AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.3580
ORIGINAL RESEARCH ARTICLE

Exploring serum inflammatory markers and the acute phase response in glioblastoma multiforme pre- and post-concurrent chemoradiation

Sarisha Jagasia1 Jason Shephard1 Erdal Tasci1 Thomas Joyce1 Shreya Chappidi1 Theresa Cooley Zgela1 Mary Sproull1 Megan Mackey1 Kevin Camphausen1 Andra V. Krauze1*
Show Less
1 Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
Submitted: 6 May 2024 | Accepted: 10 July 2024 | Published: 10 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Glioblastoma multiforme (GBM) is the most common primary brain tumor, characterized by poor overall survival and near-universal recurrence due to rapid proliferation and treatment resistance. Inflammatory markers (i.e., cytokines and acute phase reactants [APRs]) have been studied in serum as potential biomarkers in GBM. However, the lack of serum data collected at multiple time points, particularly during treatment interventions, has limited the translation of these findings into clinical applications for monitoring treatment response. In this study, we analyzed a panel of 29 cultivated serum inflammatory markers employing serum from 109 individuals with pathology-proven GBM, collected both pre- and post-chemoradiation therapy (CRT). The goal was to determine the feasibility of measuring these serum markers in patient samples and to understand the effects of CRT on inflammatory biomarkers and signaling pathways. Among the proteins studied, albumin, C-reactive protein (CRP), glial fibrillary protein (GFAP), kininogen, interleukin (IL)-13, IL-1b, IL-10, Parkinson’s disease-1, vascular cell adhesion molecule 1 (VCAM-1), and tumor necrosis factor-alpha (TNF-α) were the most significantly altered following CRT. Of these, albumin, CRP, GFAP, IL-6, VCAM-1, and TNF-α emerged as the most relevant and promising serum biomarkers. Interaction analyses of baseline and post-CRT data identified IL-6 as a potential driver of signal alteration linked to APRs pathways and suggested its role as a mediator of tumor microenvironment reprogramming in conjunction with TNF-α and VCAM-1. The data revealed a balancing act of pro-apoptotic, anti-proliferative, and pro-viability pathways, with significant impacts on the signal transducer and activator of transcription 3 and nuclear factor kappa B pathways. Overall, the altered signature of the examined serum biomarkers suggests a decrease in the inflammatory response following GBM treatment. These findings underscore the need for further research, incorporating clinical outcomes and validation in larger datasets, to confirm the clinical applicability of these biomarkers.

Keywords
Serum
Proteomics
Biomarkers
Inflammation
Acute phase response
Glioblastoma
Funding
Funding is provided in part by the NCI NIH intramural program (ZID BC 010990).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3-9. doi: 10.22034/apjcp.2017.18.1.3

 

  1. Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009-4014. doi: 10.1073/pnas.1219747110

 

  1. Dehdashti AR, Hegi ME, Regli L, Pica A, Stupp R. New trends in the medical management of glioblastoma multiforme: The role of temozolomide chemotherapy. Neurosurg Focus. 2006;20(4):E6. doi: 10.3171/foc.2006.20.4.3

 

  1. McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome. 2018;29(11-12):843-865. doi: 10.1007/s00335-018-9777-0

 

  1. Serban GM, Tamas CI, Tamas F, Balasa AF. preoperative immune-inflammatory status of the patients with newly-diagnosed glioblastoma - could it genuinely predict their survival? Cureus. 2023;15(8):e43802. doi: 10.7759/cureus.43802

 

  1. Knebel FH, Uno M, Galatro TF, et al. Serum amyloid A1 is upregulated in human glioblastoma. J Neurooncol. 2017;132(3):383-391. doi: 10.1007/s11060-017-2386-z

 

  1. Linhares P, Carvalho B, Vaz R, Costa BM. Glioblastoma: Is there any blood biomarker with true clinical relevance? Int J Mol Sci. 2020;21(16):5809. doi: 10.3390/ijms21165809

 

  1. Gandhi P, Shrivastava R, Garg N, Sorte SK. Novel molecular panel for evaluating systemic inflammation and survival in therapy naïve glioma patients. World J Clin Oncol. 2021;12(10):947-959. doi: 10.5306/wjco.v12.i10.947

 

  1. Gulhar R, Ashraf MA, Jialal I. Physiology, acute phase reactants. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024.

 

  1. Kureshi SA, Hofman FM, Schneider JH, Chin LS, Apuzzo ML, Hinton DR. Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery. 1994;35(5):822-829; discussion 829-830. doi: 10.1227/00006123-199411000-00004

 

  1. Mostafa H, Pala A, Högel J, et al. Immune phenotypes predict survival in patients with glioblastoma multiforme. J Hematol Oncol. 2016;9(1):77. doi: 10.1186/s13045-016-0272-3

 

  1. Demirci U, Yaman M, Buyukberber S, et al. Prognostic importance of markers for inflammation, angiogenesis and apoptosis in high grade glial tumors during temozolomide and radiotherapy. Int Immunopharmacol. 2012;14(4): 546-549. doi: 10.1016/j.intimp.2012.08.007

 

  1. Sultana N, Sun C, Katsube T, Wang B. Biomarkers of brain damage induced by radiotherapy. Dose Response. 2020;18(3). doi: 10.1177/1559325820938279

 

  1. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258-261. doi: 10.1093/nar/gkg034

 

  1. Goutnik M, Lucke-Wold B. Commentary: Evaluating potential glioma serum biomarkers, with future applications. World J Clin Oncol. 2022;13(5):412-416. doi: 10.5306/wjco.v13.i5.412

 

  1. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023;389:589-601. doi: 10.1056/NEJMoa2304194

 

  1. Niehues T. C-reactive protein and other biomarkers-the sense and non-sense of using inflammation biomarkers for the diagnosis of severe bacterial infection. LymphoSign J. 2018;5(2):35-47. doi: 10.14785/lymphosign-2018-0001

 

  1. Abdelhak A, Foschi M, Abu-Rumeileh S, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol. 2022;18(3):158-172. doi: 10.1038/s41582-021-00616-3

 

  1. Kuribayashi T. Elimination half-lives of interleukin-6 and cytokine-induced neutrophil chemoattractant-1 synthesized in response to inflammatory stimulation in rats. Lab Anim Res. 2018;34(2):80-83. doi: 10.5625/lar.2018.34.2.80

 

  1. Jefferson AL, Massaro JM, Wolf PA, et al. Inflammatory biomarkers are associated with total brain volume: The Framingham Heart Study. Neurology. 2007;68(13): 1032-1038. doi: 10.1212/01.wnl.0000257815.20548.df

 

  1. Garrett C, Becker TM, Lynch D, et al. Comparison of neutrophil to lymphocyte ratio and prognostic nutritional index with other clinical and molecular biomarkers for prediction of glioblastoma multiforme outcome. PLoS One. 2021;16(6):e0252614. doi: 10.1371/journal.pone.0252614

 

  1. Nijaguna MB, Patil V, Hegde AS, et al. An eighteen serum cytokine signature for discriminating glioma from normal healthy individuals. PLoS One. 2015;10(9):e0137524. doi: 10.1371/journal.pone.0137524

 

  1. Brommeland T, Rosengren L, Fridlund S, Hennig R, Isaksen V. Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol Scand. 2007;116(6):380-384. doi: 10.1111/j.1600-0404.2007.00889.x

 

  1. van Linde ME, van der Mijn JC, Pham TV, et al. Evaluation of potential circulating biomarkers for prediction of response to chemoradiation in patients with glioblastoma. J Neurooncol. 2016;129(2):221-230. doi: 10.1007/s11060-016-2178-x

 

  1. Jain S, Gautam V, Naseem S. Acute-phase proteins: As diagnostic tool. J Pharm Bioallied Sci. 2011;3(1):118-127. doi: 10.4103/0975-7406.76489

 

  1. Luan YY, Yao YM. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front Immunol. 2018;9:1302. doi: 10.3389/fimmu.2018.01302

 

  1. Gold L, Walker JJ, Wilcox SK, Williams S. Advances in human proteomics at high scale with the SOMAscan proteomics platform. N Biotechnol. 2012;29(5):543-549. doi: 10.1016/j.nbt.2011.11.016

 

  1. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-510. doi: 10.1126/science.2200121

 

  1. Candia J, Cheung F, Kotliarov Y, et al. Assessment of variability in the SOMAscan assay. Sci Rep. 2017;7(1):14248. doi: 10.1038/s41598-017-14755-5

 

  1. Candia J, Daya GN, Tanaka T, Ferrucci L, Walker KA. Assessment of variability in the plasma 7k SomaScan proteomics assay. Sci Rep. 2022;12(1):17147. doi: 10.1038/s41598-022-22116-0

 

  1. Petrik V, Saadoun S, Loosemore A, et al. Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. Clin Chem. 2008;54(4):713-722. doi: 10.1373/clinchem.2007.096792

 

  1. Topkan E, Besen AA, Mertsoylu H, Kucuk A, Pehlivan B, Selek U. Prognostic value of C-reactive protein to albumin ratio in glioblastoma multiforme patients treated with concurrent radiotherapy and temozolomide. Int J Inflam. 2020;2020:6947382. doi: 10.1155/2020/6947382

 

  1. He ZQ, Duan H, Ke C, et al. Evaluation of cumulative prognostic score based on pretreatment plasma fibrinogen and serum albumin levels in patients with newly diagnosed high-grade gliomas. Oncotarget. 2017;8(30):49605-49614. doi: 10.18632/oncotarget.17849

 

  1. Borg N, Guilfoyle MR, Greenberg DC, Watts C, Thomson S. Serum albumin and survival in glioblastoma multiforme. J Neurooncol. 2011;105(1):77-81. doi: 10.1007/s11060-011-0562-0

 

  1. Wójtowicz K, Czarzasta K, Przepiorka L, et al. Brain-derived neurotrophic factor (BDNF) concentration levels in cerebrospinal fluid and plasma in patients with glioblastoma: A prospective, observational, controlled study. Cureus. 2023;15(11):e48237. doi: 10.7759/cureus.48237

 

  1. Ilhan-Mutlu A, Wagner L, Widhalm G, et al. Exploratory investigation of eight circulating plasma markers in brain tumor patients. Neurosurg Rev. 2013;36(1):45-55; discussion 55-56. doi: 10.1007/s10143-012-0401-6

 

  1. Warrier NM, Agarwal P, Kumar P. Integrative analysis to identify genes associated with stemness and immune infiltration in glioblastoma. Cells. 2021;10(10):2765. doi: 10.3390/cells10102765

 

  1. Kluckova K, Kozak J, Svajdler M, et al. BDNF, sHLA-G, and sTREM-1 are useful blood biomarkers for identifying grade IV glioma patients. Neoplasma. 2023;70(1):166-176. doi: 10.4149/neo_2023_221129N1147

 

  1. Zhou M, Wiemels JL, Bracci PM, et al. Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma. Cancer Res. 2010;70(19):7534-7542. doi: 10.1158/0008-5472.Can-10-0815

 

  1. Loh JK, Hwang SL, Lieu AS, Huang TY, Howng SL. The alteration of prostaglandin E2 levels in patients with brain tumors before and after tumor removal. J Neurooncol. 2002;57(2):147-150. doi: 10.1023/a:1015782809966

 

  1. Lombardi F, Augello FR, Artone S, et al. Up-regulation of cyclooxygenase-2 (COX-2) expression by temozolomide (TMZ) in human glioblastoma (GBM) cell lines. Int J Mol Sci. 2022;23(3):1545. doi: 10.3390/ijms23031545

 

  1. Kim JD, Ahn BM, Joo BS, Kwon JY, Chung HJ, Yu SB. Effect of propofol on prostaglandin E2 production and prostaglandin synthase-2 and cyclooxygenase-2 expressions in amniotic membrane cells. J Anesth. 2014;28(6):911-918. doi: 10.1007/s00540-014-1830-x

 

  1. Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol. 2022;12:1116014. doi: 10.3389/fonc.2022.1116014

 

  1. Sproull M, Mathen P, Miller CA, et al. A serum proteomic signature predicting survival in patients with glioblastoma. J Biochem Anal Stud. 2020;4(1). doi: 10.16966/2576-5833.117

 

  1. Nijaguna MB, Schröder C, Patil V, et al. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1β in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein. J Proteomics. 2015;128:251-261. doi: 10.1016/j.jprot.2015.07.026

 

  1. Wach J, Apallas S, Schneider M, et al. Baseline serum C-reactive protein and plasma fibrinogen-based score in the prediction of survival in glioblastoma. Front Oncol. 2021;11:653614. doi: 10.3389/fonc.2021.653614

 

  1. Gállego Pérez-Larraya J, Paris S, Idbaih A, et al. Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma. Cancer. 2014;120(24):3972-3980. doi: 10.1002/cncr.28949

 

  1. Baumgarten P, Quick-Weller J, Gessler F, et al. Pre- and early postoperative GFAP serum levels in glioma and brain metastases. J Neurooncol. 2018;139(3):541-546. doi: 10.1007/s11060-018-2898-1

 

  1. Vietheer JM, Rieger J, Wagner M, Senft C, Tichy J, Foerch C. Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma. J Neurooncol. 2017;135(1):193-199. doi: 10.1007/s11060-017-2565-y

 

  1. Wastowski IJ, Simões RT, Yaghi L, et al. Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2’-deoxycytidine and interferon-γ treatments: results from a multicentric study. Am J Pathol. 2013;182(2):540-552. doi: 10.1016/j.ajpath.2012.10.021

 

  1. Gohar MK, Ammar MG, Alnagar AA, Abd-ElAziz HA. Serum IgE and allergy related genotypes of IL-4R α and IL-13 genes: Association with glioma susceptibility and glioblastoma prognosis. Egypt J Immunol. 2018;25(1): 19-33.

 

  1. Wesley UV, Sutton I, Clark PA, et al. Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Res. 2022;1776:147752. doi: 10.1016/j.brainres.2021.147752

 

  1. Brown CE, Rodriguez A, Palmer J, et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol. 2022;24(8): 1318-1330. doi: 10.1093/neuonc/noac024

 

  1. Chiorean R, Berindan-Neagoe I, Braicu C, et al. Quantitative expression of serum biomarkers involved in angiogenesis and inflammation, in patients with glioblastoma multiforme: Correlations with clinical data. Cancer Biomark. 2014;14(2- 3):185-194. doi: 10.3233/cbm-130310

 

  1. Albulescu R, Codrici E, Popescu ID, et al. Cytokine patterns in brain tumour progression. Mediators Inflamm. 2013;2013:979748. doi: 10.1155/2013/979748

 

  1. Xu J, Fang J, Cheng Z, et al. Overexpression of the Kininogen-1 inhibits proliferation and induces apoptosis of glioma cells. J Exp Clin Cancer Res. 2018;37(1):180. doi: 10.1186/s13046-018-0833-0

 

  1. Panitz V, Končarević S, Sadik A, et al. Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics. 2021;11(19): 9217-9233. doi: 10.7150/thno.60679

 

  1. Muller Bark J, Karpe AV, Doecke JD, et al. A pilot study: Metabolic profiling of plasma and saliva samples from newly diagnosed glioblastoma patients. Cancer Med. 2023;12(10):11427-11437. doi: 10.1002/cam4.5857

 

  1. Liu W, Li Z. Diagnostic performance of perfusion-weighted imaging combined with serum MMP-2 and -9 levels in tumor recurrence after postoperative concomitant chemoradiotherapy of glioblastoma. J Clin Ultrasound. 2023;51(3):563-570. doi: 10.1002/jcu.23402

 

  1. Dobra G, Gyukity-Sebestyén E, Bukva M, et al. MMP-9 as prognostic marker for brain tumours: A comparative study on serum-derived small extracellular vesicles. Cancers (Basel). 2023;15(3): doi: 10.3390/cancers15030712

 

  1. Quesnel A, Coles N, Polvikoski TM, et al. The diagnostic and prognostic potential of the EGFR/MUC4/MMP9 axis in glioma patients. Sci Rep. 2022;12(1):19868. doi: 10.1038/s41598-022-24099-4

 

  1. Zhang D, Qiu B, Wang Y, Guan Y, Zhang L, Wu A. Temozolomide increases MHC-I expression via NF-κB signaling in glioma stem cells. Cell Biol Int. 2017;41(6): 680-690. doi: 10.1002/cbin.10773

 

  1. Qiu ZK, Shen D, Chen YS, et al. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin J Cancer. 2014;33(2):115-122. doi: 10.5732/cjc.012.10236

 

  1. Teng J, da Hora CC, Kantar RS, et al. Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro Oncol. 2017;19(6):820-832. doi: 10.1093/neuonc/now253

 

  1. Urbanavičiūtė R, Skauminas K, Skiriutė D. The evaluation of AREG, MMP-2, CHI3L1, GFAP, and OPN serum combined value in astrocytic glioma patients’ diagnosis and prognosis. Brain Sci. 2020;10(11):872. doi: 10.3390/brainsci10110872

 

  1. Sreekanthreddy P, Srinivasan H, Kumar DM, et al. Identification of potential serum biomarkers of glioblastoma: Serum osteopontin levels correlate with poor prognosis. Cancer Epidemiol Biomarkers Prev. 2010;19(6):1409-1422. doi: 10.1158/1055-9965.Epi-09-1077

 

  1. El-Benhawy SA, Sakr OA, Fahmy EI, et al. Assessment of serum hypoxia biomarkers pre- and post-radiotherapy in patients with brain tumors. J Mol Neurosci. 2022;72(11): 2303-2312. doi: 10.1007/s12031-022-02065-z

 

  1. Masood AB, Batool S, Bhatti SN, et al. Plasma PD-L1 as a biomarker in the clinical management of glioblastoma multiforme-a retrospective cohort study. Front Immunol. 2023;14:1202098. doi: 10.3389/fimmu.2023.1202098

 

  1. De Martino M, Daviaud C, Minns HE, et al. Radiation therapy promotes unsaturated fatty acids to maintain survival of glioblastoma. Cancer Lett. 2023;570:216329. doi: 10.1016/j.canlet.2023.216329

 

  1. Brüning A, Runnebaum IB. CAR is a cell-cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFalpha, and TGFbeta. Gene Ther. 2003;10(3):198-205. doi: 10.1038/sj.gt.3301887

 

  1. Sampath P, Weaver CE, Sungarian A, Cortez S, Alderson L, Stopa EG. Cerebrospinal fluid (vascular endothelial growth factor) and serologic (recoverin) tumor markers for malignant glioma. Cancer Control. 2004;11(3):174-180. doi: 10.1177/107327480401100305

 

  1. Gao Y, Zhang E, Liu B, et al. Integrated analysis identified core signal pathways and hypoxic characteristics of human glioblastoma. J Cell Mol Med. 2019;23(9):6228-6237. doi: 10.1111/jcmm.14507

 

  1. Salmaggi A, Eoli M, Frigerio S, Ciusani E, Silvani A, Boiardi A. Circulating intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and plasma thrombomodulin levels in glioblastoma patients. Cancer Lett. 1999;146(2):169-172. doi: 10.1016/s0304-3835(99)00255-4

 

  1. Van Rossum GaD, Fred L. Python 3 Reference Manual. United States: CreateSpace; 2009.

 

  1. Krämer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523-530. doi: 10.1093/bioinformatics/btt703

 

  1. Güven E, Afzal M, Kazmi I. Screening the significant hub genes by comparing tumor cells, normoxic and hypoxic glioblastoma stem-like cell lines using co-expression analysis in glioblastoma. Genes (Basel). 2022;13(3):518. doi: 10.3390/genes13030518

 

  1. Plotly Technologies Inc. Collaborative Data Science. Montréal, QC: Plotly Technologies Inc.; 2015.

 

  1. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613. doi: 10.1093/nar/gky1131

 

  1. Edimiris-Herrmann A, Kolberg-Liedtke C, Bittner AK, et al. The role of C-reactive protein as a prognostic biomarker in patients with early breast cancer treated with neoadjuvant chemotherapy. Breast Care (Basel). 2022;17(4):371-376. doi: 10.1159/000522606

 

  1. Mantzorou M, Koutelidakis A, Theocharis S, Giaginis C. Clinical value of nutritional status in cancer: What is its impact and how it affects disease progression and prognosis? Nutr Cancer. 2017;69(8):1151-1176. doi: 10.1080/01635581.2017.1367947

 

  1. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr J. 2010;9:69. doi: 10.1186/1475-2891-9-69

 

  1. Radu R, Petrescu GED, Gorgan RM, Brehar FM. GFAPδ: A promising biomarker and therapeutic target in glioblastoma. Front Oncol. 2022;12:859247. doi: 10.3389/fonc.2022.859247

 

  1. Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol. 2021;160:103283. doi: 10.1016/j.critrevonc.2021.103283

 

  1. Uceda-Castro R, van Asperen JV, Vennin C, et al. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep. 2022;12(1):424. doi: 10.1038/s41598-021-04127-5

 

  1. van Asperen JV, Robe PAJT, Hol EM. GFAP alternative splicing and the relevance for disease - a focus on diffuse gliomas. ASN Neuro. 2022;14. doi: 10.1177/17590914221102065

 

  1. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23

 

  1. Carenza C, Franzese S, Castagna A, et al. Perioperative corticosteroid treatment impairs tumor-infiltrating dendritic cells in patients with newly diagnosed adult-type diffuse gliomas. Front Immunol. 2023;13:1074762. doi: 10.3389/fimmu.2022.1074762

 

  1. Lamano JB, Lamano JB, Li YD, et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin Cancer Res. 2019;25(12):3643-3657. doi: 10.1158/1078-0432.Ccr-18-2402

 

  1. Pitter KL, Tamagno I, Alikhanyan K, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139(Pt 5):1458-1471. doi: 10.1093/brain/aww046

 

  1. West AJ, Tsui V, Stylli SS, et al. The role of interleukin- 6-STAT3 signalling in glioblastoma. Oncol Lett. 2018;16(4):4095-4104. doi: 10.3892/ol.2018.9227

 

  1. Nakamura T, Asanuma K, Hagi T, Sudo A. Creactive protein and related predictors in soft tissue sarcoma (Review). Mol Clin Oncol. 2024;20(1):6. doi: 10.3892/mco.2023.2704

 

  1. Tomolonis JA, Xu X, Dholakia KH, et al. Interaction between tumor cell TNFR2 and monocyte membrane-bound TNF-α triggers tumorigenic inflammation in neuroblastoma. J Immunother Cancer. 2023;11(3):e005478. doi: 10.1136/jitc-2022-005478

 

  1. Hagi T, Nakamura T, Iino T, et al. The diagnostic and prognostic value of interleukin-6 in patients with soft tissue sarcomas. Sci Rep. 2017;7(1):9640. doi: 10.1038/s41598-017-08781-6

 

  1. Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today. 1994;15(2):81-88. doi: 10.1016/0167-5699(94)90138-4

 

  1. Lehtomäki K, Heervä E, Kellokumpu-Lehtinen PL, et al. Transient changes in serum CEA, CA19-9, CRP, YKL-40, and IL-6 during adjuvant chemotherapy and survival of patients with colorectal cancer. Int J Mol Sci. 2023;24(7):6753. doi: 10.3390/ijms24076753

 

  1. Vainer N, Dehlendorff C, Johansen J. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget. 2018;9:29820-29841. doi: 10.18632/oncotarget.25661

 

  1. Cheng VWT, de Pennington N, Zakaria R, et al. VCAM- 1-targeted MRI improves detection of the tumor-brain interface. Clin Cancer Res. 2022;28(11):2385-2396. doi: 10.1158/1078-0432.Ccr-21-4011

 

  1. Han Z, Xiao Z, Kalantar-Zadeh K, et al. Validation of a novel modified aptamer-based array proteomic platform in patients with end-stage renal disease. Diagnostics (Basel). 2018;8(4):71. doi: 10.3390/diagnostics8040071
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing