AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.3186
REVIEW

Modulation of immune responses in the liver: The role of curcumin in balancing between health and disease

Prashant Anilkumar Singh1† Sitabja Mukherjee2† Puneet Gandhi3 Santosh Kar2*
Show Less
1 Department of Allied Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
2 Polyfeenolix Research Laboratory (OPC) Private Limited, KIIT Technology Business Incubator, Bhubaneswar, Odisha, India
3 Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
Submitted: 16 March 2024 | Accepted: 24 July 2024 | Published: 6 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The human liver, traditionally viewed as a metabolic and detoxifying organ, is now being acknowledged for its complex immunological activities involving diverse resident immune cell populations and non-hematopoietic cells. Even in the absence of disease, the liver actively engages in immune surveillance and regulatory processes to support metabolic functions and tissue remodeling, influenced by continuous exposure to dietary and microbial elements. However, maintaining a delicate balance within this dynamic microenvironment is crucial, as uncontrolled inflammation can result in pathological conditions. Effective immune activation is essential for responding to challenges such as pathogens or tissue damage, while mechanisms for resolving inflammation are necessary to maintain liver homeostasis. This review examines the diverse roles of hepatic inflammatory mechanisms in both normal and pathological liver conditions, where dysregulation contributes to chronic inflammation and diseases. A key focus of this discussion is the potential therapeutic role of curcumin, the primary curcuminoid found in turmeric. Curcumin is well known for its potent antioxidant and anti-inflammatory properties and has shown the ability to modulate various signaling pathways. Notably, curcumin acts by suppressing nuclear factor kappa B (NF-κB), a crucial player in the inflammatory cascade. NF-κB not only triggers inflammation but also influences cell survival, proliferation, invasion, and angiogenesis. Drawing from existing literature, we emphasize curcumin’s ability to scavenge free radicals, reduce lipid peroxidation, and target NF-κB-dependent pathways. By elucidating the evolving comprehension of inflammation’s role in maintaining liver balance, we suggest that curcumin represents a promising approach for treating chronic liver inflammation, thereby preventing fibrosis and related ailments. This thorough analysis highlights the potential of curcumin in modulating immune regulatory pathways specific to the liver, providing valuable insights into its use as a targeted therapeutic intervention against chronic liver inflammation that results in fibrosis.

Keywords
Inflammation
Homeostasis
Curcumin immunomodulation
Control of fibrosis
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36:247-277. doi: 10.1146/annurev-immunol-051116-052415

 

  1. Qin T, Chen X, Meng J, et al. The role of curcumin in the liver-gut system diseases: From mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr. 2023:1-30. doi: 10.1080/10408398.2023.2204349

 

  1. Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol. 2009;31(3):333-343. doi: 10.1007/s00281-009-0173-4

 

  1. Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11-16. doi: 10.1016/0167-5699(92)90198-G

 

  1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-820. doi: 10.1016/j.cell.2010.01.022

 

  1. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3(2):785-797. doi: 10.1002/cphy.c120026.

 

  1. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26(10):1175-1186. doi: 10.1111/j.1478-3231.2006.01342.x

 

  1. Su GL, Klein RD, Aminlari A, et al. Kupffer cell activation by lipopolysaccharide in rats: Role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology. 2000;31(4):932-936. doi: 10.1053/he.2000.5634

 

  1. van Egmond M, van Garderen E, van Spriel AB, et al. FcalphaRI-positive liver Kupffer cells: Reappraisal of the function of immunoglobulin A in immunity. Nat Med. 2000;6(6):680-685. doi: 10.1038/76261

 

  1. Elsegood CL, Chan CW, Degli-Esposti MA, et al. Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology. 2015;62(4):1272-1284. doi: 10.1002/hep.27977

 

  1. Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol. 2006;12(46):7413-7420. doi: 10.3748/wjg.v12.i46.7413

 

  1. Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13(3):267-276. doi: 10.1038/cmi.2016.3

 

  1. Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13(2):88-110. doi: 10.1038/nrgastro.2015.200

 

  1. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162-174. doi: 10.1038/nri2506

 

  1. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54-S62. doi: 10.1002/hep.21060

 

  1. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol. 2009;36:4-12. doi: 10.1007/s12016-008-8091-0

 

  1. Yki-Järvinen H, Luukkonen PK, Hodson L, Moore JB. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2021;18(11):770-786. doi: 10.1038/s41575-021-00472-y

 

  1. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104-116. doi: 10.1038/nri3793

 

  1. Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238-242. doi: 10.1038/nature11986

 

  1. Protzer U, Maini MK, Knolle PA. Living in the liver: Hepatic infections. Nat Rev Immunol. 2012;12(3):201-213. doi: 10.1038/nri3169

 

  1. Crispe IN. Immune tolerance in liver disease. Hepatology. 2014;60(6):2109-2117. doi: 10.1002/hep.27254

 

  1. Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts. Nature. 1969;223(5205):472-476. doi: 10.1038/223472a0

 

  1. Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation. Am J Transplant. 2006;6(8):1774-1780. doi: 10.1111/j.1600-6143.2006.01396.x

 

  1. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol. 1995;22(2):226-269. doi: 10.1016/0168-8278(95)80433-1

 

  1. Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med. 1996;184(1):19-29. doi: 10.1084/jem.184.1.19

 

  1. Knolle PA, Uhrig A, Hegenbarth S, Löser E, Schmitt E, Gerken G, Lohse AW. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol. 1998;114(3):427-433. doi: 10.1046/j.1365-2249.1998.00713.x

 

  1. Heymann F, Peusquens J, Ludwig-Portugall I, et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology. 2015;62(1):279-291. doi: 10.1002/hep.27793

 

  1. De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol. 2005;174(4):2037-2045. doi: 10.4049/jimmunol.174.4.2037

 

  1. Bamboat ZM, Stableford JA, Plitas G, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol. 2009;182(4):1901-1911. doi: 10.4049/jimmunol.0803404

 

  1. Kingham TP, Chaudhry UI, Plitas G, Katz SC, Raab J, DeMatteo RP. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology. 2007;45(2):445-454. doi: 10.1002/hep.21457

 

  1. Tokita D, Sumpter TL, Raimondi G, et al. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. J Hepatol. 2008;49(6):1008-1018. doi: 10.1016/j.jhep.2008.07.028

 

  1. Ichikawa S, Mucida D, Tyznik AJ, Kronenberg M, Cheroutre H. Hepatic stellate cells function as regulatory bystanders. J Immunol. 2011;186(10):5549-5555. doi: 10.4049/jimmunol.1003917

 

  1. Wuensch SA, Spahn J, Crispe IN. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology. 2010;52(3):1068-1077. doi: 10.1002/hep.23745

 

  1. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest. 2004;114(5):701-712. doi: 10.1172/JCI21593

 

  1. Zimmermann HW, Bruns T, Weston CJ, et al. Bidirectional transendothelial migration of monocytes across hepatic sinusoidal endothelium shapes monocyte differentiation and regulates the balance between immunity and tolerance in liver. Hepatology. 2016;63(1):233-246. doi: 10.1002/hep.28285

 

  1. Sander LE, Sackett SD, Dierssen U, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med. 2010;207(7):1453-1464. doi: 10.1084/jem.20091474

 

  1. Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997;181(3):257-266. doi: 10.1002/(SICI)1096-9896(199703)181:3<257:AID-PATH756>3.0.CO;2-U

 

  1. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448-454. Erratum in: N Engl J Med. 1999;340(17):1376. doi: 10.1056/NEJM199902113400607

 

  1. Inatsu A, Kinoshita M, Nakashima H, et al. Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology. 2009;49(6):2044-2054. doi: 10.1002/hep.22888

 

  1. Mihm S. Danger-Associated Molecular Patterns (DAMPs): Molecular triggers for sterile inflammation in the liver. Int J Mol Sci. 2018;19:3104. doi: 10.3390/ijms19103104

 

  1. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191-195. doi: 10.1038/nature00858

 

  1. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: A link between apoptosis and fibrosis. Gastroenterology. 2002;123:1323-1330. doi: 10.1053/gast.2002.35953

 

  1. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397-411. doi: 10.1038/nrgastro.2017.38

 

  1. Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 2020;9(4):875. doi: 10.3390/cells9040875

 

  1. Friedman SL. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125-172. doi: 10.1152/physrev.00013.2007

 

  1. Malehmir M, Pfister D, Gallage S, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25:641-655. doi: 10.1038/s41591-019-0379-5

 

  1. Fabregat I, Moreno-Càceres J, Sánchez A, et al. TGF-β signalling and liver disease. FEBS J. 2016;283:2219-2232. doi: 10.1111/febs.13665

 

  1. Baiocchini A, Montaldo C, Conigliaro A, et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One. 2016;11:e0151736. doi: 10.1371/journal.pone.0151736

 

  1. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090-1096. doi: 10.1016/j.jhep.2013.12.025

 

  1. Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261-274. doi: 10.1002/hep.22950

 

