Instability as a source of diversity in glioblastoma
Glioblastoma (GB) is one of the most aggressive and prevalent primary brain tumors in adults, accounting for approximately 15% of all brain tumors and 78% of all malignant brain tumors. This article aims to review the current understanding of GB, with a particular focus on the role of tumor heterogeneity in treatment resistance, the underexplored role of ploidy variation in GB biology, and the emerging and individualized therapeutic strategies designed to enhance treatment efficacy. A narrative review of the literature was conducted, synthesizing recent findings on GB development, diagnosis, and therapeutic innovations. Special attention was given to studies that discuss: molecular and cellular characteristics of GB; novel therapeutic approaches, including targeted inhibitors, combination therapies, and virotherapy; the clinical significance of inter- and intratumoral heterogeneity. The results indicate that GB’s resistance to therapy is closely linked to its pronounced heterogeneity, both at the inter- and intratumoral levels. Variability in ploidy among tumor cells has emerged as a potential contributor to treatment failure, yet it remains insufficiently investigated. Promising therapeutic developments include inhibitors targeting specific proteins or signaling pathways, synergistic combination treatments, and oncolytic virotherapy. Although these approaches show potential, most remain in early-stage research or clinical trials. The review underscores the importance of precision medicine in overcoming the barriers posed by GB’s heterogeneity. While emerging therapies are promising, the development of individualized, patient-specific strategies remains essential.
- Alhaddad L, Chuprov-Netochin R, Pustovalova M, Osipov AN, Leonov S. Polyploid/multinucleated giant and slow-cycling cancer cell enrichment in response to X-ray irradiation of human glioblastoma multiforme cells differing in radioresistance and TP53/PTEN status. Int J Mol Sci. 2023;24(2):1228. doi: 10.3390/ijms24021228
- Bomben VC, Sontheimer H. Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. Glia. 2010;58(10):1145-1156. doi: 10.1002/glia.20994
- Wirsching HG, Weller M. The role of molecular diagnostics in the management of patients with gliomas. Curr Treat Options Oncol. 2016;17(10):51. doi: 10.1007/s11864-016-0430-4
- Park SH, Maeda T, Mohapatra G, Waldman FM, Davis RL, Feuerstein BG. Heterogeneity, polyploidy, aneusomy, and 9p deletion in human glioblastoma multiforme. Cancer Genet Cytogenet. 1995;83(2):127-135. doi: 10.1016/0165-4608(95)00040-V
- Shibahara J, Fukayama M. Secondary glioblastoma with advanced neuronal immunophenotype. Virchows Arch. 2005;447(3):665-668. doi: 10.1007/s00428-005-1263-x
- Kaur E, Rajendra J, Jadhav S, et al. Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis. 201;36(6):685-695. doi: 10.1093/carcin/bgv050
- Erson-Omay EZ, Çağlayan AO, Schultz N, et al. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro Oncol. 2015;17(10):1356-1364. doi: 10.1093/neuonc/nov027
- Jaiswal S, Vij M, Jaiswal AK, Srivastava AK, Behari S, Pandey R. Cytomorphology of giant cell glioblastoma: Report of a case and brief review of literature. Diagn Cytopathol. 2012;40(5):440-443. doi: 10.1002/dc.21648
- Archetti M. Polyploidy as an adaptation against loss of heterozygosity in cancer. Int J Mol Sci. 2022;23(15):8528. doi: 10.3390/ijms23158528
- Wojnicki K, Kaczmarczyk A, Wojtas B, Kaminska B. BLMhelicase overexpressed in human gliomas contributes to diverse responses of human glioma cells to chemotherapy. Cell Death Discov. 2023;9(1):157. doi: 10.1038/s41420-023-01451-9
- Ben-David U, Amon A. Context is everything: Aneuploidy in cancer. Nat Rev Genet. 2020;21(1):44-62. doi: 10.1038/s41576-019-0171-x
- Zhang L, Ma J, Liu L, et al. Adaptive therapy: A tumor therapy strategy based on Darwinian evolution theory. Crit Rev Oncol Hematol. 2023;192:104192. doi: 10.1016/j.critrevonc.2023.104192
- Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol. 2020;17(9):569-587. doi: 10.1038/s41571-020-0377-z
- Gorgoulis VG, Pefani D, Pateras IS, Trougakos IS. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol. 2018;246(1):12-40. doi: 10.1002/path.5097
- Schwarzenbach C, Rinke J, Vilar JB, et al. Therapy-induced senescence of glioblastoma cells is determined by the p21CIP1-CDK1/2 axis and does not require activation of DREAM. Cell Death Dis. 2025;16(1):357. doi: 10.1038/s41419-025-07651-8
- Richardson TE, Walker JM, Abdullah KG, et al. Chromosomal instability in adult-type diffuse gliomas. Acta Neuropathol Commun. 2022;10(1):115. doi: 10.1186/s40478-022-01420-w
- Vishwakarma R, McManus KJ. Chromosome instability; Implications in cancer development, progression, and clinical outcomes. Cancers (Basel). 2020;12(4):824. doi: 10.3390/cancers12040824
- Wu S, Sheng L, Fan S, et al. Heterogeneity in clinical prognosis, immune infiltration and molecular characteristics of three glycolytic subtypes in lower-grade gliomas. Front Oncol. 2023;13:1180662. doi: 10.3389/fonc.2023.1180662
- Zarzuela L, Durán RV, Tomé M. Metabolism and signaling crosstalk in glioblastoma progression and therapy resistance. Mol Oncol. 2023;18(1):e13571. doi: 10.1002/1878-0261.13571
- Coward J, Harding A. Size does matter: Why polyploid tumor cells are critical drug targets in the war on cancer. Front Oncol. 2014;4:123. doi: 10.3389/fonc.2014.00123
- Crivii CB, Boșca AB, Melincovici CS, et al. Glioblastoma microenvironment and cellular interactions. Cancers (Basel). 2022;14(4):1092. doi: 10.3390/cancers14041092
- Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. JNCI J Natl Cancer Inst. 2007;99(21):1583-1593. doi: 10.1093/jnci/djm187
- Mesic A, Rogar M, Hudler P, Bilalovic N, Eminovic I, Komel R. Genetic variations in AURORA cell cycle kinases are associated with glioblastoma multiforme. Sci Rep. 2021;11(1):17444. doi: 10.1038/s41598-021-96935-y
- Mirzayans R, Murray D. Intratumor heterogeneity and treatment resistance of solid tumors with a focus on polyploid/senescent giant cancer cells (PGCCs). Int J Mol Sci. 2023;24(14):11534. doi: 10.3390/ijms241411534
- Alhaddad L, Osipov AN, Leonov S. The molecular and cellular strategies of glioblastoma and non-small-cell lung cancer cells conferring radioresistance. Int J Mol Sci. 2022;23(21):13577. doi: 10.3390/ijms232113577
- Joseph JV, Magaut CR, Storevik S, et al. TGF-β promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 2022;24(4):541-553. doi: 10.1093/neuonc/noab212
- Saleh T, Carpenter VJ, Bloukh S, Gewirtz DA. Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol. 2022;81:37-47. doi: 10.1016/J.SEMCANCER.2020.12.010
- Casotti MC, Meira DD, Zetum ASS, et al. Computational biology helps understand how polyploid giant cancer cells drive tumor success. Genes (Basel). 2023;14(4):801. doi: 10.3390/genes14040801
- Wang XF, Yang SA, Gong S, et al. Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Dev Cell. 2021;56(13):1976-1988.e4. doi: 10.1016/j.devcel.2021.05.017
- Was H, Borkowska A, Olszewska A, et al. Polyploidy formation in cancer cells: How a Trojan horse is born. Semin Cancer Biol. 2022;81:24-36. doi: 10.1016/j.semcancer.2021.03.003
- Liu Z, Mela A, Argenziano MG, et al. Single-cell analysis of 5-aminolevulinic acid intraoperative labeling specificity for glioblastoma. J Neurosurg. 2024;140(4):968-978. doi: 10.3171/2023.7.JNS23122
- Koul D, Fu J, Shen R, et al. Antitumor activity of NVP-BKM120--a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res. 2012;18(1):184-195. doi: 10.1158/1078-0432.CCR-11-1558
- Wachsberger PR, Lawrence YR, Liu Y, et al. Hsp90 inhibition enhances PI-3 kinase inhibition and radiosensitivity in glioblastoma. J Cancer Res Clin Oncol. 2014;140(4):573-582. doi: 10.1007/s00432-014-1594-6
- Sufit A, Lee-Sherick AB, DeRyckere D, et al. MERTK inhibition induces polyploidy and promotes cell death and cellular senescence in glioblastoma multiforme. PLoS One. 2016;11(10):e0165107. doi: 10.1371/journal.pone.0165107
- Conde M, Michen S, Wiedemuth R, et al. Chromosomal instability induced by increased BIRC5/Survivin levels affects tumorigenicity of glioma cells. BMC Cancer. 2017;17(1):889. doi: 10.1186/s12885-017-3932-y
- Lanvin O, Monferran S, Delmas C, Couderc B, Toulas C, Cohen-Jonathan-Moyal E. Radiation-induced mitotic cell death and glioblastoma radioresistance: A new regulating pathway controlled by integrin-linked kinase, hypoxia-inducible factor 1alpha and survivin in U87 cells. Eur J Cancer. 2013;49(13):2884-2891. doi: 10.1016/j.ejca.2013.05.003
- Annibali D, Whitfield JR, Favuzzi E, et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat Commun. 2014;5(1):4632. doi: 10.1038/ncomms5632
- Toledano S, Sabag AD, Ilan N, Liburkin-Dan T, Kessler O, Neufeld G. Plexin-A2 enables the proliferation and the development of tumors from glioblastoma derived cells. Cell Death Dis. 2023;14(1):41. doi: 10.1038/s41419-023-05554-0
- Vannini E, Panighini A, Cerri C, et al. The bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1) provides long-term survival in a murine glioma model. BMC Cancer. 2014;14(1):449. doi: 10.1186/1471-2407-14-449
- Gesundheit B, Ben-David E, Posen Y, et al. Effective treatment of glioblastoma multiforme with oncolytic virotherapy: A case-series. Front Oncol. 2020;10:702. doi: 10.3389/fonc.2020.00702
