  1. Tassinari V, Cesarini V, Tomaselli S, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22(1):51. doi: 10.1186/s13059-021-02271-9

 

  1. Kelleher FC, O’sullivan H. FOXM1 in sarcoma: Role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget. 2016;7(27):42792-42804. doi: 10.18632/oncotarget.8669

 

  1. Zhang S, Zhao BS, Zhou A, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31(4):591-606.e6. doi: 10.1016/j.ccell.2017.02.013

 

  1. Guo L, Wu Z. FOXM1-mediated NUF2 expression confers temozolomide resistance to human glioma cells by regulating autophagy via the PI3K/AKT/mTOR signaling pathway. Neuropathology. 2022;42(5):430-446. doi: 10.1111/neup.12824

 

  1. Zhang L, Mao Y, Mao Q, et al. FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. Thorac Cancer. 2019;10(4):909-917. doi: 10.1111/1759-7714.13027

 

  1. Wang R, Chen Z, Zhang Y, et al. Flotillin-1 is a prognostic biomarker for glioblastoma and promotes cancer development through enhancing invasion and altering tumour microenvironment. J Cell Mol Med. 2023;27(3):392-402. doi: 10.1111/jcmm.17660

 

  1. Song T, Hu Z, Zeng C, Luo H, Liu J. FLOT1, stabilized by WTAP/IGF2BP2 mediated N6-methyladenosine modification, predicts poor prognosis and promotes growth and invasion in gliomas. Heliyon. 2023;9(6):e16280. doi: 10.1016/j.heliyon.2023.e16280

 

  1. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-54. doi: 10.1016/j.tibs.2014.06.005

 

  1. Liu B, Fu X, Du Y, et al. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis. 2023;44(6):525-534. doi: 10.1093/carcin/bgad043

 

  1. Liu Z, Chen Y, Wang L, Ji S. ALKBH5 promotes the proliferation of glioma cells via enhancing the mRNA stability of G6PD. Neurochem Res. 2021;46(11):3003-3011. doi: 10.1007/s11064-021-03408-9

 

  1. Zhang J, Liu B, Xu C, et al. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1- dependent regulation of SREBP2 and LDLR. Neuro Oncol. 2024;26(4):684-700. doi: 10.1093/neuonc/noad233

 

  1. Chen JJ, Lu TZ, Wang T, et al. The m6A reader HNRNPC promotes glioma progression by enhancing the stability of IRAK1 mRNA through the MAPK pathway. Cell Death Dis. 2024;15(6):390. doi: 10.1038/s41419-024-06736-0

 

  1. Zhu X, Yang H, Zhang M, et al. YTHDC1-mediated VPS25 regulates cell cycle by targeting JAK-STAT signaling in human glioma cells. Cancer Cell Int. 2021;21(1):645. doi: 10.1186/s12935-021-02304-0

 

  1. Xu X, Liang Y, Gareev I, et al. LncRNA as potential biomarker and therapeutic target in glioma. Mol Biol Rep. 2023;50(1):841-851. doi: 10.1007/s11033-022-08056-y

 

  1. Chang YZ, Chai RC, Pang B, et al. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-kappaB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett. 2021;511:36-46. doi: 10.1016/j.canlet.2021.04.020

 

  1. Voce DJ, Bernal GM, Wu L, et al. Temozolomide treatment induces lncRNA MALAT1 in an NF-kappaB and p53 codependent manner in glioblastoma. Cancer Res. 2019;79(10):2536-2548. doi: 10.1158/0008-5472.CAN-18-2170

 

  1. Didonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379-400. doi: 10.1111/j.1600-065X.2012.01099.x

 

  1. Wu Z, Lin Y, Wei N. N6-methyladenosine-modified HOTAIRM1 promotes vasculogenic mimicry formation in glioma. Cancer Sci. 2023;114(1):129-141. doi: 10.1111/cas.15578

 

  1. Wu Z, Wei N. METTL3-mediated HOTAIRM1 promotes vasculogenic mimicry icontributionsn glioma via regulating IGFBP2 expression. J Transl Med. 2023;21(1):855. doi: 10.1186/s12967-023-04624-3

 

  1. Cai H, Liu W, Liu X, et al. Advances and prospects of vasculogenic mimicry in glioma: A potential new therapeutic target? Onco Targets Ther. 2020;13:4473-4483. doi: 10.2147/OTT.S247855

 

  1. Chen YS, Chen ZP. Vasculogenic mimicry: A novel target for glioma therapy. Chin J Cancer. 2014;33(2):74-79. doi: 10.5732/cjc.012.10292

 

  1. Nam KH, Lee BL, Park JH, et al. Caveolin 1 expression correlates with poor prognosis and focal adhesion kinase expression in gastric cancer. Pathobiology. 2013;80(2):87-94. doi: 10.1159/000341685

 

  1. Zhu X, Wu X, Yang H, et al. m6A-mediated upregulation of LINC01003 regulates cell migration by targeting the CAV1/ FAK signaling pathway in glioma. Biol Direct. 2023;18(1):27. doi: 10.1186/s13062-023-00386-6

 

  1. Chen H, Duo Y, Hu B, et al. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway. Oncotarget. 2016;7(48):78747-78763. doi: 10.18632/oncotarget.12288

 

  1. Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/ mTOR/p70S6K signaling pathway regulation on neuron remodeling caused by translocation repair. Front Neurosci. 2020;14:565870. doi: 10.3389/fnins.2020.565870

 

  1. Zhang K, Zhang J, Han L, Pu P, Kang C. Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol. 2012;7(4):740-749. doi: 10.1007/s11481-012-9359-y

 

  1. Wu X, Fu M, Ge C, et al. m6A-mediated upregulation of lncRNA CHASERR promotes the progression of glioma by modulating the miR-6893-3p/TRIM14 axis. Mol Neurobiol. 2024;61(8):5418-5440. doi: 10.1007/s12035-023-03911-w

 

  1. Li B, Zhao R, Qiu W, et al. The N(6)-methyladenosine-mediated lncRNA WEE2-AS1 promotes glioblastoma progression by stabilizing RPN2. Theranostics. 2022;12(14):6363-6379. doi: 10.7150/thno.74600

 

  1. Ji X, Liu Z, Gao J, et al. N(6)-methyladenosine-modified lncRNA LINREP promotes glioblastoma progression by recruiting the PTBP1/HuR complex. Cell Death Differ. 2023;30(1):54-68. doi: 10.1038/s41418-022-01045-5

 

  1. Cheung HC, Hai T, Zhu W, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain. 2009;132(Pt 8):2277-2288. doi: 10.1093/brain/awp153

 

  1. Zhao R, Li B, Zhang S, et al. The N6-methyladenosine-modified pseudogene HSPA7 correlates with the tumor microenvironment and predicts the response to immune checkpoint therapy in glioblastoma. Front Immunol. 2021;12:653711. doi: 10.3389/fimmu.2021.653711

 

  1. Zhang Y, Zhu Y, Zhang Y, Liu Z, Zhao X. YTHDF1 promotes the viability and selfrenewal of glioma stem cells by enhancing LINC00900 stability. Int J Oncol. 2024;64(5):53. doi: 10.3892/ijo.2024.5641

 

  1. Yin J, Ding F, Cheng Z, et al. METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/beta-catenin signaling. Cell Death Dis. 2023;14(7):417. doi: 10.1038/s41419-023-05933-7

 

  1. Yan Y, Luo A, Liu S, et al. METTL3-mediated LINC00475 alternative splicing promotes glioma progression by inducing mitochondrial fission. Research (Wash D C). 2024;7:0324. doi: 10.34133/research.0324

 

  1. Gao Y, Gao J, Lin F, et al. CircRNAs in tumor radioresistance. Biomolecules. 2022;12(11):1586. doi: 10.3390/biom12111586

 

  1. Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172. doi: 10.1186/s12943-020-01286-3

 

  1. Chen J, Chen T, Zhu Y, et al. circPTN sponges miR-145-5p/ miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 2019;38(1):398. doi: 10.1186/s13046-019-1376-8

 

  1. Zhang Y, Geng X, Xu J, et al. Identification and characterization of N6-methyladenosine modification of circRNAs in glioblastoma. J Cell Mol Med. 2021;25(15):7204-7217. doi: 10.1111/jcmm.16750

 

  1. Sun W, Zhou H, Han X, Hou L, Xue X. Circular RNA: A novel type of biomarker for glioma (Review). Mol Med Rep. 2021;24(2):602. doi: 10.3892/mmr.2021.12240

 

  1. Liao Y, Qiu X, Liu J, Zhang Z, Liu B, Jin C. The role of m6A-modified CircEPHB4 in glioma pathogenesis: Insights into cancer stemness metastasis. Ann Clin Transl Neurol. 2023;10(10):1749-1767. doi: 10.1002/acn3.51864

 

  1. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395-412. doi: 10.1146/annurev-pathol-020117-043854

 

  1. Zhang S, Zhang P, Wu A, et al. Downregulated M6A modification and expression of circRNA_103239 promoted the progression of glioma by regulating the miR-182-5p/ MTSS1 signalling pathway. J Cancer. 2023;14(18):3508-3520. doi: 10.7150/jca.85320

 

  1. Wu Q, Yin X, Zhao W, Xu W, Chen L. Molecular mechanism of m6A methylation of circDLC1 mediated by RNA methyltransferase METTL3 in the malignant proliferation of glioma cells. Cell Death Discov. 2022;8(1):229. doi: 10.1038/s41420-022-00979-6

 

  1. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202-1207. doi: 10.1016/j.jaci.2017.08.034

 

  1. Wang BC, Ma J. Role of MicroRNAs in malignant glioma. Chin Med J (Engl). 2015;128(9):1238-1244. doi: 10.4103/0366-6999.156141

 

  1. Zhang S, Zhao S, Qi Y, et al. SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR- 10a processing in an m6A-dependent manner. Mol Ther Nucleic Acids. 2022;27:699-717. doi: 10.1016/j.omtn.2021.12.035

 

  1. Zhao N, Zhang J, Zhao Q, Chen C, Wang H. Mechanisms of long non-coding RNAs in biological characteristics and aerobic glycolysis of glioma. Int J Mol Sci. 2021;22(20):11197. doi: 10.3390/ijms222011197

 

  1. Kawano Y, Sasano T, Arima Y, et al. A novel PDK1 inhibitor, JX06, inhibits glycolysis and induces apoptosis in multiple myeloma cells. Biochem Biophys Res Commun. 2022;587:153-159. doi: 10.1016/j.bbrc.2021.11.102

 

  1. Ruan C, Zhang Y, Zhou J, Tan H, Bao Y. Role of METTL3 in aerobic glycolysis of glioma by regulating m6A/miR-27b-3p/ PDK1. J Environ Pathol Toxicol Oncol. 2023;42(4):31-45. doi: 10.1615/JEnvironPatholToxicolOncol.2023046521

 

  1. Agarwal N, Theodorescu D. The role of transcription factor YY1 in the biology of cancer. Crit Rev Oncog. 2017;22(1-2):13-21. doi: 10.1615/CritRevOncog.2017021071

 

  1. You J, Tao B, Peng L, et al. Transcription factor YY1 mediates self-renewal of glioblastoma stem cells through regulation of the SENP1/METTL3/MYC axis. Cancer Gene Ther. 2023;30(5):683-693. doi: 10.1038/s41417-022-00580-0

 

  1. Qiu Z, Zhao L, Shen JZ, et al. Transcription elongation machinery is a druggable dependency and potentiates immunotherapy in glioblastoma stem cells. Cancer Discov. 2022;12(2):502-521. doi: 10.1158/2159-8290.CD-20-1848

 

  1. Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/ PFKP/LDHB axis. Mol Cell. 2021;81(5):922-939.e9. doi: 10.1016/j.molcel.2020.12.026

 

  1. Richardson LG, Choi BD, Curry WT. (R)-2- hydroxyglutarate drives immune quiescence in the tumor microenvironment of IDH-mutant gliomas. Transl Cancer Res. 2019;8(Suppl 2):S167-S170. doi: 10.21037/tcr.2019.01.08

 

  1. Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172(1-2):90-105.e23. doi: 10.1016/j.cell.2017.11.031

 

  1. R-2HG targets FTO to increase m6A levels and suppress tumor growth. Cancer Discov. 2018;8(2):137. doi: 10.1158/2159-8290.CD-RW2017-240

 

  1. Gao FY, Li XT, Xu K, Wang RT, Guan XX. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal. 2023;21(1):28. doi: 10.1186/s12964-023-01043-1

 

  1. Guowei L, Xiufang L, Qianqian X, Yanping J. The FDX1 methylation regulatory mechanism in the malignant phenotype of glioma. Genomics. 2023;115(2):110601. doi: 10.1016/j.ygeno.2023.110601

 

  1. Ciftci HI, Radwan MO, Sever B, et al. EGFR-targeted pentacyclic triterpene analogues for glioma therapy. Int J Mol Sci. 2021;22(20):10945. doi: 10.3390/ijms222010945

 

  1. Saadeh FS, Mahfouz R, Assi HI. EGFR as a clinical marker in glioblastomas and other gliomas. Int J Biol Markers. 2018;33(1):22-32. doi: 10.5301/ijbm.5000301

 

  1. Fang R, Chen X, Zhang S, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021;12(1):177. doi: 10.1038/s41467-020-20379-7

 

  1. Gencel-Augusto J, Bivona TG. Unlocking the EGFR-mediated epitranscriptome: A pathway to novel therapies. Mol Cell. 2023;83(23):4199-4201. doi: 10.1016/j.molcel.2023.10.044

 

  1. Lv D, Zhong C, Dixit D, et al. EGFR promotes ALKBH5 nuclear retention to attenuate N6-methyladenosine and protect against ferroptosis in glioblastoma. Mol Cell. 2023;83(23):4334-4351.e7. doi: 10.1016/j.molcel.2023.10.025

 

  1. Cun Y, An S, Zheng H, et al. Specific regulation of m6A by SRSF7 promotes the progression of glioblastoma. Genomics Proteomics Bioinformatics. 2023;21(4):707-728. doi: 10.1016/j.gpb.2021.11.001

 

  1. Lv D, Gimple RC, Zhong C, et al. PDGF signaling inhibits mitophagy in glioblastoma stem cells through N(6)- methyladenosine. Dev Cell. 2022;57(12):1466-1481.e6. doi: 10.1016/j.devcel.2022.05.007

 

  1. Lv D, Yang K, Rich JN. Growth factor receptor signaling induces mitophagy through epitranscriptomic regulation. Autophagy. 2023;19(3):1034-1035. doi: 10.1080/15548627.2022.2114765

 

  1. Ren J, Xu B, Ren J, et al. The importance of M1-and M2-polarized macrophages in glioma and as potential treatment targets. Brain Sci. 2023;13(9):1466-1481.e6. doi: 10.3390/brainsci13091269

 

  1. Qi B, Yang C, Zhu Z, Chen H. EZH2-inhibited MicroRNA- 454-3p promotes M2 macrophage polarization in glioma. Front Cell Dev Biol. 2020;8:574940. doi: 10.3389/fcell.2020.574940

 

  1. Zhou X, Chen H, Hu Y, et al. Enhancer of zeste homolog 2 promotes renal fibrosis after acute kidney injury by inducing epithelial-mesenchymal transition and activation of M2 macrophage polarization. Cell Death Dis. 2023;14(4):253. doi: 10.1038/s41419-023-05782-4

 

  1. Li N, Qin JF, Han X, et al. miR-21a negatively modulates tumor suppressor genes PTEN and miR-200c and further promotes the transformation of M2 macrophages. Immunol Cell Biol. 2018;96(1):68-80. doi: 10.1111/imcb.1016

 

  1. Lynch JR, Salik B, Connerty P, et al. JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia. 2019;33(6):1400-1410. doi: 10.1038/s41375-018-0354-z

 

  1. Zhong C, Tao B, Yang F, et al. Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. Clin Transl Med. 2021;11(9):e424. doi: 10.1002/ctm2.424

 

  1. Li L, Chen X, Lv M, et al. Effect of platycodon grandiflorus polysaccharide on M1 polarization induced by autophagy degradation of SOCS1/2 proteins in 3D4/21 Cells. Front Immunol. 2022;13:934084. doi: 10.3389/fimmu.2022.934084

 

  1. Cao L, Han R, Zhao Y, et al. A LATS2 and ALKBH5 positive feedback loop supports their oncogenic roles. Cell Rep. 2024;43(4):114032. doi: 10.1016/j.celrep.2024.114032

 

  1. Xu A, Liu M, Huang MF, et al. Rewired m6A epitranscriptomic networks link mutant p53 to neoplastic transformation. Nat Commun. 2023;14(1):1694. doi: 10.1038/s41467-023-37398-9

 

  1. Kumari S, Muthusamy S. SETD2 as a regulator of N6-methyladenosine RNA methylation and modifiers in cancer. Eur J Cancer Prev. 2020;29(6):556-564. doi: 10.1097/CEJ.0000000000000587

 

  1. Kumari S, Singh M, Kumar S, Muthuswamy S. SETD2 controls m6A modification of transcriptome and regulates the molecular oncogenesis of glioma. Med Oncol. 2023;40(9):249. doi: 10.1007/s12032-023-02121-7

 

  1. Li R, Li S, Shen L, et al. SNHG1, interacting with SND1, contributes to sorafenib resistance of liver cancer cells by increasing m6A-mediated SLC7A11 expression and promoting aerobic glycolysis. Environ Toxicol. 2024;39(3):1269-1282. doi: 10.1002/tox.24014

 

  1. Zheng J, Zhang Q, Zhao Z, et al. Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1. J Exp Clin Cancer Res. 2023;42(1):127. doi: 10.1186/s13046-023-02684-3

 

  1. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107. doi: 10.1016/j.redox.2019.101107

 

  1. Du B, Zhang Z, Jia L, et al. Micropeptide AF127577.4- ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction. Sci Rep. 2024;14(1):12090. doi: 10.1038/s41598-024-62710-y

 

  1. Li XD, Wang MJ, Zheng JL, Wu YH, Wang X, Jiang XB. Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells. Cancer Sci. 2021;112(11):4543-4552. doi: 10.1111/cas.15072

 

  1. Zepecki JP, Karambizi D, Fajardo JE, et al. miRNA-mediated loss of m6A increases nascent translation in glioblastoma. PLoS Genet. 2021;17(3):e1009086. doi: 10.1371/journal.pgen.1009086

 

  1. Kang H, Lee S, Kim K, et al. Downregulated CLIP3 induces radioresistance by enhancing stemness and glycolytic flux in glioblastoma. J Exp Clin Cancer Res. 2021;40(1):282. doi: 10.1186/s13046-021-02077-4

 

  1. Zhan Y, Song Y, Qiao W, et al. Focused ultrasound combined with miR-1208-equipped exosomes inhibits malignant progression of glioma. Br J Cancer. 2023;129(7):1083-1094. doi: 10.1038/s41416-023-02393-w

 

  1. Mendes A, Fahrenkrog B. NUP214 in leukemia: It’s more than transport. Cells. 2019;8(1):76. doi: 10.3390/cells8010076

 

  1. Guo X, Qiu W, Li B, et al. Hypoxia-induced neuronal activity in glioma patients polarizes microglia by potentiating RNA m6A demethylation. Clin Cancer Res. 2024;30(6):1160-1174. doi: 10.1158/1078-0432.CCR-23-0430

 

  1. Wu F, Lv T, Chen G, et al. Epigenetic silencing of DUSP9 induces the proliferation of human gastric cancer by activating JNK signaling. Oncol Rep. 2015;34(1):121-128. doi: 10.3892/or.2015.3998

 

  1. Hashemi M, Etemad S, Rezaei S, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother. 2023;158:114204. doi: 10.1016/j.biopha.2022.114204

 

  1. Shi J, Zhang P, Dong X, et al. METTL3 knockdown promotes temozolomide sensitivity of glioma stem cells via decreasing MGMT and APNG mRNA stability. Cell Death Discov. 2023;9(1):22. doi: 10.1038/s41420-023-01327-y

 

  1. Zhang G, Zheng P, Lv Y, Shi Z, Shi F. m6A regulatory gene-mediated methylation modification in glioma survival prediction. Front Genet. 2022;13:873764. doi: 10.3389/fgene.2022.873764

 

  1. Shi J, Chen G, Dong X, et al. METTL3 promotes the resistance of glioma to temozolomide via increasing MGMT and ANPG in a m6A dependent manner. Front Oncol. 2021;11:702983. doi: 10.3389/fonc.2021.702983

 

  1. Li F, Chen S, Yu J, et al. Interplay of m6A and histone modifications contributes to temozolomide resistance in glioblastoma. Clin Transl Med. 2021;11(9):e553. doi: 10.1002/ctm2.553

 

  1. Du P, Meng L, Liao X, et al. The miR-27a-3p/FTO axis modifies hypoxia-induced malignant behaviors of glioma cells. Acta Biochim Biophys Sin (Shanghai). 2023;55(1):103-116. doi: 10.3724/abbs.2023002

 

  1. Kowalski-Chauvel A, Lacore MG, Arnauduc F, et al. The m6A RNA demethylase ALKBH5 promotes radioresistance and invasion capability of glioma stem Cells. Cancers (Basel). 2020;13(1):40. doi: 10.3390/cancers13010040

 

  1. Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059

 

  1. Tao M, Li X, He L, et al. Decreased RNA m6A methylation enhances the process of the epithelial mesenchymal transition and vasculogenic mimicry in glioblastoma. Am J Cancer Res. 2022;12(2):893-906.

 

  1. Ding C, Yi X, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164. doi: 10.1186/s13046-021-01942-6

 

  1. Tang W, Xu N, Zhou J, et al. ALKBH5 promotes PD-L1- mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 2022;8(1):497. doi: 10.1038/s41420-022-01286-w

 

  1. Takahashi H, Hase H, Yoshida T, et al. Discovery of two novel ALKBH5 selective inhibitors that exhibit uncompetitive or competitive type and suppress the growth activity of glioblastoma multiforme. Chem Biol Drug Des. 2022;100(1):1-12. doi: 10.1111/cbdd.14051
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing