AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.4171
REVIEW

The roles of GLUT5 in cancer progression, metastasis, and drug resistance

Martin Guerrero1 Gabrielle Kowkabany1 Yuping Bao1*
Show Less
1 Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, United States of America
Submitted: 8 July 2024 | Accepted: 18 September 2024 | Published: 15 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Emerging evidence has suggested that high fructose intake, particularly from added sugars and processed foods, is associated with increased cancer risk and progression. The fructose intake is believed to be mediated by the abnormal expression of glucose transporter 5 (GLUT5), the specific fructose transporter in cancer cells. The GLUT5-regulated fructose metabolism has shown to greatly affect cancer progression, metastasis, and drug resistance. This review aims to synchronize the current knowledge to highlight the underlying mechanisms of those impacts and understand the therapeutic potential of GULT5. First, we review the fructose metabolism and its alteration in cancer cells by comparing with glucose metabolism. Subsequently, the key contributors or biological pathways involved in GLUT5-asosociated tumor growth, cancer metastasis, and drug resistance are discussed. The contributions of specific pathways, metabolites, and key enzymes from the fructose metabolism process are also covered, such as enhanced glycolysis for tumor growth, epithelial-mesenchymal transition and angiogenesis for cancer metastasis, and efflux pump expression and activation of survival pathways for cancer drug resistance. The detailed analysis of these mechanisms will allow further understanding of the therapeutic potential of GLUT 5-mediated fructose metabolism in cancer therapy. In particular, targeting GLUT 5 and its-associated processes in fructose metabolism may offer promising strategies for improving cancer treatment outcomes through dietary interventions, specific GLUT5 inhibitors, or in combination.

Keywords
Fructose metabolism
GLUT5 expression
Cancer progression
Cancer metastasis
Drug resistance
Epithelial-mesenchymal transition
Matrix metalloproteinases
Pentose phosphate pathway
Funding
This work was supported in part by NSF-CBET 1915873. Bao acknowledges Breast Cancer Research Foundation of the University of Alabama Center for Convergent Bioscience and Medicine Pilot Innovation Fund.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Song A, Mao Y, Wei H. GLUT5: Structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai). 2023;55:1519-1538. doi: 10.3724/abbs.2023158

 

  1. Shu R, David ES, Ferraris RP. Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats. Am J Physiol Gastrointest Liver Physiol. 1997;272:G446-G453. doi: 10.1152/ajpgi.1997.272.3.G446

 

  1. Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. FASEB J. 2015;29:4046-4058. doi: 10.1096/fj.15-272195

 

  1. Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128:545-555. doi: 10.1172/jci96702

 

  1. Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 2021;33:2329-2354. doi: 10.1016/j.cmet.2021.09.010

 

  1. Elsaid S, Wu X, Tee SS. Fructose vs. glucose: Modulating stem cell growth and function through sugar supplementation. FEBS Open Bio. 2024;14:1277-1290. doi: 10.1002/2211-5463.13846

 

  1. Krause N, Wegner A. Fructose metabolism in cancer. Cells. 2020;9:2635. doi: 10.3390/cells9122635

 

  1. Hadzi-Petrushev N, Stojchevski R, Jakimovska A, et al. GLUT5-overexpression-related tumorigenic implications. Mol Med. 2024;30:114. doi: 10.1186/s10020-024-00879-8

 

  1. Shen Z, Li Z, Liu Y, et al. GLUT5-KHK axis-mediated fructose metabolism drives proliferation and chemotherapy resistance of colorectal cancer. Cancer Lett. 2022;534:215617. doi: 10.1016/j.canlet.2022.215617

 

  1. Włodarczyk J, Włodarczyk M, Zielińska M, Jędrzejczak B, Dziki L, Fichna J. Blockade of fructose transporter protein GLUT5 inhibits proliferation of colon cancer cells: Proof of concept for a new class of anti-tumor therapeutics. Pharmacol Rep. 2021;73:939-945. doi: 10.1007/s43440-021-00281-9

 

  1. Wuest M, Hamann I, Bouvet V, et al. Molecular imaging of GLUT1 and GLUT5 in breast cancer: A multitracer positron emission tomography imaging study in mice. Mol Pharmacol. 2018;93:79-89. doi: 10.1124/mol.117.110007

 

  1. Su C, Li H, Gao W. GLUT5 increases fructose utilization and promotes tumor progression in glioma. Biochem Biophy Res Commun. 2018;500:462-469. doi: 10.1016/j.bbrc.2018.04.103

 

  1. Carreño DV, Corro NB, Cerda-Infante NF, et al. Dietary fructose promotes prostate cancer growth. Cancer Res. 2021;81:2824-2832. doi: 10.1158/0008-5472.CAN-19-0456