  1. Seki E, de Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185-197. doi: 10.1002/hep.22952

 

  1. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577-594.e1. doi: 10.1053/j.gastro.2014.06.043

 

  1. Sahin H, Trautwein C, Wasmuth HE. Functional role of chemokines in liver disease models. Nat Rev Gastroenterol Hepatol. 2010;7:682-690. doi: 10.1038/nrgastro.2010.168

 

  1. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195-206. doi: 10.1016/j.bpg.2011.02.005

 

  1. Liu C, Tao Q, Sun M, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90:1805-1816. doi: 10.1038/labinvest.2010.123

 

  1. Holt AP, Salmon M, Buckley CD, Adams DH. Immune interactions in hepatic fibrosis. Clin Liver Dis. 2008;12:861. doi: 10.1016/j.cld.2008.07.002

 

  1. Xu L, Liu W, Bai F, et al. Hepatic macrophage as a key player in fatty liver disease. Front Immunol. 2021;12:708978. doi: 10.3389/fimmu.2021.708978

 

  1. Lee WY, Kubes P. Leukocyte adhesion in the liver: Distinct adhesion paradigm from other organs. J Hepatol. 2008;48:504-512. doi: 10.1016/j.jhep.2007.12.005

 

  1. Curbishley SM, Eksteen B, Gladue RP, Lalor P, Adams DH. CXCR 3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow. Am J Pathol. 2005;167:887-899. doi: 10.1016/S0002-9440(10)62060-3

 

  1. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol. 2011;300:G723-G728. doi: 10.1152/ajpgi.00414.2010

 

  1. Varol C, Yona S, Jung S. Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol. 2009;87:30-38. doi: 10.1038/icb.2008.90

 

  1. Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol. 2018;9:2948. doi: 10.3389/fimmu.2018.02948

 

  1. Kisseleva T, Cong M, Paik Y, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109:9448-9453. doi: 10.1073/pnas.1201840109

 

  1. Singh HD, Otano I, Rombouts K, et al. TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Sci Rep. 2017;7:5514. doi: 10.1038/s41598-017-05845-5

 

  1. Campana L, Iredale JP. Regression of liver fibrosis. Semin Liver Dis. 2017;37:1-10. doi: 10.1055/s-0036-1597816

 

  1. Fukushima J, Kamada Y, Matsumoto H, et al. Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res. 2009;39:724-738. doi: 10.1111/j.1872-034X.2009.00509.x

 

  1. Queck A, Bode H, Uschner FE, et al. Systemic MCP-1 levels derive mainly from injured liver and are associated with complications in cirrhosis. Front Immunol. 2020;11:354. doi: 10.3389/fimmu.2020.00354

 

  1. Brempelis KJ, Crispe IN. Infiltrating monocytes in liver injury and repair. Clin Transl Immunology. 2016;5(11):e113. doi: 10.1038/cti.2016.62

 

  1. Zhao XA, Chen G, Liu Y, et al. Curcumin reduces Ly6Chi monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion. Biomed Pharmacother. 2018;106:868-878. doi: 10.1016/j.biopha.2018.07.028

 

  1. Tu CT, Yao QY, Xu BL, Wang JY, Zhou CH, Zhang SC. Protective effects of curcumin against hepatic fibrosis induced by carbon tetrachloride: Modulation of high-mobility group box 1, Toll-like receptor 4 and 2 expression. Food Chem Toxicol. 2012;50(9):3343-3351. doi: 10.1016/j.fct.2012.05.050

 

  1. Qin L, Qin J, Zhen X, Yang Q, Huang L. Curcumin protects against hepatic stellate cells activation and migration by inhibiting the CXCL12/CXCR4 biological axis in liver fibrosis: A study in vitro and in vivo. Biomed Pharmacother. 2018;101:599-607. doi: 10.1016/j.biopha.2018.02.091

 

  1. Tu CT, Han B, Liu HC, Zhang SC. Curcumin protects mice against concanavalin A-induced hepatitis by inhibiting intrahepatic intercellular adhesion molecule-1 (ICAM-1) and CXCL10 expression. Mol Cell Biochem. 2011;358(1-2):53-60. doi: 10.1007/s11010-011-0920-4

 

  1. Cerný D, Lekić N, Váňová K, et al. Hepatoprotective effect of curcumin in lipopolysaccharide/-galactosamine model of liver injury in rats: Relationship to HO-1/CO antioxidant system. Fitoterapia. 2011;82:786-791. doi: 10.1016/j.fitote.2011.04.003

 

  1. Chen H, Xue CG, Chen TH, Wang JL, Sun CS. Chemopreventive effect of Curcuma and curcumin on liver injury induced by microcystins in mice. Chin Pharmacol Bull. 2005;21:1517-1519.

 

  1. Lin CM, Lee JF, Chiang LL, Chen CF, Wang D, Su CL. The protective effect of curcumin on ischemia-reperfusion-induced liver injury. Transplant Proc. 2012;44(4):974-977. doi: 10.1016/j.transproceed.2012.01.081

 

  1. Sayed MM, El-Kordy EA. The protective effect of curcumin on paracetamol-induced liver damage in adult male rabbits: Biochemical and histological studies. Egypt J Histol. 2014;37:629-639. doi: 10.1097/01.EHX.0000455822.82783.4b

 

  1. Dattani JJ, Rajput DK, Moid N, Highland HN, George LB, Desai KR. Ameliorative effect of curcumin on hepatotoxicity induced by chloroquine phosphate. Environ Toxicol Pharmacol. 2010;30(2):103-109. doi: 10.1016/j.etap.2010.04.001

 

  1. Vera-Ramirez L, Pérez-Lopez P, Varela-Lopez A, Ramirez- Tortosa M, Battino M, Quiles JL. Curcumin and liver disease. Biofactors. 2013;39:88-100. doi: 10.1002/biof.1057

 

  1. Fazal Y, Fatima SN, Shahid SM, Mahboob T. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity. J Renin Angiotensin Aldosterone Syst. 2015;16:1046-1051. doi: 10.1177/1470320314545777

 

  1. Shapiro H, Ashkenazi M, Weizman N, Shahmurov M, Aeed H, Bruck R. Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J Gastroenterol Hepatol. 2006;21:358-366. doi: 10.1111/j.1440-1746.2005.03984.x

 

  1. Kaur G, Tirkey N, Bharrhan S, Chanana V, Rishi P, Chopra K. Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Am J Clin Exp Immunol. 2006;145:313-321. doi: 10.1111/j.1365-2249.2006.03108.x

 

  1. Khorsandi L, Mansouri E, Orazizadeh M, Jozi Z. Curcumin attenuates hepatotoxicity induced by zinc oxide nanoparticles in rats. Balkan Med J. 2016;33:252-257. doi: 10.5152/balkanmedj.2016.150017

 

  1. Moghaddam AH, Nabavi SF, Nabavi SM, Loizzo MR, Roohbakhsh A, Setzer WN. Ameliorative effects of curcumin against sodium fluoride-induced hepatotoxicity. Prog Nutr. 2015;17:324-330.

 

  1. El-Desoky GE, Abdel-Ghaffar A, Al-Othman ZA, et al. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur Rev Med Pharmacol Sci. 2017;21:635-645.

 

  1. García-Niño WR, Tapia E, Zazueta C, et al. Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. Evid Based Complement Alternat Med. 2013;2013:424692. doi: 10.1155/2013/424692

 

  1. García-Niño WR, Zatarain-Barrón ZL, Hernández- Pando R, Vega-García CC, Tapia E, Pedraza-Chaverri J. Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr (VI): Effect of curcumin. Biol Trace Elem Res. 2015;167:130-145. doi: 10.1007/s12011-015-0283-x

 

  1. Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol. 2018;7(4):211-219. doi: 10.15171/jhp.2018.33

 

  1. Fu XY, Zhang DW, Li YD, et al. Curcumin treatment suppresses CCR7 expression and the differentiation and migration of human circulating fibrocytes. Cell Physiol Biochem. 2015;35(2):489-498. doi: 10.1159/000369714

 

  1. Sun X, Liu Y, Li C, et al. Recent advances of curcumin in the prevention and treatment of renal fibrosis. Biomed Res Int. 2017;2017:2418671. doi: 10.1155/2017/2418671

 

  1. Hernández-Aquino E, Quezada-Ramírez MA, Silva- Olivares A, et al. Curcumin downregulates Smad pathways and reduces hepatic stellate cells activation in experimental fibrosis. Ann Hepatol. 2020;19(5):497-506. doi: 10.1016/j.aohep.2020.05.006

 

  1. Bruck R, Ashkenazi M, Weiss S, et al. Prevention of liver cirrhosis in rats by curcumin. Liver Int. 2007;27(3):373-383. doi: 10.1111/j.1478-3231.2007.01453.x

 

  1. Chenari S, Safari F, Moradi A. Curcumin enhances liver SIRT3 expression in the rat model of cirrhosis. Iran J Basic Med Sci. 2017;20(12):1306-1311. doi: 10.22038/IJBMS.2017.9609

