The role of exosomes in the diagnosis of hematological cancers
Exosomes, nanoscale extracellular vesicles secreted by various cell types, have emerged as pivotal players in the diagnosis and monitoring of hematological cancers, including lymphomas, leukemia’s, and multiple myeloma. These vesicles encapsulate a diverse array of biomolecules, reflecting the physiological and pathological states of their origin cells, thus providing valuable insights into tumor biology. This article discusses the unique molecular signatures carried by exosomes, particularly focusing on microRNAs and proteins that serve as biomarkers for early detection, disease progression, and treatment response. The integration of artificial intelligence (AI) into exosomal research is highlighted as a transformative approach for identifying novel biomarkers, enhancing the precision of diagnostic assays, and facilitating personalized treatment strategies. Despite the promising potential of exosome-based diagnostics, challenges such as the standardization of isolation techniques and ethical considerations surrounding AI implementation remain. Future research directions should aim to overcome these obstacles, with an emphasis on improving exosome characterization methods and exploring novel biomarkers, ultimately enhancing patient outcomes through tailored therapeutic approaches.

- Xu J, Chang X, Zhang H, et al. Exosomes: A bridge of periodontitis and systemic diseases. Gene Protein Dis. 2022;1(2):99. doi: 10.36922/gpd.v1i2.99
- Guermazi D, Khan S, Shah A, Saliba E. Tiny messengers, big results: A review of exosome-mediated treatments and considerations in dermatology. Gene Protein Dis. 2024;3(2):3230. doi: 10.36922/gpd.3230
- Zhou E, Li Y, Wu F, et al. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine. 2021;67:103365. doi: 10.1016/j.ebiom.2021.103365
- Pavani KC, Hendrix A, Van Den Broeck W, et al. Isolation and characterization of functionally active extracellular vesicles from culture medium conditioned by bovine embryos in vitro. Int J Mol Sci. 2018;20(1):38. doi: 10.3390/ijms20010038
- Liu J, Ren L, Li S, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 2021;11(9):2783-2797. doi: 10.1016/j.apsb.2021.01.001
- Hernández-Walias FJ, Vázquez E, Pacheco Y, et al. Risk, diagnostic and predictor factors for classical hodgkin lymphoma in HIV-1-infected individuals: Role of plasma exosome-derived miR-20a and miR-21. J Clin Med. 2020;9(3):760. doi: 10.3390/jcm9030760
- Zhang W, Zhu J, He X, et al. Exosome complex genes mediate RNA degradation and predict survival in mantle cell lymphoma. Oncol Lett. 2019;18(5):5119-5128. doi: 10.3892/ol.2019.10850
- Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett. 2016;380(1):243-252. doi: 10.1016/j.canlet.2015.10.007
- Iqbal J, Shen Y, Huang X, et al. Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood. 2015;125(7):1137-1145. doi: 10.1182/blood-2014-04-566778
- Mashima R. Physiological roles of miR-155. Immunology. 2015;145(3):323-333. doi: 10.1111/imm.12468
- Laginestra MA, Piccaluga PP, Fuligni F, et al. Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified. Blood Cancer J. 2014;4(11):259. doi: 10.1038/bcj.2014.78
- Due H, Schönherz AA, Ryø L, et al. MicroRNA-155 controls vincristine sensitivity and predicts superior clinical outcome in diffuse large B-cell lymphoma. Blood Adv. 2019;3(7):1185-1196. doi: 10.1182/bloodadvances.2018029660
- Rossi M, Fuligni F, Ciccone M, et al. Hsa-miR-15a and Hsa-miR-16-1 expression is not related to proliferation centers abundance and other prognostic factors in chronic lymphocytic leukemia. Biomed Res Int. 2013;2013:715391. doi: 10.1155/2013/715391
- Piccaluga PP, Navari M, De Falco G, et al. Virus-encoded microRNA contributes to the molecular profile of EBV-positive burkitt lymphomas. Oncotarget. 2016;7(1):224-240. doi: 10.18632/oncotarget.4399
- Yazdanparast S, Huang Z, Keramat S, et al. The roles of exosomal microRNAs in diffuse large B-cell lymphoma: Diagnosis, prognosis, clinical application, and biomolecular mechanisms. Front Oncol. 2022;12:904637. doi: 10.3389/fonc.2022.904637
- Navari M, Fuligni F, Laginestra MA, et al. Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post-transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus. Front Microbiol. 2014;5:728. doi: 10.3389/fmicb.2014.00728
- Navari M, Etebari M, De Falco G, et al. The presence of epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma. Front Microbiol. 2015;6:556. doi: 10.3389/fmicb.2015.00556
- Mundo L, Ambrosio MR, Picciolini M, et al. Unveiling another missing piece in EBV-driven lymphomagenesis: EBV-encoded MicroRNAs expression in EBER-negative burkitt lymphoma cases. Front Microbiol. 2017;8:229. doi: 10.3389/fmicb.2017.00229
- Ambrosio MR, Mundo L, Gazaneo S, et al. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget. 2017;8(64):107356-107373. doi: 10.18632/oncotarget.22219
- Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic roles of epstein-barr virus-encoded microRNAs in human lymphomas. Int J Mol Sci. 2018;19(4):1168. doi: 10.3390/ijms19041168
- Wang F, Wang XS, Yang GH, et al. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 2012;39(3):2713-2722. doi: 10.1007/s11033-011-1026-5
- Kawashima M, Higuchi H, Kotani A. Significance of trogocytosis and exosome-mediated transport in establishing and maintaining the tumor microenvironment in lymphoid malignancies. J Clin Exp Hematop. 2021;61(4):192-201. doi: 10.3960/jslrt.21005
- Zare N, Haghjooy Javanmard SH, Mehrzad V, Eskandari N, Andalib AR. Effect of plasma-derived exosomes of refractory/relapsed or responsive patients with diffuse large B-cell lymphoma on natural killer cells functions. Cell J. 2020;22(1):40-54. doi: 10.22074/cellj.2020.6550
- Ferguson Bennit HR, Gonda A, Kabagwira J, et al. Natural killer cell phenotype and functionality affected by exposure to extracellular survivin and lymphoma-derived exosomes. Int J Mol Sci. 2021;22(3):1255. doi: 10.3390/ijms22031255
- Wu X, Ban C, Deng W, et al. Unveiling the PDK4-centered rituximab-resistant mechanism in DLBCL: The potential of the “Smart” exosome nanoparticle therapy. Mol Cancer. 2024;23(1):144. doi: 10.1186/s12943-024-02057-0
- Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer. 2010;103(2):275-284. doi: 10.1038/sj.bjc.6605751
- Xu L, Xu Y, Jing Z, et al. Altered expression pattern of miR- 29a, miR-29b and the target genes in myeloid leukemia. Exp Hematol Oncol. 2014;3:17. doi: 10.1186/2162-3619-3-17
- Chen H, Jayasinghe MK, Yeo EYM, et al. CD33-targeting extracellular vesicles deliver antisense oligonucleotides against FLT3-ITD and miR-125b for specific treatment of acute myeloid leukaemia. Cell Prolif. 2022;55(9):e13255. doi: 10.1111/cpr.13255
- Hu J, Zheng L, Shen X, Zhang Y, Li C, Xi T. MicroRNA-125b inhibits AML cells differentiation by directly targeting Fes. Gene. 2017;620:1-9. doi: 10.1016/j.gene.2017.04.002
- Mraz M, Chen L, Rassenti LZ, et al. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood. 2014;124(1):84-95. doi: 10.1182/blood-2013-09-527234
- Musilova K, Mraz M. MicroRNAs in B-cell lymphomas: How a complex biology gets more complex. Leukemia. 2015;29(5):1004-1017. doi: 10.1038/leu.2014.351
- Casabonne D, Benavente Y, Seifert J, et al. Serum levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int J Cancer. 2020;147(5):1315-1324. doi: 10.1002/ijc.32894
- Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11) (p21;q23) translocation. J Exp Med. 2008;205(11):2499-2506. doi: 10.1084/jem.20080285
- Allegra A, Di Gioacchino M, Tonacci A, Petrarca C, Musolino C, Gangemi S. Multiple myeloma cell-derived exosomes: Implications on tumorigenesis, diagnosis, prognosis and therapeutic strategies. Cells. 2021;10(11):2865. doi: 10.3390/cells10112865
- Krishnan SR, Bebawy M. Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer. 2023;22(1):79. doi: 10.1186/s12943-022-01683-w
- Fan B, Wang L, Wang J. RAB22A as a predictor of exosome secretion in the progression and relapse of multiple myeloma. Aging (Albany NY). 2024;16(5):4169-4190. doi: 10.18632/aging.205565
- Watanabe T. Realization of osteolysis, angiogenesis, immunosuppression, and drug resistance by extracellular vesicles: Roles of RNAs and proteins in their cargoes and of ectonucleotidases of the immunosuppressive adenosinergic noncanonical pathway in the bone marrow niche of multiple myeloma. Cancers (Basel). 2021;13(12):2669. doi: 10.3390/cancers13122969
- Colombo M, Giannandrea D, Lesma E, Basile A, Chiaramonte R. Extracellular vesicles enhance multiple myeloma metastatic dissemination. Int J Mol Sci. 2019;20(13):3236. doi: 10.3390/ijms20133236
- Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/ serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi: 10.1002/ctm2.684
- Fang C, Zhu DX, Dong HJ, et al. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol. 2012;91(4):553-559. doi: 10.1007/s00277-011-1350-9
- Khanmohammadi S, Masrour M, Fallahtafti P, Hasani F. MicroRNA as a potential diagnostic and prognostic biomarker in diffuse large B-cell lymphoma: A systematic review and meta-analysis. Cancer Rep (Hoboken). 2025;8(1):e70070. doi: 10.1002/cnr2.70070
- Due H, Svendsen P, Bødker JS, et al. miR-155 as a biomarker in B-Cell malignancies. Biomed Res Int. 2016;2016:9513037. doi: 10.1155/2016/9513037
- Aguilar-Hernandez MM, Rincon Camacho JC, Galicia Garcia G. Extracellular vesicles and their associated miRNAs as potential prognostic biomarkers in chronic lymphocytic leukemia. Curr Oncol Rep. 2021;23(6):66. doi: 10.1007/s11912-021-01058-2
- Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750
- Alum EU. AI-driven biomarker discovery: Enhancing precision in cancer diagnosis and prognosis. Discov Oncol. 2025;16(1):313. doi: 10.1007/s12672-025-02064-7
- Picchio V, Pontecorvi V, Dhori X, et al. The emerging role of artificial intelligence applied to exosome analysis: From cancer biology to other biomedical fields. Life Sci. 2025;375:123752. doi: 10.1016/j.lfs.2025.123752
- Barocas S, Hardt M, Narayanan A. Fairness and Machine Learning. 1st ed. United States: The MIT Press; 2023.
- Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv. 2022;54(6):1-35. doi: 10.1145/3457607
- Yáñez‐Mó M, Siljander PRM., Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066. doi: 10.3402/jev.v4.27066
