Antidepressant effects of fisetin: Identifying molecular mechanisms by network pharmacology and molecular docking
Major depressive disorder (MDD) is a heterogeneous condition influenced by a complex interplay of social, psychological, and biological factors. Fisetin (FT), a flavonoid polyphenol found in various plants, has demonstrated neuroprotective properties that may be beneficial in treating MDD. This research aims to evaluate the potential molecular mechanisms of FT in treating MDD using network pharmacology analysis, with validation through molecular docking methods. We assessed the drug-like properties of FT using the TCMSP and SwissADME platforms. Potential drug targets for FT were identified through SuperPred and SwissTargetPrediction. We compiled MDD-associated targets from established databases and identified common genes shared between FT and MDD. The common targets were analyzed for protein-protein interactions using the STRING database to identify essential targets. Consequently, these key targets were further investigated through Kyoto Encyclopedia of Genes and Genomes and Gene Ontology (GO) enrichment analyses with the help of ShinyGO software. The results indicated that FT targets are linked to specific pathways involved in the pathogenesis of MDD, with the IL-17 signaling pathway emerging as a significant pathway of interest. Strong binding affinities were found between FT and key proteins, including glycogen synthase kinase 3 beta, monoamine oxidase A, acetylcholinesterase, matrix metalloproteinase 9, and myeloperoxidase, suggesting that FT may serve as a promising therapeutic agent for MDD by targeting components of the IL-17 pathway. In conclusion, this research successfully employed computational methods to elucidate the potential effectiveness of FT in managing MDD. It offered important perspectives on the regulatory mechanisms involved and emphasized the IL-17 signaling pathway as a possible target for MDD therapy.
- Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Primers. 2016;2(1):16065. doi: 10.1038/nrdp.2016.65
- Liu L, Liu C, Wang Y, Wang P, Li Y, Li B. Herbal medicine for anxiety, depression and insomnia. Curr Neuropharmacol. 2015;13(4):481-493. doi: 10.2174/1570159X1304150831122734
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva, Switzerland: World Health Organization; 2017.
- Santomauro DF, Herrera AMM, Shadid J, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398(10312):1700-1712. doi: 10.1016/S0140-6736(21)02143-7
- Elzamzamy, K., & Khan, Y. S. (2022). Major depressive and dysthymic disorders. J Alternative Med Research, 14(3): 309-324.
- Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270-1276. doi: 10.1016/j.drudis.2020.05.001
- Beck AT, Alford BA. Depression: Causes and Treatment. Philadelphia, PA: University of Pennsylvania Press; 2009.
- Seifert J, Maier HB, Führmann F, et al. Pharmacological treatment of major depressive disorder according to severity in psychiatric inpatients: Results from the AMSP pharmacovigilance program from 2001-2017. J Neural Transm (Vienna). 2022;129(7):925-944. doi: 10.1007/s00702-022-02504-6
- Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant‐derived natural compounds as potential antidepressant agents. Phytother Res. 2022;36(9):3470-3489. doi: 10.1002/ptr.7551
- Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery. Front Pharmacol. 2019;10:743. doi: 10.3389/fphar.2019.00743
- Qi Z, Xie P, Yang C, et al. Developing fisetin-AgNPs incorporated in reinforced chitosan/pullulan composite-film and its application of post-harvest storage in litchi fruit. Food Chem. 2023;407:135122. doi: 10.1016/j.foodchem.2022.135122
- Matić S, Stanić S, Mihailović M, Bogojević D. Cotinus coggygria Scop.: An overview of its chemical constituents, pharmacological and toxicological potential. Saudi J Biol Sci. 2016;23(4):452-461. doi: 10.1016/j.sjbs.2015.05.012
- Ding H, Li Y, Chen S, et al. Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis‐associated encephalopathy. CNS Neurosci Ther. 2022;28(2):247-258. doi: 10.1111/cns.13765
- Wang Y, Wang B, Lu J, et al. Fisetin provides antidepressant effects by activating the tropomyosin receptor kinase B signal pathway in mice. J Neurochem. 2017;143(5):561-568. doi: 10.1111/jnc.14226
- Yu X, Jiang X, Zhang X, et al. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice. Metab Brain Dis. 2016;31:1011-1021. doi: 10.1007/s11011-016-9839-5
- Kohler O, Krogh J, Mors O, Benros ME. Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol. 2016;14(7):732-742. doi: 10.2174/1570159X14666151208113700
- Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A. 2006;103(44):16568-16573. doi: 10.1073/pnas.0607822103
- Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med. 2001;30(4):433-446. doi: 10.1016/S0891-5849(00)00498-6
- Han X, Yang C, Guo C, et al. Bioinformatics analysis to screen key targets of curcumin against colorectal cancer and the correlation with tumor‐infiltrating immune cells. Evid Based Complement Alternat Med. 2021;2021(1):9132608. doi: 10.1155/2021/9132608
- Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HH. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci. 2022;43(2):136-150. doi: 10.1016/j.tips.2021.11.004
- Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals (Basel). 2022;15(5):572. doi: 10.3390/ph15050572
- Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W364. doi: 10.1093/nar/gkz382
- Nickel J, Gohlke BO, Erehman J, et al. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res. 2014;42(W1):W26-W31. doi: 10.1093/nar/gku477
- Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: The human gene integrator. Database (Oxford). 2010;2010:baq020. doi: 10.1093/database/baq020
- Franz M, Lopes CT, Fong D, et al. Cytoscape.js 2023 update: A graph theory library for visualization and analysis. Bioinformatics. 2023;39(1):btad031. doi: 10.1093/bioinformatics/btad031
- Ge SX, Jung D, Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628-2629. doi: 10.1093/bioinformatics/btz931
- Karakuş F, Kuzu B. Predicting the molecular mechanisms of cardiovascular toxicity induced by per-and polyfluoroalkyl substances: An in silico network toxicology perspective. Toxicol Res (Camb). 2024;13(6):tfae206. doi: 10.1093/toxres/tfae206
- Liu Y, Cao Y. Protein-ligand blind docking using CB-Dock2. Methods Mol Biol. 2024;2714:113-125. doi: 10.1007/978-1-0716-3441-7_6
- Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50(W1):W159-W164. doi: 10.1093/nar/gkac394
- Arora V, Chopra K. Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: Underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J Affect Disord. 2013;151(3):1041-1052. doi: 10.1016/j.jad.2013.08.032
- Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol. 2021;910:174492. doi: 10.1016/j.ejphar.2021.174492
- Hassan SSu, Samanta S, Dash R, et al. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol. 2022;13:1015835. doi: 10.3389/fphar.2022.1095648
- Maher P. Preventing and treating neurological disorders with the flavonol fisetin. Brain Plast. 2020;6(2):155-166. doi: 10.3233/BPL-200104
- Currais A, Farrokhi C, Dargusch R, et al. Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J Gerontol A Biol Sci Med Sci. 22018;73(3):299-307. doi: 10.1093/gerona/glx104
- Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation. 2022;19(1):98. doi: 10.1186/s12974-022-02446-6
- Ling J, Zhang L, Wang Y, et al. Fisetin, a dietary flavonoid, increases the sensitivity of chemoresistant head and neck carcinoma cells to cisplatin possibly through HSP90AA1/ IL‐17 pathway. Phytother Res. 2023;37(5):1997-2011. doi: 10.1002/ptr.7723
- Shukla R, Pandey V, Vadnere GP, Lodhi S. Role of flavonoids in management of inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. Amsterdam, Netherlands: Elsevier; 2019. p. 293-322. doi: 10.1016/B978-0-12-813820-5.00018-0
- Chen J, Wang M, Khan RAW, et al. The GSK3B gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. J Affect Disord. 2015;185:149-155. doi: 10.1016/j.jad.2015.06.040
- Williams LM, Gatt JM, Kuan SA, et al. A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology. 2009;34(7):1797-1809. doi: 10.1038/npp.2009.1
- Cao C, Wang M, Cao Y, Ji L, Zhang W. The interactive effects of monoamine oxidase A (MAOA) gene and peer victimization on depressive symptoms in early adolescent boys: The moderating role of catechol-O-methyltransferase (COMT) gene. Acta Psychol Sin. 2017;49(2):206-218. doi: 10.3724/SP.J.1041.2017.00206
- Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int J Mol Sci. 2021;22(17):9290. doi: 10.3390/ijms22179290
- Bliźniewska-Kowalska K, Gałecki P, Su KP, Halaris A, Szemraj J, Gałecka M. Expression of PON1, PON2, PON3 and MPO genes in patients with depressive disorders. J Clin Med. 2022;11(12):3321. doi: 10.3390/jcm11123321
- Coughlin JM, Wang Y, Minn I, et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired national football league players. JAMA Neurol. 2017;74(1):67-74. doi: 10.1001/jamaneurol.2016.3764
- Caraffa A. The neuroprotective role of flavonoids. Eur J Neurodegener Dis. 2021;10:25-29.
- Gupta J, Nebreda AR. Roles of p38α mitogen‐activated protein kinase in mouse models of inflammatory diseases and cancer. FEBS J. 2015;282(10):1841-1857. doi: 10.1111/febs.13250
- Chen JK, Peng SF, Lai KC, et al. Fistein suppresses human osteosarcoma U-2 OS cell migration and invasion via affecting FAK, uPA and NF-ĸB signaling pathway in vitro. In Vivo. 2019;33(3):801-810. doi: 10.21873/invivo.11542
- Chien CS, Shen K-H, Huang JS, Ko SC, Shih YW. Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells. Mol Cell Biochem. 2010;333:169-180. doi: 10.1007/s11010-009-0217-z
- Zhen L, Zhu J, Zhao X, et al. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res. 2012;228(2):359-366. doi: 10.1016/j.bbr.2011.12.017
- Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: From neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna). 2018;125(1):53-66. doi: 10.1007/s00702-017-1709-8
- Li C, Tang Y, Ye Y, Zuo M, Lu Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front Pharmacol. 2023;14:1120616. doi: 10.3389/fphar.2023.1120616
- Deghiedy NM, Abdel-Naby DH, Aziz MM, El-Sheikh MM. Fisetin-loaded pluronic-based nanogel: Radiation synthesis for alleviating neurocognitive impairments in a rat model of Alzheimer’s disease via modulation of the apoptotic cascade. Int J Biol Macromol. 2024;274:133472. doi: 10.1016/j.ijbiomac.2024.133472
- Khatoon S, Samim M, Dahalia M, Nidhi. Fisetin provides neuroprotection in pentylenetetrazole-induced cognition impairment by upregulating CREB/BDNF. Eur J Pharmacol. 2023;944:175583. doi: 10.1016/j.ejphar.2023.175583
- Molagoda IMN, Karunarathne WAH, Park SR, et al. GSK-3β-targeting fisetin promotes melanogenesis in B16F10 melanoma cells and zebrafish larvae through β-catenin activation. Int J Mol Sci. 2020;21(1):312. doi: 10.3390/ijms21010312
- Li J, Ma S, Chen J, et al. GSK-3β contributes to parkinsonian dopaminergic neuron death: Evidence from conditional knockout mice and tideglusib. Front Mol Neurosci. 2020;13:81. doi: 10.3389/fnmol.2020.00081
- Martin SA, Souder DC, Miller KN, et al. GSK3β regulates brain energy metabolism. Cell Rep. 2018;23(7):1922-1931.e4. doi: 10.1016/j.celrep.2018.04.045