 

  1. Reyes-Gordillo K, Segovia J, Shibayama M, et al. Curcumin prevents and reverses cirrhosis induced by bile duct obstruction or CCl4 in rats: Role of TGF-beta modulation and oxidative stress. Fundam Clin Pharmacol. 2008;22: 417-427. doi: 10.1111/j.1472-8206.2008.00611.x

 

  1. Erenoğlu C, Kanter M, Aksu B, et al. Protective effect of curcumin on liver damage induced by biliary obstruction in rats. Balkan Med J. 2011;28:352-357. doi: 10.5174/tutfd.2010.04312.1

 

  1. Zhong W, Qian K, Xiong J, Ma K, Wang A, Zou Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomed Pharmacother. 2016;83:302-313. doi: 10.1016/j.biopha.2016.06.036

 

  1. Sahebkar A, Saboni N, Pirro M, Banach M. Curcumin: An effective adjunct in patients with statin-associated muscle symptoms? J Cachexia Sarcopenia Muscle. 2017;8:19-24. doi: 10.1002/jcsm.12140

 

  1. Tang Y, Zheng S, Chen A. Curcumin eliminates leptin’s effects on hepatic stellate cell activation via interrupting leptin signaling. Endocrinology. 2009;150:3011-3020. doi: 10.1210/en.2008-1601

 

  1. Lin J, Chen A. Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2. Mol Cell Endocrinol. 2011;333:160-171. doi: 10.1016/j.mce.2010.12.028

 

  1. Khan I, Ahmad H, Ahmad B. Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: Possible role in prevention of diabetic complication. Pak J Pharm Sci. 2014;27:1359-1362.

 

  1. Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83:876-886. doi: 10.1007/s00109-005-0688-7

 

  1. Libby P, Plutzky J. Diabetic macrovascular disease: The glucose paradox? Circulation. 2002;106:2760-2763. doi: 10.1161/01.cir.0000037282.92395.ae

 

  1. Rahbar S, Figarola JL. Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys. 2003;419:63-79. doi: 10.1016/j.abb.2003.08.009

 

  1. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5:561-568. doi: 10.1097/00075197-200209000-00016

 

  1. Lin J, Tang Y, Kang Q, Chen A. Curcumin eliminates the inhibitory effect of advanced glycation end-products (AGEs) on gene expression of AGE receptor-1 in hepatic stellate cells in vitro. Lab Invest. 2012;92:827-841. doi: 10.1038/labinvest.2012.53

 

  1. Lin J, Tang Y, Kang Q, Feng Y, Chen A. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARgamma activity and attenuating oxidative stress. Br J Pharmacol. 2012;166:2212-2227. doi: 10.1111/j.1476-5381.2012.01910.x

 

  1. Tang Y, Chen A. Curcumin protects hepatic stellate cells against leptin-induced activation in vitro by accumulating intracellular lipids. Endocrinology. 2010;151:4168-4177. doi: 10.1210/en.2010-0191

 

  1. Zeng CH, Zeng P, Deng YH, et al. The effects of curcumin derivative on experimental steatohepatitis. Zhonghua Gan Zang Bing Za Zhi. 2011;19:454-459.

 

  1. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232:40-51. doi: 10.1016/j.atherosclerosis.2013.10.016

 

  1. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655-1669. doi: 10.1053/j.gastro.2008.03.003

 

  1. Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000;275:35715-35722. doi: 10.1074/jbc.M006577200

 

  1. Gruzman A, Babai G, Sasson S. Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: A review on metabolic, pharmacological and chemical considerations. Rev Diabet Stud. 2009;6:13-36. doi: 10.1900/RDS.2009.6.13

 

  1. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. 2004;127:1798-1808. doi: 10.1053/j.gastro.2004.09.049

 

  1. Kang Q, Chen A. Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells. Br J Pharmacol. 2009;157:1354-1367. doi: 10.1111/j.1476-5381.2009.00261.x

 

  1. Kang Q, Chen A. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology. 2009;150:5384-5394. doi: 10.1210/en.2009-0517

 

  1. Buonomo AR, Scotto R, Nappa S, et al. The role of curcumin in liver diseases. Arch Med Sci. 2019;15(6):1608-1620. doi: 10.5114/aoms.2018.73596

 

  1. Pickich MB, Hargrove MW, Phillips CN, et al. Effect of curcumin supplementation on serum expression of select cytokines and chemokines in a female rat model of nonalcoholic steatohepatitis. BMC Res Notes. 2019;12(1):496. doi: 10.1186/s13104-019-4540-5
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing