c-Jun: A master regulator of neuroregeneration and neurodegeneration
As a central component of activator protein 1 transcription factors, c-Jun operates through homo- or heterodimerization with the Jun/Fos family members to regulate gene expression. It exhibits dynamic regulation across development, adult homeostasis, and neural injury, establishing c-Jun as a pivotal modulator of diverse neuronal processes. Mounting evidence highlights c-Jun’s dual role in neuroprotection and neurodegeneration, influencing neuronal apoptosis, survival, axonal transport, and synaptic plasticity processes closely associated with cognitive decline in neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Functional studies using genetic ablation or pharmacological inhibition of c-Jun signaling reveal its biphasic nature: sustained c-Jun activation drives neurodegeneration by inducing pro-apoptotic genes, whereas transient activation promotes neuroregeneration, including axonal sprouting and synaptic remodeling. Phosphorylation of c-Jun at serine 63/73, mediated by its upstream regulator c-Jun N-terminal kinase (JNK), is a key post-translational modification controlling its transcriptional activity. The JNK–c-Jun axis acts as a molecular switch, integrating stress signals to dictate neuronal fate. In neurodegenerative contexts, pathway hyperactivation leads to pathological outcomes. In contrast, in peripheral nerve injury models, precisely timed c-Jun activation triggers regenerative gene programs that are critical for axonal regrowth. These opposing effects emphasize the need for spatiotemporal precision in therapeutically targeting this pathway. This review integrates findings from genetic, molecular, and pharmacological studies to clarify the dual contributions of c-Jun to neuroregenerative and neurodegenerative processes. Emerging therapeutic strategies, such as isoform-selective JNK inhibitors, hold promise for harnessing the potential of c-Jun. A deeper understanding of the role of c-Juns could significantly enhance the efficacy of pharmacological interventions to improve neurological outcomes in neurodegenerative diseases.
- Carletti S, Rispoli R, Di Chirico A, et al. Neural stem cells transplantation as a neuroprotective strategy for amyotrophic lateral sclerosis (ALS). Glob Spine J. 2017;6(1_suppl):s-0036-1582656. doi: 10.1055/s-0036-1582656
- Qu A, Sun M, Kim JY, et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat Biomed Eng. 2021;5(1):103-113. doi: 10.1038/s41551-020-00634-4
- Lin B, Lu L, Wang Y, et al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett. 2021;21(1):806-815. doi: 10.1021/acs.nanolett.0c04560
- Cope EC, Gould E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell. 2019;24(5):690-705. doi: 10.1016/j.stem.2019.03.023
- Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci. 2001;21(18): 7194-7202. doi: 10.1523/JNEUROSCI.21-18-07194.2001
- Nakajima M, Ishimuro T, Kato K, et al. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials. 2007;28(6):1048-1060. doi: 10.1016/j.biomaterials.2006.10.004
- Raivich G, Behrens A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol. 2006;78(6):347-363. doi: 10.1016/j.pneurobio.2006.03.006
- Kockel L, Zeitlinger J, Staszewski LM, Mlodzik M, Bohmann D. Jun in Drosophila development: Redundant and nonredundant functions and regulation by two MAPK signal transduction pathways. Genes Dev. 1997;11(13): 1748-1758. doi: 10.1101/gad.11.13.1748
- Mechta-Grigoriou F, Giudicelli F, Pujades C, Charnay P, Yaniv M. c-jun regulation and function in the developing hindbrain. Dev Biol. 2003;258(2):419-431. doi: 10.1016/s0012-1606(03)00135-0
- Lerch JK, Martinez-Ondaro YR, Bixby JL, Lemmon VP. cJun promotes CNS axon growth. Mol Cell Neurosci. 2014;59:97-105. doi: 10.1016/j.mcn.2014.02.002
- Herdegen T, Kummer W, Fiallos CE, Leah J, Bravo R. Expression of c-JUN, JUN B and JUN D proteins in rat nervous system following transection of vagus nerve and cervical sympathetic trunk. Neuroscience. 1991;45(2): 413-422. doi: 10.1016/0306-4522(91)90237-i
- Raivich G, Bohatschek M, Costa CD, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron. 2004;43(1):57-67. doi: 10.1016/j.neuron.2004.06.005
- Meng Q, Xia Y. c-Jun, at the crossroad of the signaling network. Protein Cell. 2011;2(11):889-898. doi: 10.1007/s13238-011-1113-3
- John M, Leppik R, Busch SJ, Granger-Schnarr M, Schnarr M. DNA binding of Jun and Fos bZip domains: Homodimers and heterodimers induce a DNA conformational change in solution. Nucleic Acids Res. 1996;24(22):4487-4494. doi: 10.1093/nar/24.22.4487
- Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis. Gene. 2001;273(1):1-11. doi: 10.1016/s0378-1119(01)00551-0
- Herdegen T, Skene P, Bähr M. The c-Jun transcription factor--bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 1997;20(5):227-231. doi: 10.1016/s0166-2236(96)01000-4
- Baker SJ, Kerppola TK, Luk D, et al. Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts. Mol Cell Biol. 1992;12(10):4694-4705. doi: 10.1128/mcb.12.10.4694-4705.1992
- Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel- Encontre I. The AP-1 transcriptional complex: Local switch or remote command? Biochim Biophys Acta Rev Cancer. 2019;1872(1):11-23. doi: 10.1016/j.bbcan.2019.04.003
- Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochim Biophys Acta. 2007;1773(8):1341-1348. doi: 10.1016/j.bbamcr.2006.12.009
- Willesen MG, Gammeltoft S, Vaudano E. Activation of the c-Jun N terminal kinase pathway in an animal model of Parkinson’s disease. Ann N Y Acad Sci. 2002;973(1):237-240. doi: 10.1111/j.1749-6632.2002.tb04640.x
- Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, et al. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Nat Commun. 2022;13(1):6133. doi: 10.1038/s41467-022-33866-w
- Bogoyevitch MA. The isoform‐specific functions of the c‐ Jun N‐terminal Kinases (JNKs): Differences revealed by gene targeting. BioEssays. 2006;28(9):923-934. doi: 10.1002/bies.20458
- Dhanasekaran DN, Johnson GL. MAPKs: Function, regulation, role in cancer and therapeutic targeting. Oncogene. 2007;26(22):3097-3099. doi: 10.1038/sj.onc.1210395
- Antoniou X, Borsello T. The JNK signalling transduction pathway in the brain. Front Biosci (Elite Ed). 2012;4(6): 2110-2120. doi: 10.2741/e528
- Coffey ET. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci. 2014;15(5):285-299. doi: 10.1038/nrn3729
- Weijman JF, Kumar A, Jamieson SA, et al. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc Natl Acad Sci U S A. 2017;114(11):E2096-E2105. doi: 10.1073/pnas.1620813114
- Wang L, Gout I, Proud CG. Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes. J Biol Chem. 2001;276(35):32670-32677. doi: 10.1074/jbc.M102776200
- An WL, Bjorkdahl C, Liu R, Cowburn RF, Winblad B, Pei JJ. Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J Neurochem. 2005;92(5):1104-1115. doi: 10.1111/j.1471-4159.2004.02948.x
- Nikolakaki E, Coffer PJ, Hemelsoet R, Woodgett JR, Defize LH. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene. 1993;8(4):833-840.
- Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 2005;8(1):25-33. doi: 10.1016/j.ccr.2005.06.005
- Coso OA, Chiariello M, Yu JC, et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/ SAPK signaling pathway. Cell. 1995;81(7):1137-1146. doi: 10.1016/s0092-8674(05)80018-2
- Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995;81(7):1159-1170. doi: 10.1016/s0092-8674(05)80020-0
- Musi CA, Agro G, Santarella F, Iervasi E, Borsello T. JNK3 as therapeutic target and biomarker in neurodegenerative and neurodevelopmental brain diseases. Cells. 2020;9(10):2190. doi: 10.3390/cells9102190
- Nakano R, Nakayama T, Sugiya H. Biological properties of JNK3 and its function in neurons, astrocytes, pancreatic β-cells and cardiovascular cells. Cells. 2020;9(8):1802. doi: 10.3390/cells9081802
- Sclip A, Tozzi A, Abaza A, et al. c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo. Cell Death Dis. 2014;5(1):e1019. doi: 10.1038/cddis.2013.559
- Ham J, Eilers A, Whitfield J, Neame SJ, Shah B. c-Jun and the transcriptional control of neuronal apoptosis. Biochem Pharmacol. 2000;60(8):1015-1021. doi: 10.1016/s0006-2952(00)00372-5
- Nogueiras R, Sabio G. Brain JNK and metabolic disease. Diabetologia. 2021;64(2):265-274. doi: 10.1007/s00125-020-05327-w
- Nateri AS, Riera-Sans L, Da Costa C, Behrens A. Theubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science. 2004;303(5662):1374-1378. doi: 10.1126/science.1092880
- Estus SZW, Freeman RS, Gruda M, Bravo R, Johnson EM Jr. Altered gene expression in neurons during programmed cell death: Identification of c-jun as. J Cell Biol. 1994;127(6 Pt 1):1717-1727. doi: 10.1083/jcb.127.6.1717
- Ham J, Babij C, Whitfield J, et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron. 1995;14(5):927-939. doi: 10.1016/0896-6273(95)90331-3
- Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet. 1999;21(3):326-329. doi: 10.1038/6854
- Palmada M, Kanwal S, Rutkoski NJ, et al. c-jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. J Cell Biol. 2002;158(3):453-461. doi: 10.1083/jcb.200112129
- Besirli CG, Deckwerth TL, Crowder RJ, Freeman RS, Johnson EM Jr. Cytosine arabinoside rapidly activates Bax-dependent apoptosis and a delayed Bax-independent death pathway in sympathetic neurons. Cell Death Differ. 2003;10(9):1045-1058. doi: 10.1038/sj.cdd.4401259
- Potapova O, Basu S, Mercola D, Holbrook NJ. Protective role for c-Jun in the cellular response to DNA damage. J Biol Chem. 2001;276(30):28546-28553. doi: 10.1074/jbc.M102075200
- Besirli CG, Wagner EF, Johnson EM Jr. The limited role of NH2-terminal c-Jun phosphorylation in neuronal apoptosis: Identification of the nuclear pore complex as a potential target of the JNK pathway. J Cell Biol. 2005;170(3):401-411. doi: 10.1083/jcb.200501138
- Luo Y, Umegaki H, Wang X, Abe R, Roth GS. Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem. 1998;273(6):3756-3764. doi: 10.1074/jbc.273.6.3756
- Namgung U, Xia Z. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase. J Neurosci. 2000;20(17):6442-6451. doi: 10.1523/jneurosci.20-17-06442.2000
- Wong HK, Fricker M, Wyttenbach A, et al. Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol. 2005;25(19):8732-8747. doi: 10.1128/mcb.25.19.8732-8747.2005
- Deckwerth TL, Elliott JL, Knudson CM, Johnson EM, Snider WD, Korsmeyer SJ. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron. 1996;17(3):401-411. doi: 10.1016/s0896-6273(00)80173-7
- Putcha GV, Le S, Frank S, et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron. 2003;38(6):899-914. doi: 10.1016/s0896-6273(03)00355-6
- Akhter R, Sanphui P, Das H, Saha P, Biswas SC. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in beta-amyloid-induced neuron death. J Neurochem. 2015;134(6):1091-1103. doi: 10.1111/jnc.13128
- Kawashima F, Saito K, Kurata H, Maegaki Y, Mori T. c-jun is differentially expressed in embryonic and adult neural precursor cells. Histochem Cell Biol. 2017;147(6):721-731. doi: 10.1007/s00418-016-1536-2
- De Los Reyes Corrales T, Losada-Perez M, Casas- Tinto S. JNK Pathway in CNS pathologies. Int J Mol Sci. 2021;22(8):3883. doi: 10.3390/ijms22083883
- Luhmann HJ, Fukuda A, Kilb W. Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci. 2015;9(4):4. doi: 10.3389/fncel.2015.00004
- Liu Z, Dong Z, Han B, Yang Y, Liu Y, Zhang JT. Regulation of expression by promoters versus internal ribosome entry site in the 5’-untranslated sequence of the human cyclin-dependent kinase inhibitor p27kip1. Nucleic Acids Res. 2005;33(12):3763-3771. doi: 10.1093/nar/gki680
- Ouafik LH, Berenguer-Daize C, Berthois Y. Adrenomedullin promotes cell cycle transit and up-regulates cyclin D1 protein level in human glioblastoma cells through the activation of c-Jun/JNK/AP-1 signal transduction pathway. Cell Signal. 2009;21(4):597-608. doi: 10.1016/j.cellsig.2009.01.001
- Merkle FT, Mirzadeh Z, Alvarez-Buylla A. Mosaic organization of neural stem cells in the adult brain. Science. 2007;317(5836):381-384. doi: 10.1126/science.1144914
- Pramparo T, Youn YH, Yingling J, Hirotsune S, Wynshaw- Boris A. Novel embryonic neuronal migration and proliferation defects in dcx mutant mice are exacerbated by lis1 reduction. J Neurosci. 2010;30(8):3002-3012. doi: 10.1523/JNEUROSCI.4851-09.2010
- Olivera A, Dillahunt SE, Rivera J. Interrogation of sphingosine-1-phosphate receptor 2 function in vivo reveals a prominent role in the recovery from IgE and IgG-mediated anaphylaxis with minimal effect on its onset. Immunol Lett. 2013;150(1-2):89-96. doi: 10.1016/j.imlet.2013.01.005
- Herdegen T, Waetzig V. AP-1 proteins in the adult brain: Facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene. 2001;20(19):2424-2437. doi: 10.1038/sj.onc.1204387
- Payne AG. Ciliary neurotrophic factor: Its possible role as a stem cell homing beacon in neurological diseases and disorders. Med Hypotheses. 2005;64(4):880-881. doi: 10.1016/j.mehy.2004.09.013
- Gincberg G, Arien-Zakay H, Lazarovici P, Lelkes PI. Neural stem cells: Therapeutic potential for neurodegenerative diseases. Br Med Bull. 2012;104(1):7-19. doi: 10.1093/bmb/lds024
- Sabelstroem H, Stenudd M, Reu P, et al. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science. 2013;342(6158):637-640. doi: 10.1126/science.1242576
- Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175(1):1-13. doi: 10.1006/dbio.1996.0090
- Bellenchi GC, Volpicelli F, Piscopo V, Perrone-Capano C, Di Porzio U. Adult neural stem cells: An endogenous tool to repair brain injury? J Neurochem. 2013;124(2):159-167. doi: 10.1111/jnc.12084
- Wei ZZ, Yu SP, Lee JH, et al. Regulatory role of the JNK-STAT1/3 signaling in neuronal differentiation of cultured mouse embryonic stem cells. Cell Mol Neurobiol. 2014;34(6):881-893. doi: 10.1007/s10571-014-0067-4
- Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999;11(2):211-218. doi: 10.1016/s0955-0674(99)80028-3
- Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem. 2001;276(34):31674-31683. doi: 10.1074/jbc.M104309200
- Xiao J, Liu Y. Differential roles of ERK and JNK in early and late stages of neuritogenesis: A study in a novel PC12 model system. J Neurochem. 2003;86(6):1516-1523. doi: 10.1046/j.1471-4159.2003.01961.x
- Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V. Specific activities of individual c-Jun N-terminal kinases in the brain. Neuroscience. 2009;161(4):951-959. doi: 10.1016/j.neuroscience.2009.04.014
- Qu C, Li W, Shao Q, et al. c-Jun N-terminal kinase 1 (JNK1) is required for coordination of netrin signaling in axon guidance. J Biol Chem. 2013;288(3):1883-1895. doi: 10.1074/jbc.M112.417881
- Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK signaling in stem cell self-renewal and differentiation. Int J Mol Sci. 2020;21(7):2613. doi: 10.3390/ijms21072613
- Li QV, Dixon G, Verma N, et al. Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet. 2019;51(6):999-1010. doi: 10.1038/s41588-019-0408-9
- Chen CW, Liu CS, Chiu IM, et al. The signals of FGFs on the neurogenesis of embryonic stem cells. J Biomed Sci. 2010;17(1):33. doi: 10.1186/1423-0127-17-33
- Amura CR, Marek L, Winn RA, Heasley LE. Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Mol Cell Biol. 2005;25(24):10791-10802. doi: 10.1128/mcb.25.24.10791-10802.2005
- Sanalkumar R, Indulekha CL, Divya TS, et al. ATF2 maintains a subset of neural progenitors through CBF1/ Notch independent Hes-1 expression and synergistically activates the expression of Hes-1 in Notch-dependent neural progenitors. J Neurochem. 2010;113(4):807-818. doi: 10.1111/j.1471-4159.2010.06574.x
- Park SY, Kang MJ, Han JS. Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Mol Brain. 2018;11(1):39. doi: 10.1186/s13041-018-0383-6
- Sury MD, McShane E, Hernandez-Miranda LR, Birchmeier C, Selbach M. Quantitative proteomics reveals dynamic interaction of c-Jun N-terminal kinase (JNK) with RNA transport granule proteins splicing factor proline- and glutamine-rich (Sfpq) and non-POU domain-containing octamer-binding protein (Nono) during neuronal differentiation. Mol Cell Proteomics. 2015;14(1):50-65. doi: 10.1074/mcp.M114.039370
- Waetzig V, Herdegen T. A single c-Jun N-terminal kinase isoform (JNK3-p54) is an effector in both neuronal differentiation and cell death. J Biol Chem. 2003;278(1):567-572. doi: 10.1074/jbc.M207391200
- Hoeck JD, Jandke A, Blake SM, et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 2010;13(11):1365-1372. doi: 10.1038/nn.2644
- Castro-Torres RD, Olloquequi J, Parcerisas A, et al. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci. 2024;350:122750. doi: 10.1016/j.lfs.2024.122750
- Zhou FQ, Walzer MA, Snider WD. Turning on the machine: Genetic control of axon regeneration by c-jun. Neuron. 2004;43(1):1-2. doi: 10.1016/j.neuron.2004.06.020
- Fang S, He Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol. 2010;20(4):510-518. doi: 10.1016/j.conb.2010.03.013
- Belin S, Nawabi H, Wang C, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron. 2015;86(4):1000-1014. doi: 10.1016/j.neuron.2015.03.060
- Wang Z, Reynolds A, Kirry A, Nienhaus C, Blackmore MG. Overexpression of sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci. 2015;35(7):3139-3145. doi: 10.1523/JNEUROSCI.2832-14.2015
- Goldberg JL, Klassen MP, Hua Y, Barres BA. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science. 2002;296(5574):1860-1864. doi: 10.1126/science.1068428
- Wu Y, Zhao Y, Guan Z, Esmaeili S, Xiao Z, Kuriakose D. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Cell Adh Migr. 2024;18(1):1-11. doi: 10.1080/19336918.2024.2316576
- Danzi MC, Mehta ST, Dulla K, et al. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol Cell Neurosci. 2018;92:114-127. doi: 10.1016/j.mcn.2018.08.001
- Snider WD, Zhou FQ, Zhong J, Markus A. Signaling the pathway to regeneration. Neuron. 2002;35(1):13-16. doi: 10.1016/s0896-6273(02)00762-6
- Broude E, McAtee M, Kelley MS, Bregman BS. c-Jun expression in adult rat dorsal root ganglion neurons: Differential response after central or peripheral axotomy. Exp Neurol. 1997;148(1):367-377. doi: 10.1006/exnr.1997.6665
- Duan Q, Zheng H, Qin Y, et al. Stat3 has a different role in axon growth during development than it does in axon regeneration after injury. Mol Neurobiol. 2024;61(3): 1753-1768. doi: 10.1007/s12035-023-03644-w
- Mehta ST, Luo X, Park KK, Bixby JL, Lemmon VP. Hyperactivated Stat3 boosts axon regeneration in the CNS. Exp Neurol. 2016;280:115-120. doi: 10.1016/j.expneurol.2016.03.004
- Smith RP, Lerch-Haner JK, Pardinas JR, Buchser WJ, Bixby JL, Lemmon VP. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse. Mol Cell Neurosci. 2011;46(1):32-44. doi: 10.1016/j.mcn.2010.07.015
- Werner A, Willem M, Jones LL, Kreutzberg GW, Mayer U, Raivich G. Impaired axonal regeneration in alpha7 integrin-deficient mice. J Neurosci. 2000;20(5):1822-1830. doi: 10.1523/jneurosci.20-05-01822.2000
- Fagoe ND, Attwell CL, Mason MR, et al. Overexpression of ATF3 or the combination of ATF3, c-Jun, STAT3 and Smad1 promotes regeneration of the central axon branch of sensory neurons but without synergistic effects. Hum Mol Genet. 2015;24(23):6788-6800. doi: 10.1093/hmg/ddv383
- Chandran V, Coppola G, Nawabi H, et al. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron. 2016;89(5):956-970. doi: 10.1016/j.neuron.2016.01.034
- Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell. 2003;4(4):521-533. doi: 10.1016/s1534-5807(03)00094-7
- Gdalyahu A, Ghosh I, Levy T, et al. DCX, a new mediator of the JNK pathway. Embo J. 2004;23(4):823-832. doi: 10.1038/sj.emboj.7600079
- Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222-234. doi: 10.1016/S1474-4422(20)30440-3
- Small DH, Cappai R. Alois Alzheimer and Alzheimer’s disease: A centennial perspective. J Neurochem. 2010;99(3):708-710. doi: 10.1111/j.1471-4159.2006.04212.x
- Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056. doi: 10.1038/nrdp.2015.56
- Song J, Park K, Lee W, Lee J. Apoptosis signal regulating kinase 1 (ASK1): Potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci. 2014;15(2):2119-2129. doi: 10.3390/ijms15022119
- Castello MA, Soriano S. On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev. 2014;13:10-12. doi: 10.1016/j.arr.2013.10.001
- Vassar R. BACE1: The beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci. 2004;23(1-2):105-114. doi: 10.1385/JMN:23:1-2:105
- Orobets KS, Karamyshev AL. Amyloid precursor protein and Alzheimer’s disease. Int J Mol Sci. 2023;24(19):14794. doi: 10.3390/ijms241914794
- Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int J Biol Macromol. 2020;163:1599-1617. doi: 10.1016/j.ijbiomac.2020.07.327
- Stavitsky K, Brickman AM, Scarmeas N, et al. The progression of cognition, psychiatric symptoms, and functional abilities in dementia with Lewy bodies and Alzheimer disease. Arch Neurol. 2006;63(10):1450-1456. doi: 10.1001/archneur.63.10.1450
- Kim S, Kim N, Lee J, et al. Dynamic Fas signaling network regulates neural stem cell proliferation and memory enhancement. Sci Adv. 2020;6(17):eaaz9691. doi: 10.1126/sciadv.aaz9691
- Yoon SO, Park DJ, Ryu JC, et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 2012;75(5):824-837. doi: 10.1016/j.neuron.2012.06.024
- Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol. 2015;6:321. doi: 10.3389/fphar.2015.00321
- Ahn JH, So SP, Kim NY, Kim HJ, Yoon SY, Kim DH. c-Jun N-terminal Kinase (JNK) induces phosphorylation of amyloid precursor protein (APP) at Thr668, in okadaic acid-induced neurodegeneration. BMB Rep. 2016;49(7):376-381. doi: 10.5483/bmbrep.2016.49.7.246
- Zhao Y, Kuca K, Wu W, et al. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement. 2022;18(1):152-158. doi: 10.1002/alz.12370
- Merelli A, Rodriguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol. 2018;16(10):1484-1498. doi: 10.2174/1570159X16666180110130253
- Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: Pathogenic roles and therapeutic implications. Trends Neurosci. 2010;33(12):541-549. doi: 10.1016/j.tins.2010.09.001
- Liu Z, Li T, Li P, et al. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longev. 2015;2015:352723. doi: 10.1155/2015/352723
- Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the fas pathway of apoptosis. Cell. 1998;94(4):491-501. doi: 10.1016/s0092-8674(00)81590-1
- Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65-80. doi: 10.1038/cdd.2017.186
- Yao M, Nguyen TV, Pike CJ. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci. 2005;25(5):1149-1158. doi: 10.1523/jneurosci.4736-04.2005
- Yue J, Lopez JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346. doi: 10.3390/ijms21072346
- Ploia C, Antoniou X, Sclip A, et al. JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models. J Alzheimers Dis. 2011;26(2):315-329. doi: 10.3233/JAD-2011-110320
- Schulz E, Wenzel P, Munzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal. 2014;20(2):308-324. doi: 10.1089/ars.2012.4609
- Yoshida H, Hastie CJ, McLauchlan H, Cohen P, Goedert M. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem. 2004;90(2):352-358. doi: 10.1111/j.1471-4159.2004.02479.x
- Zhang X, Tang S, Zhang Q, et al. Endoplasmic reticulum stress mediates JNK-dependent IRS-1 serine phosphorylation and results in Tau hyperphosphorylation in amyloid beta oligomer-treated PC12 cells and primary neurons. Gene. 2016;587(2):183-193. doi: 10.1016/j.gene.2016.05.018
- Medhi B, Chakrabarty M. Insulin resistance: An emerging link in Alzheimer’s disease. Neurol Sci. 2013;34(10): 1719-1725. doi: 10.1007/s10072-013-1454-1
- Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 2017;140(3):792-803. doi: 10.1093/brain/aww349
- Shi Y, Holtzman D. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol. 2018;18(12):759-772. doi: 10.1038/s41577-018-0051-1
- Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol. 2021;17(3):157-172. doi: 10.1038/s41582-020-00435-y
- Valiukas Z, Tangalakis K, Apostolopoulos V, Feehan J. Microglial activation states and their implications for Alzheimer’s disease. J Prev Alzheimers Dis. 2025;12(1):100013. doi: 10.1016/j.tjpad.2024.100013
- Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15(11):2760-2770.
- Maphis N, Xu G, Kokiko-Cochran ON, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138(Pt 6): 1738-1755. doi: 10.1093/brain/awv081
- Scopa C, Barnada SM, Cicardi ME, Singer M, Trotti D, Trizzino M. JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer’s disease. Nat Commun. 2023;14(1):8021. doi: 10.1038/s41467-023-43728-8
- Wu C, Watts ME, Rubin LL. MAP4K4 activation mediates motor neuron degeneration in amyotrophic lateral sclerosis. Cell Rep. 2019;26(5):1143-1156.e5. doi: 10.1016/j.celrep.2019.01.019
- Distefano-Gagne F, Bitarafan S, Lacroix S, Gosselin D. Roles and regulation of microglia activity in multiple sclerosis: Insights from animal models. Nat Rev Neurosci. 2023;24(7):397-415. doi: 10.1038/s41583-023-00709-6
- Zakaria S, Ibrahim N, Abdo W, Sisi AE. JNK inhibitor and ferroptosis modulator as possible therapeutic modalities in Alzheimer disease (AD). Sci Rep. 2024;14(1):23293. doi: 10.1038/s41598-024-73596-1
- Sieradzan KA, Mann D. The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol Appl Neurobiol. 2010;27(1):1-21. doi: 10.1046/j.0305-1846.2001.00299.x
- Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10(4):204-216. doi: 10.1038/nrneurol.2014.24
- Genetic Modifiers of Huntington’s Disease C. Identification of genetic factors that modify clinical onset of huntington’s disease. Cell. 2015;162(3):516-526. doi: 10.1016/j.cell.2015.07.003
- Liu YF. Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J Biol Chem. 1998;273(44):28873-28877. doi: 10.1074/jbc.273.44.28873
- Morfini GA, You YM, Pollema SL, et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci. 2009;12(7):864-871. doi: 10.1038/nn.2346
- Perrin V, Dufour N, Raoul C, et al. Implication of the JNK pathway in a rat model of Huntington’s disease. Exp Neurol. 2009;215(1):191-200. doi: 10.1016/j.expneurol.2008.10.008
- Li G, Ma J, Cui S, et al. Parkinson’s disease in China: A forty-year growing track of bedside work. Transl Neurodegener. 2019;8:22. doi: 10.1186/s40035-019-0162-z
- Dickson DW. Neuropathology of Parkinson’s disease and parkinsonism. Cold Spring Harb Perspect Med. 2025;5:a041610. doi: 10.1101/cshperspect.a041610
- Peng J, Andersen JK. The role of c-Jun N-terminal kinase (JNK) in Parkinson’s disease. IUBMB Life. 2003;55(4-5):267-271. doi: 10.1080/1521654031000121666
- Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2001;98(18):10433-10438. doi: 10.1073/pnas.181182298
- Saporito MS, Thomas BA, Scott RW. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem. 2000;75(3):1200-1208. doi: 10.1046/j.1471-4159.2000.0751200.x
- Hirata Y, Adachi K, Kiuchi K. Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells. J Neurochem. 1998;71(4):1607-1615. doi: 10.1046/j.1471-4159.1998.71041607.x
- Choi WS, Abel G, Klintworth H, Flavell RA, Xia Z. JNK3 mediates paraquat- and rotenone-induced dopaminergic neuron death. J Neuropathol Exp Neurol. 2010;69(5):511-520. doi: 10.1097/NEN.0b013e3181db8100
- Bekker M, Abrahams S, Loos B, Bardien S. Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson’s disease? Neurobiol Aging. 2021;100(s1):91-105. doi: 10.1016/j.neurobiolaging.2020.12.013
- Wang W, Chi M, Mao Z, Li M. JNK inhibition as a potential strategy in treating Parkinson’s disease. Drug News Perspect. 2004;17(10):646-654. doi: 10.1358/dnp.2004.17.10.873916
- Spigolon G, Cavaccini A, Trusel M, Tonini R, Fisone G. cJun N-terminal kinase (JNK) mediates cortico-striatal signaling in a model of Parkinson’s disease. Neurobiol Dis. 2018;110:37-46. doi: 10.1016/j.nbd.2017.10.015
- Costello DA, Herron CE. The role of c-Jun N-terminal kinase in the A beta-mediated impairment of LTP and regulation of synaptic transmission in the hippocampus. Neuropharmacology. 2004;46(5):655-662. doi: 10.1016/j.neuropharm.2003.11.016
- Tempe D, Vives E, Brockly F, et al. SUMOylation of the inducible (c-Fos: c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene. 2014;33(7):921-927. doi: 10.1038/onc.2013.4
- Lee J, Jang H, Kang SH, et al. Cerebrospinal fluid biomarkers for the diagnosis and classification of Alzheimer’s disease spectrum. J Korean Med Sci. 2020;35(44):e361. doi: 10.3346/jkms.2020.35.e361