 

  1. Suwannakul N, Armartmuntree N, Thanan R, et al. Targeting fructose metabolism by glucose transporter 5 regulation in human cholangiocarcinoma. Genes Dis. 2022;9:1727-1741. doi: 10.1016/j.gendis.2021.09.002

 

  1. Weng Y, Fan X, Bai Y, et al. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization. Cell Death Dis. 2018;4:38. doi: 10.1038/s41420-018-0038-5

 

  1. Chen WL, Jin X, Wang M, et al. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight. 2020;5:e131596. doi: 10.1172/jci.insight.131596

 

  1. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018;38:1-11. doi: 10.1016/j.drup.2018.03.001

 

  1. Douard V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol. 2013;591:401-414. doi: 10.1113/jphysiol.2011.215731

 

  1. Kannan S, Begoyan VV, Fedie JR, et al. Metabolism-driven high-throughput cancer identification with GLUT5-specific molecular probes. Biosensors (Basel). 2018;8:39. doi: 10.3390/bios8020039

 

  1. Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev. 2022;16:561. doi: 10.4081/oncol.2022.561

 

  1. RanaN, Aziz MA, Serya RAT, et al. A fluorescence-based assay to probe inhibitory effect of fructose mimics on GLUT5 transport in breast cancer cells. ACS Bio Med Chem Au. 2023;3:51-61. doi: 10.1021/acsbiomedchemau.2c00056

 

  1. Tappy L. Metabolism of sugars: A window to the regulation of glucose and lipid homeostasis by splanchnic organs. Clin Nutr. 2021;40:1691-1698. doi: 10.1016/j.clnu.2020.12.022

 

  1. Nakagawa T, Lanaspa MA, Millan IS, et al. Fructose contributes to the Warburg effect for cancer growth. Cancer Metabol. 2020;8:16. doi: 10.1186/s40170-020-00222-9

 

  1. Vaupel P, Multhoff G. Revisiting the Warburg effect: Historical dogma versus current understanding. J Physiol. 2021;599:1745-1757. doi: 10.1113/JP278810

 

  1. Ting KKY. Fructose-induced metabolic reprogramming of cancer cells. Front Immunol. 2024;15:1375461. doi: 10.3389/fimmu.2024.1375461

 

  1. Goncalves MD, Lu C, Tutnauer J, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363(6433):1345-1349. doi: 10.1126/science.aat8515

 

  1. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-354. doi: 10.1016/j.tibs.2014.06.005

 

  1. Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010;70(15):6368-6376. doi: 10.1158/0008-5472.CAN-09-4615

 

  1. Lodge M, Scheidemantle G, Adams VR, et al. Fructose regulates the pentose phosphate pathway and induces an inflammatory and resolution phenotype in Kupffer cells. Sci Rep. 2024;14:4020. doi: 10.1038/s41598-024-54272-w

 

  1. Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N. The pentose phosphate pathway in cancer: Regulation and therapeutic opportunities. Chemotherapy. 2021;66(5-6):179-191. doi: 10.1159/000519784

 

  1. Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncol Lett. 2019;17:4213-4221. doi: 10.3892/ol.2019.10112

 

  1. Jin C, Gong X, Shang Y. GLUT5 increases fructose utilization in ovarian cancer. Onco Targets Ther. 2019;12:5425-5436. doi: 10.2147/ott.s205522

 

  1. Ma G, Liu S, Cai F, et al. Ketohexokinase-A deficiency attenuates the proliferation via reducing beta-catenin in gastric cancer cells. Exp Cell Res. 2024;438:114038. doi: 10.1016/j.yexcr.2024.114038

 

  1. Cui Y, Tian J, Wang Z, et al. Fructose-induced mTORC1 activation promotes pancreatic cancer progression through inhibition of autophagy. Cancer Res. 2023;83(24):4063-4079. doi: 10.1158/0008-5472.CAN-23-0464

 

  1. Huang X, Fang J, Lai W, et al. IL-6/STAT3 axis activates Glut5 to regulate fructose metabolism and tumorigenesis. Int J Biol Sci. 2022;18:3668-3675. doi: 10.7150/ijbs.68990

 

  1. Lu C, Ren C, Yang T, et al. Fructose-1, 6-bisphosphatase 1 interacts with NF-κB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Theranostics. 2020;10:8606-8618. doi: 10.7150/thno.46861

 

  1. Li M, Wang Z, Tao J, et al. Fructose-1,6-bisphosphatase 1 dephosphorylates and inhibits TERT for tumor suppression. Nat Chem Biol. 2024. doi: 10.1038/s41589-024-01623-3

 

  1. Li Y, Fu Y, Zhang Y, et al. Nuclear fructose-1,6-bisphosphate inhibits tumor growth and sensitizes chemotherapy by targeting HMGB1. Adv Sci (Weinh). 2023;10:e2203528. doi: 10.1002/advs.202203528

 

  1. Yang J, Dong C, Wu J, Liu D, Luo Q, Jin X. Fructose utilization enhanced by GLUT5 promotes lung cancer cell migration via activating glycolysis/AKT pathway. Clin Transl Oncol. 2023;25(4):1080-1090. doi: 10.1007/s12094-022-03015-2

 

  1. Bu P, Chen KY, Xiang K, et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 2018;27:1249-1262. doi: 10.1016/j.cmet.2018.04.003

 

  1. Kim J, Kang J, Kang YL, et al. Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. Nat Commun. 2020;11:5436. doi: 10.1038/s41467-020-19263-1

 

  1. Kang YL, Kim J, Kwak SB, et al. The polyol pathway and nuclear ketohexokinase A signaling drive hyperglycemia-induced metastasis of gastric cancer. Exp Mol Med. 2024;56:220-234. doi: 10.1038/s12276-023-01153-3

 

  1. Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother. 2019;112:108690. doi: 10.1016/j.biopha.2019.108690

 

  1. Park GB, Jeong JY, Kim D. GLUT5 regulation by AKT1/3- miR-125b-5p downregulation induces migratory activity and drug resistance in TLR-modified colorectal cancer cells, Carcinogenesis. 2020;41:1329-1340. doi: 10.1093/carcin/bgaa074

 

  1. Monzavi-Karbassi B, Hine RJ, Stanley JS, et al. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells. Int J Oncol. 2010;37:615-622. doi: 10.3892/ijo_00000710

 

  1. Zhang Y, Li Q, Huang Z, et al. Targeting glucose metabolism enzymes in cancer treatment: Current and emerging strategies. Cancers (Basel). 2022;14:4568. doi: 10.3390/cancers14194568

 

  1. Gillet L, Roger S, Besson P, et al. Voltage-gated sodium channel activity promotes cysteine cathepsin-dependent invasiveness and colony growth of human cancer cells. J Biol Chem. 2009;284:8680-8690. doi: 10.1074/jbc.M806891200

 

  1. Brisson L, Driffort V, Benoist L, et al. Na(V)1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci. 2013;12:4835-4842. doi: 10.1074/jbc.M806891200

 

  1. Busco G, Cardone RA, Greco MR, et al. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J. 2010;24:3903-3915. doi: 10.1096/fj.09-149518

 

  1. Magalhaes MAO, Larson DR, Mader CC, et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J Cell Biol. 2011;195:903-920. doi: 10.1083/jcb.201103045

 

  1. Debreova M, Csaderova L, Burikova M, et al. CAIX regulates invadopodia formation through both a pH-dependent mechanism and interplay with actin regulatory proteins. Int J Mol Sci. 2019;20:2745. doi: 10.3390/ijms20112745

 

  1. Bundalo M, Zivkovic M, Culafic T, Stojiljkovic M, Koricanac G, Stankovic A. Oestradiol treatment counteracts the effect of fructose-rich diet on matrix metalloproteinase 9 expression and NFκB activation. Folia Biol (Praha). 2015;61:233-240.

 

  1. LiK, Ying M, Feng D, et al. Fructose-1,6-bisphosphatase is a novel regulator of Wnt/β-Catenin pathway in breast cancer. Biomed Pharmacother. 2016;84:1144-1149. doi: 10.1016/j.biopha.2016.10.050

 

  1. Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol Cancer. 2020;19:165. doi: 10.1186/s12943-020-01276-5

 

  1. Hsieh CL, Liu CM, Chen HA, et al. Reactive oxygen species-mediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression. Sci Rep. 2017;7:9065. doi: 10.1038/s41598-017-08835-9

 

  1. Chang YC, Chan YC, Chang WM, et al. Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression. Cancer Lett. 2017;403:28-36. doi: 10.1016/j.canlet.2017.06.001

 

  1. Cui Y, Liu H, Wang Z, et al. Fructose promotes angiogenesis by improving vascular endothelial cell function and upregulating VEGF expression in cancer cells. J Exp Clin Cancer Res. 2023;42:184. doi: 10.1186/s13046-023-02765-3

 

  1. Yoeli-Lerner M, Toker A. Akt/PKB signaling in cancer: A function in cell motility and invasion. Cell Cycle. 2006;5:603-605. doi: 10.4161/cc.5.6.2561

 

  1. Cheung M, Testa JR. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets. 2013;13:234-244. doi: 10.2174/1568009611313030002

 

  1. Fang JH, Chen JY, Zheng JL, et al. Fructose metabolism in tumor endothelial cells promotes angiogenesis by activating AMPK signaling and mitochondrial respiration. Cancer Res. 2023;83(8):1249-1263. doi: 10.1158/0008-5472.CAN-22-1844

 

  1. Peng CF, Yang P, Zhang DS, et al. KHK-A promotes fructose-dependent colorectal cancer liver metastasis by facilitating the phosphorylation and translocation of PKM2. Acta Pharm Sin B. 2024;14:2959-2976. doi: 10.1016/j.apsb.2024.04.024

 

  1. Gao W, Li N, Li Z, Xu J, Su C. Ketohexokinase is involved in fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun. 2018;503:1298-1306. doi: 10.1016/j.bbrc.2018.07.040

 

  1. Groenendyk J, Stoletov K, Paskevicius T, et al. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front Cell Dev Biol. 2022;10:896297. doi: 10.3389/fcell.2022.896297

 

  1. Yang Y, Pu J, Yang Y. Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon. 2024;10:e35721. doi: 10.1016/j.heliyon.2024.e35721

 

  1. Ughachukwu P, Unekwe P. Efflux pump-mediated resistance in chemotherapy. Ann Med Health Sci Res. 2012;2:191-198. doi: 10.4103/2141-9248.105671

 

  1. Lopes-Rodrigues V, Di Luca A, Mleczko J, et al. Identification of the metabolic alterations associated with the multidrug resistant phenotype in cancer and their intercellular transfer mediated by extracellular vesicles. Sci Rep. 2017;7:44541. doi: 10.1038/srep44541

 

  1. Fontana F, Giannitti G, Marchesi S, Limonta P. The PI3K/ Akt pathway and glucose metabolism: A dangerous liaison in cancer. Int J Biol Sci. 2024;20:3113-3125. doi: 10.7150/ijbs.89942

 

  1. Navaei ZN, Khalili-Tanha G, Zangouei AS, Abbaszadegan MR, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of Cisplatin response in tumor cells. Oncol Res. 2021;29:235-250. doi: 10.32604/or.2022.025323

 

  1. Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11:797. doi: 10.1038/s41419-020-02998-6

 

  1. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217:2291-2298. doi: 10.1083/jcb.201804161

 

  1. Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci. 2021;22:11088. doi: 10.3390/ijms222011088

 

  1. Kuehm LM, Khojandi N, Piening A, et al. Fructose promotes cytoprotection in melanoma tumors and resistance to immunotherapy. Cancer Immunol Res. 2021;9:227-238. doi: 10.1158/2326-6066.CIR-20-0396

 

  1. Li H, Li M, Pang Y, Liu F, Sheng D, Cheng X. Fructose1,6bisphosphatase1 decrease may promote carcinogenesis and chemoresistance in cervical cancer. Mol Med Rep. 2017;16:8563-8571. doi: 10.3892/mmr.2017.7665

 

  1. Kawai K, Uemura M, Munakata K, et al. Fructose-bisphosphate aldolase A is a key regulator of hypoxic adaptation in colorectal cancer cells and involved in treatment resistance and poor prognosis. Int J Oncol. 2017;50:525-534. doi: 10.3892/ijo.2016.3814

 

  1. Li X, Jiang F, Ge Z, et al. Fructose-bisphosphate aldolase a regulates hypoxic adaptation in hepatocellular carcinoma and involved with tumor malignancy. Dig Dis Sci. 2019;64:3215-3227. doi: 10.1007/s10620-019-05642-2

 

  1. Huang Z, Hua Y, Tian Y, et al. High expression of fructose-bisphosphate aldolase A induces progression of renal cell carcinoma. Oncol Rep. 2018;39:2996-3006. doi: 10.3892/or.2018.6378

 

  1. Cunha A, Silva PMA, Sarmento B, Queirós O. Targeting glucose metabolism in cancer cells as an approach to overcoming drug resistance. Pharmaceutics. 2023;15:2610. doi: 10.3390/pharmaceutics15112610

 

  1. Chałaśkiewicz K, Karaś K, Zakłos-Szyda M, et al. Trichostatin A inhibits expression of the human SLC2A5 gene via SNAI1/SNAI2 transcription factors and sensitizes colon cancer cells to platinum compounds. Eur J Pharmacol. 2023;949:175728. doi: 10.1016/j.ejphar.2023.175728

 

  1. Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer. 2022;22:452-466. doi: 10.1038/s41568-022-00485-y

 

  1. Mohanty P, Pande B, Acharya R, Bhaskar L, Verma HK. Unravelling the triad of lung cancer, drug resistance, and metabolic pathways. Diseases. 2024;12:93. doi: 10.3390/diseases12050093
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing