AccScience Publishing / GPD / Online First / DOI: 10.36922/GPD025290054
REVIEW ARTICLE

Resisting the gallium “Trojan horse”: Experimental evolutionary insights into microbial resistance

Akamu Jude Ewunkem1*
Show Less
1 Department of Biological Sciences, School of College of Arts, Sciences, and Education, Winston-Salem State University, Winston-Salem, North Carolina, United States of America
Received: 15 July 2025 | Revised: 22 September 2025 | Accepted: 29 October 2025 | Published online: 28 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Given the increasing challenge of multidrug-resistant infections, there is a significant push to explore alternative treatments beyond conventional antibiotics. Historically, heavy metals have served as antimicrobial agents, and the current review focuses on elucidating their mechanisms of action and effectiveness against multidrug-resistant pathogens. Among these, gallium has emerged as a particularly promising antimicrobial agent with the potential to address the growing threat of antibiotic resistance. Using a “Trojan horse” strategy, gallium leverages its chemical similarity to iron to deceive pathogens. Because their ionic properties are nearly identical, pathogens readily import gallium through their native iron uptake systems. Once inside, the gallium is unable to perform iron’s necessary functions and instead acts as a poison, disrupting the microbe’s metabolism and ultimately causing its death. However, the question remains whether pathogens might adapt genetically, potentially leading to more harmful strains resistant to gallium’s effects. Given the significant threat posed by multidrug-resistant pathogens, such as Escherichia coli, Staphylococcus aureus, and Candida tropicalis, this review explores new approaches to combating antimicrobial resistance. This hybrid review uses experimental evolution to identify the adaptive mechanisms that allow bacteria and Candida to overcome gallium’s therapeutic “Trojan horse” effect. Studying gallium resistance is important for medical applications, as it provides critical insights into combating drug-resistant pathogens.

Keywords
Gallium
Greek gift
Trojan horse
Iron
Pathogens
Experimental evolution
Funding
This review was supported by The Genomic Research and Data Science Center for Computation and Cloud Computing (GRADS-4C) (211512).
Conflict of interest
The author declares no conflict of interest.
References
  1. Finglass PJ. How Stesichorus began his sack of Troy. Z Papyrologie Epigraphik. 2013;185:1-7.

 

  1. Li F, Liu F, Huang K, Yang S. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front Bioeng Biotechnol. 2022;10:827960. doi: 10.3389/fbioe.2022.827960

 

  1. Truong VK, Hayles A, Bright R, et al. Gallium liquid metal: Nanotoolbox for antimicrobial applications. ACS Nano. 2023;17(15):14406-14423. doi: 10.1021/acsnano.3c06486

 

  1. Cordeiro Gomes FD, Ferreira Alves MC, Alves Júnior S, Medina SH. Bactericidal metal-organic gallium frameworks-synthesis to application. Mol Pharm. 2024;22(2):638-646. doi: 10.1021/acs.molpharmaceut.4c01253

 

  1. Fakher S, Westenberg D. Properties and antibacterial effectiveness of metal-ion doped borate-based bioactive glasses. Future Microbiol. 2025;20(4):315-331. doi: 10.1080/17460913.2025.2470029

 

  1. Sulaiman JE, Lam H. Evolution of bacterial tolerance under antibiotic treatment and its implications on the development of resistance. Front Microbiol. 2021;12:617412. doi: 10.3389/fmicb.2021.617412

 

  1. Abbas A, Barkhouse A, Hackenberger D, Wright GD. Antibiotic resistance: A key microbial survival mechanism that threatens public health. Cell Host Microbe. 2024;32(6):837-851. doi: 10.1016/j.chom.2024.05.015

 

  1. Arnold CE, Bordin A, Lawhon SD, Libal MC, Bernstein LR, Cohen ND. Antimicrobial activity of gallium maltolate against Staphylococcus aureus and methicillin-resistant S. aureus and Staphylococcus pseudintermedius: An in vitro study. Vet Microbiol. 2012;155(2-4):389-394. doi: 10.1016/j.vetmic.2011.09.009

 

  1. Guo M, Tian P, Li Q, et al. Gallium nitrate enhances antimicrobial activity of colistin against Klebsiella pneumoniae by inducing reactive oxygen species accumulation. Microbiol Spectr. 2023;11(4):e0033423. doi: 10.1128/spectrum.00334-23

 

  1. Jacobs S, Boccarella G, van den Berg P, Van Dijck P, Carolus H. Unlocking the potential of experimental evolution to study drug resistance in pathogenic fungi. NPJ Antimicrob Resist. 2024;2(1):48. doi: 10.1128/spectrum.00334-23

 

  1. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evol. 2012;27(10):547-560. doi: 10.1016/j.tree.2012.06.001 T

 

  1. Jansen G, Barbosa C, Schulenburg H. Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance. Drug Resist Updat. 2013;16(6):96-107. doi: 10.1016/j.drup.2014.02.002

 

  1. Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017;11(10):2181-2194. doi: 10.1038/ismej.2017.69

 

  1. Cisneros-Mayoral S, Graña-Miraglia L, Pérez-Morales D, Peña-Miller R, Fuentes-Hernández A. Evolutionary history and strength of selection determine the rate of antibiotic resistance adaptation. Mol Biol Evol. 2022;39(9):msac185. doi: 10.1093/molbev/msac185

 

  1. Maeda T, Furusawa C. Laboratory evolution of antimicrobial resistance in bacteria to develop rational treatment strategies. Antibiotics (Basel). 2024;13(1):94. doi: 10.3390/antibiotics13010094

 

  1. Barnett M, Meister L, Rainey PB. Experimental evolution of evolvability. Science. 2025;387(6736):eadr2756. doi: 10.1126/science.adr2756

 

  1. Gerstein AC, Sethi P. Experimental evolution of drug resistance in human fungal pathogens. Curr Opin Genet Dev. 2022;76:101965. doi: 10.1016/j.gde.2022.101965

 

  1. Windels EM, Cool L, Persy E, et al. Antibiotic dose and nutrient availability differentially drive the evolution of antibiotic resistance and persistence. ISME J. 2024;18(1):wrae070. doi: 10.1093/ismejo/wrae070

 

  1. McDonald MJ. Microbial experimental evolution-a proving ground for evolutionary theory and a tool for discovery. EMBO Rep. 2019;20(8):e46992. doi: 10.15252/embr.201846992

 

  1. Bailey SF, Bataillon T. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature? Mol Ecol. 2016;25(1):203-218. doi: 10.1111/mec.13378

 

  1. Helsen J, Sherlock G, Dey G. Experimental evolution for cell biology. Trends Cell Biol. 2023;33(11):903-912. doi: 10.1016/j.tcb.2023.04.006

 

  1. Blount ZD, Lenski RE, Losos JB. Contingency and determinism in evolution: Replaying life’s tape. Science. 2018;362(6415):eaam5979. doi: 10.1126/science.aam5979

 

  1. Yuan W, Chen J, Teng H, et al. A review on the elemental and isotopic geochemistry of gallium. Global Biogeochem Cycles. 2021;35(9):e2021GB007033. doi: 10.1029/2021GB007033

 

  1. Orna MV, Fontani M. Discovery of Three Elements Predicted by Mendeleev’s Table: Gallium. In: 150 Years of the Periodic Table: A Commemorative Symposium. Berlin: Springer Nature; 2021. p. 227.

 

  1. Sztejnberg A. Paul-Émile (François) Lecoq de Boisbaudran (1838-1912)-the Important French chemist of the second half of the XIX Century and the first decade of the XX century. Rev Cenic Cien Químicas. 2022;53:120-34.

 

  1. Choi SR, Hassan MA, Britigan BE, Narayanasamy P. Antimicrobial activity of Gallium (III) compounds: Pathogen-dependent targeting of multiple iron/heme-dependent biological processes. Curr Issues Mol Biol. 2024;46(8):9149-9161. doi: 10.3390/cimb46080541

 

  1. Owusu SB, Zaher A, Ahenkorah S, Pandya DN, Wadas TJ, Petronek MS. Gallium uncouples Iron metabolism to enhance glioblastoma radiosensitivity. Int J Mol Sci. 2024;25(18):10047. doi: 10.3390/ijms251810047

 

  1. Michalska K, Rychłowski M, Krupińska M, Szewczyk G, Sarna T, Nakonieczna J. Gallium mesoporphyrin IX-mediated photodestruction: A pharmacological trojan horse strategy to eliminate multidrug-resistant Staphylococcus aureus. Mol Pharm. 2022;19(5):1434-1448. doi: 10.1021/acs.molpharmaceut.1c00993

 

  1. Ewunkem A, Simpson F, Holland D, et al. Gallium resistance in Staphylococcus aureus: Polymorphisms and morphology impacting growth in metals, antibiotics and polyfluorinated compounds. Appl Microbiol (Basel). 2025;5(1):32. doi: 10.3390/applmicrobiol5010032

 

  1. Graves JL Jr., Ewunkem AJ, Ward J, et al. Experimental evolution of gallium resistance in Escherichia coli. Evol Med Public Health. 2019;2019(1):169-180. doi: 10.1093/emph/eoz025

 

  1. Bonten M, Johnson JR, van den Biggelaar AH, et al. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin Infect Dis. 2021;72(7):1211-1219. doi: 10.1093/cid/ciaa210

 

  1. Suleiman K, Kolo I, Mohammed SS, Magaji YG. Bacterial diarrhea among infants in developing countries: An overview of diarrheagenic Escherichia coli (DEC). Gadau J Pure Allied Sci. 2022;1(1):73-81. doi: 10.54117/gjpas.v1i1.10

 

  1. Sanchez GV, Baird AMG, Karlowsky JA, Master RN, Bordon JM. Nitrofurantoin retains antimicrobial activity against multidrug-resistant urinary Escherichia coli from US outpatients. J Antimicrob Chemother. 2014;69(12):3259-3262. doi: 10.1093/jac/dku282

 

  1. Jian Z, Zeng L, Xu T, et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J Basic Microbiol. 2021;61(12):1049-1070. doi: 10.1002/jobm.20210020

 

  1. Talan DA, Krishnadasan A, Abrahamian FM, Stamm WE, Moran GJ, EMERGEncy ID NET Study Group. Prevalence and risk factor analysis of trimethoprim-sulfamethoxazole-and fluoroquinolone-resistant Escherichia coli infection among emergency department patients with pyelonephritis. Clin Infect Dis. 2008;47(9):1150-1158. doi: 10.1086/592250

 

  1. Salazar-Alemán DA, Turner RJ. Escherichia coli growing under antimicrobial gallium nitrate stress reveals new processes of tolerance and toxicity. Sci Rep. 2025;15(1):1389. doi: 10.1038/s41598-025-85772-y

 

  1. Ewunkem AJ, Rodgers L, Campbell D, et al. Experimental evolution of magnetite nanoparticle resistance in Escherichia coli. Nanomaterials. 2021;11(3):790. doi: 10.3390/nano11030790

 

  1. Abdallah EM, Sulieman AM. Staphylococcus aureus. Microbial Toxins in Food Systems: Causes, Mechanisms, Complications, and Metabolism. Berlin: Springer Nature; 2024. p. 235.

 

  1. Cheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547-569. doi: 10.1080/21505594.2021.1878688

 

  1. Hamad Y, Nickel KB, Olsen MA, George IA. Outcomes of ceftriaxone compared with cefazolin or nafcillin/ oxacillin for outpatient therapy for methicillin-sensitive Staphylococcus aureus bloodstream infections: results from a large United States claims database. Open Forum Infect Dis. 2024;11(2):ofad662. doi: 10.1093/ofid/ofad662

 

  1. Ali T, Basit A, Karim AM, et al. Mutation-based antibiotic resistance mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. Pharmaceuticals (Basel). 2021;14(5):420. doi: 10.3390/ph14050420

 

  1. Alghamdi BA, Al-Johani I, Al-Shamrani JM, et al. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci. 2023;30(4):103604. doi: 10.1016/j.sjbs.2023.103604

 

  1. Arnold CE, Bordin A, Lawhon SD, Libal MC, Bernstein LR, Cohen ND. Antimicrobial activity of gallium maltolate against Staphylococcus aureus and methicillin-resistant S. aureus and Staphylococcus pseudintermedius: An in vitro study. Vet Microbiol. 2012;155(2-4):389-394. doi: 10.1016/j.vetmic.2011.09.009

 

  1. Lombardo MJ, Aponyi I, Rosenberg SM. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics. 2004;166(2):669-680. doi: 10.1093/genetics/166.2.669

 

  1. Butcher RJ, Tabor JJ. Real-time detection of response regulator phosphorylation dynamics in live bacteria. Proc Natl Acad Sci U S A. 2022;119(35):e2201204119. doi: 10.1073/pnas.2201204119

 

  1. Zhang P, Liu Z. Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation. Nat Commun. 2024;15(1):3404. doi: 10.1038/s41467-024-47783-7

 

  1. Bradshaw N, Levdikov VM, Zimanyi CM, Gaudet R, Wilkinson AJ, Losick R. A widespread family of serine/ threonine protein phosphatases shares a common regulatory switch with proteasomal proteases. Elife. 2017;6:e26111. doi: 10.7554/eLife.26111

 

  1. Niehaus TD, Elbadawi-Sidhu M, de Crécy-Lagard V, Fiehn O, Hanson AD. Discovery of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. J Biol Chem. 2017;292(39):16360-16367. doi: 10.1074/jbc.M117.805028

 

  1. Pearson CR, Tindall SN, Herman R, et al. Acetylation of surface carbohydrates in bacterial pathogens requires coordinated action of a two-domain membrane-bound acyltransferase. mBio. 2020;11(4):10-128. doi: 10.1128/mbio.01364-20

 

  1. Chen J, Zhou H, Huang J, Zhang R, Rao X. Virulence alterations in Staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J Adv Res. 2021;31:165-175. doi: 10.1016/j.jare.2021.01.008

 

  1. Caccamo PD, Brun YV. The molecular basis of noncanonical bacterial morphology. Trends Microbiol. 2018;26(3):191-208. doi: 10.1016/j.tim.2017.09.012

 

  1. Giaouris E, Briandet R, Meyrand M, Courtin P, Chapot- Chartier MP. Variations in the degree of D-alanylation of teichoic acids in Lactococcus lactis alter resistance to cationic antimicrobials but have no effect on bacterial surface hydrophobicity and charge. Appl Environ Microbiol. 2008;74:4764-4767. doi: 10.1128/AEM.00078-08

 

  1. Zheng Y, Cai Y, Sun T, Li G, An T. Response mechanisms ofresistance in L-form bacteria to different target antibiotics: Implications from oxidative stress to metabolism. Environ Int. 2024;187:108729. doi: 10.1016/j.envint.2024.108729

 

  1. Lass-Flörl C, Kanj SS, Govender NP, Thompson GR 3rd, Ostrosky-Zeichner L, Govrins MA. Invasive candidiasis. Nat Rev Dis Primers. 2024;10(1):20. doi: 10.1038/s41572-024-00503-3

 

  1. Wang S, Pan J, Gu L, et al. Review of treatment options for a multidrug-resistant fungus: Candida auris. Med Mycol. 2024;62(1):myad127. doi: 10.1093/mmy/myad127

 

  1. Gao S, Ji Y, Xu S, et al. Antifungal activity of nisin against clinical isolates of azole-resistant Candida tropicalis. Front Microbiol. 2024;15:1383953. doi: 10.3389/fmicb.2024.1383953

 

  1. Hayashi-Nishino M, Aoki K, Kishimoto A, et al. Identification of bacterial drug-resistant cells by the convolutional neural network in transmission electron microscope images. Front Microbiol. 2022;13:839718. doi: 10.3389/fmicb.2022.839718

 

  1. Herrero de Dios C, Román E, Alonso Monge R, Pla J. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: Implications in virulence. Curr Protein Peptide Sci. 2010;11(8):693-703. doi: 10.2174/138920310794557655

 

  1. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-128. doi: 10.4161/viru.22913

 

  1. Talapko J, Juzbašić M, Matijević T, et al. Candida albicans-the virulence factors and clinical manifestations of infection. J Fungi. 2021;7(2):79. doi: 10.3390/jof7020079

 

  1. Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. PLoS Genet. 2025;21(3):e1011632. doi: 10.1371/journal.pgen.1011632

 

  1. Corona F, Martinez JL. Phenotypic resistance to antibiotics. Antibiotics. 2013;2(2):237-255. doi: 10.3390/antibiotics2020237

 

  1. Cai W, Ruan Q, Li J, et al. Fungal spectrum and susceptibility against nine antifungal agents in 525 deep fungal infected cases. Infect Drug Resist. 2023;16:4687-4696. doi: 10.2147/IDR.S403863

 

  1. Ferreira RG, Cardoso MV, De Souza Furtado KM, Espíndola KM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: A public health risk in the induction of hepatocellular carcinoma. Transl Res. 2019;204:51-71. doi: 10.1016/j.trsl.2018.09.001

 

  1. Pereira R, dos Santos Fontenelle RO, De Brito EH, De Morais SM. Biofilm of Candida albicans: Formation, regulation and resistance. J Appl Microbiol. 2021;131(1):11-22. doi: 10.1111/jam.14949

 

  1. Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. Metal resistance in Candida biofilms. FEMS Microbiol Ecol. 2006;55(3):479-491. doi: 10.1111/j.1574-6941.2005.00045

 

  1. Sharma R, Gibb AA, Barnts K, Elrod JW, Puri S. Alternative oxidase promotes high iron tolerance in Candida albicans. Microbiol Spectr. 2023;11(6):e0215723. doi: 10.1128/spectrum.02157-23

 

  1. Moreno A, Demitri N, Ruiz‐Baca E, Vega‐González A, Polentarutti M, Cuéllar‐Cruz M. Bioreduction of precious and heavy metals by Candida species under oxidative stress conditions. Microb Biotechnol. 2019;12(6):1164-1179. doi: 10.1111/1751-7915.13364

 

  1. Chen L, Ma L, Bai Q, et al. Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J Biol Chem. 2014;289(32):22413-22426. doi: 10.1074/jbc.M114.548677

 

  1. Mitra A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf. 2024;12:100133. doi: 10.1016/j.tcsw.2024.100133

 

  1. Baek S, Seo J, Yun T, et al. Heavy metals promote the formation of multidrug-tolerant Staphylococcus aureus and Escherichia coli persisters. Ecotoxicol Environ Saf. 2025;293:118014. doi: 10.1016/j.ecoenv.2025.118014

 

  1. Escolar L, Pérez-Martín J, de Lorenzo V. Opening the iron box: Transcriptional metalloregulation by the Fur protein. J Bacteriol. 1999;181(20):6223-6229. doi: 10.1128/jb.181.20.6223-6229.1999

 

  1. Lill R. Function and biogenesis of iron-sulphur proteins. Nature. 2009;460(7257):831-838. doi: 10.1038/nature08301

 

  1. Fillat MF. The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators. Arch Biochem Biophys. 2014;546:41-52. doi: 10.1016/j.abb.2014.01.029

 

  1. Grass G. Iron transport in Escherichia coli: All has not been said and done. Biometals. 2006;19(2):159-172. doi: 10.1007/s10534-005-4341-2

 

  1. Coale KH, Johnson KS, Fitzwater SE, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature. 1996;383(6600):495-501. doi: 10.1038/383495a0

 

  1. Seo SW, Kim D, Latif H, O’Brien EJ, Szubin R, Palsson BO. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun. 2014;5(1):4910. doi: 10.1038/ncomms5910

 

  1. Konopka K, Neilands JB. Effect of serum albumin on siderophore-mediated utilization of transferrin iron. Biochemistry. 1984;23(10):2122-2127. doi: 10.1021/bi00305a003

 

  1. Nakashige TG, Zhang B, Krebs C, Nolan EM. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol. 2015;11(10):765-771. doi: 10.1038/nchembio.1891

 

  1. Cavas L, Kirkiz I. Characterization of siderophores from Escherichia coli strains through genome mining tools: An antiSMASH study. AMB Express. 2022;12(1):74. doi: 10.1186/s13568-022-01421-x

 

  1. Rajapitamahuni S, Lyou ES, Kang BR, Lee TK. Microbial interaction-induced siderophore dynamics lead to phenotypic differentiation of Staphylococcus aureus. Front Cell Infect Microbiol. 2023;13:1277176. doi: 10.3389/fcimb.2023.1277176

 

  1. Choi S, Kronstad JW, Jung WH. Siderophore biosynthesis and transport systems in model and pathogenic fungi. J Microbiol Biotechnol. 2024;34(8):1551. doi: 10.4014/jmb.2405.05020

 

  1. Villalpando-Rodriguez GE, Gibson SB. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid Med Cell Longev. 2021;2021(1):9912436. doi: 10.1155/2021/9912436

 

  1. Theil EC, Goss DJ. Living with iron (and oxygen): Questions and answers about iron homeostasis. Chem Rev. 2009;109(10):4568-4579. doi: 10.1021/cr900052g

 

  1. Thomas MD, Ewunkem AJ, Boyd S, et al. Too much of a good thing: Adaption to iron (II) intoxication in Escherichia coli. Evol Med Public Health. 2021;9(1):53-67. doi: 10.1093/emph/eoaa051

 

  1. Jeje O, Ewunkem AJ, Jeffers-Francis LK, Graves JL Jr. Serving two masters: Effect of Escherichia coli dual resistance on antibiotic susceptibility. Antibiotics (Basel). 2023;12(3):603. doi: 10.3390/antibiotics12030603

 

  1. Cuisiniere T, Calvé A, Fragoso G, et al. Oral iron supplementation after antibiotic exposure induces a deleterious recovery of the gut microbiota. BMC Microbiol. 2021;21(1):259. doi: 10.1186/s12866-021-02320-0

 

  1. Li Y, Wang Z, Liu X, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for the dimorphic fungus Nomuraea rileyi conidiation, dimorphism transition, resistance to oxidative stress, pigmented microsclerotium formation, and virulence. Front Microbiol. 2016;7:931. doi: 10.3389/fmicb.2016.00931

 

  1. Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol. 2013;3:80. doi: 10.3389/fcimb.2013.00080

 

  1. Takemura K, Kolasinski V, Del Poeta M, et al. Iron acquisition strategies in pathogenic fungi. mBio. 2025;16(6):e0121125. doi: 10.1128/mbio.01211-25

 

  1. Prasad R, Gaur NA, Gaur M, Komath SS. Efflux pumps in drug resistance of Candida. Infect Disord Drug Targets. 2006;6(2):69-83. doi: 10.2174/187152606784112164

 

  1. Mamouei Z, Zeng G, Wang YM, Wang Y. Candida albicans possess a highly versatile and dynamic high‐affinity iron transport system important for its commensal‐pathogenic lifestyle. Mol Microbiol. 2017;106(6):986-998. doi: 10.1111/mmi.13864

 

  1. Bastos RW, Rossato L, Valero C, Lagrou K, Colombo AL, Goldman GH. Potential of gallium as an antifungal agent. Front Cell Infect Microbiol. 2019;9:414. doi: 10.3389/fcimb.2019.00414

 

  1. Visaggio D, Frangipani E, Hijazi S, et al. Variable susceptibility to gallium compounds of major cystic fibrosis pathogens. ACS Infect Dis. 2021;8(1):78-85. doi: 10.1021/acsinfecdis.1c00409
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing