AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.2935
REVIEW

Insights into phage therapy for Mycobacterium infections

Yuhan Wang1† Sensen Hu1† Yu Sun1† Xinying Ji1 Kunhou Yao1* Tieshan Teng1*
Show Less
1 Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
Submitted: 14 February 2024 | Accepted: 18 June 2024 | Published: 10 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The irrational use of antibiotics has led to the persistent emergence of multi-drug-resistant bacteria, extensively drug-resistant bacteria, and even “superbugs,” pushing humanity toward a “post-antibiotic era” devoid of effective antibiotics. Consequently, the quest for novel treatment strategies has become an urgent priority. Bacteriophages, which are viruses that infect bacteria, originate from a variety of sources and exhibit high host specificity. This makes them an exceptional alternative to antibiotics, offering superior bactericidal efficacy. Their unique characteristics provide a novel approach to treating drug-resistant bacterial infections, offering a promising avenue for improving human health. Mycobacteriophages are a specific family of bacteriophages that parasitize bacteria of the genus Mycobacterium and are ubiquitously distributed in nature. They play a crucial role in regulating mycobacterial infection and advancing antimicrobial therapy. This review provides a comprehensive introduction to the structure, infection mechanism, clinical applications, phage resistance, and research progress of mycobacteriophages. The aim is to enhance our understanding of their characteristics and potential applications in biomedicine, providing a comprehensive reference for related research.

Keywords
Drug-resistant bacteria
Mycobacteriophage
Phage-resistant strains
Biological characteristics
Applications
Funding
This research was funded by the Key R&D and Promotion Projects of Henan Province (232102311139); China Postdoctoral Science Foundation (2021m690095); and the National Innovation and Entrepreneurship Training Program for College Students (20237003005 and 20231022001).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-318. doi: 10.1179/2047773215y.0000000030

 

  1. Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J Mol Evol. 2020;88(1):26-40. doi: 10.1007/s00239-019-09914-3

 

  1. Prasad R, Gupta N, Banka A. Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management. Lung India. 2018;35(1):78-81. doi: 10.4103/lungindia.lungindia_98_17

 

  1. Global Tuberculosis Reports. WHO. Available from: https:// www.who.int/zh/news-room/fact-sheets/detail/tuberculosis [Last accessed on 2024 Aug 30].

 

  1. Global Tuberculosis Report. WHO. Available from: https:// www.who.int/zh/news-room/fact-sheets/detail/tuberculosis [Last accessed on 2024 Aug 31].

 

  1. Wang H, Liu D, Zhou X. Effect of mycolic acids on host immunity and lipid metabolism. Int J Mol Sci. 2023;25(1):396. doi: 10.3390/ijms25010396

 

  1. Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020;6(1):100. doi: 10.1057/s41599-020-0478-4

 

  1. Olszak T, Latka A, Roszniowski B, Valvano MA, Drulis- Kawa Z. Phage life cycles behind bacterial biodiversity. Curr Med Chem. 2017;24(36):3987-4001. doi: 10.2174/0929867324666170413100136

 

  1. Arnau V, Díaz-Villanueva W, Mifsut Benet J, et al. Inference of the life cycle of environmental phages from genomic signature distances to their hosts. Viruses. 2023;15(5):1196. doi: 10.3390/v15051196

 

  1. Erez Z, Steinberger-Levy I, Shamir M, et al. Communication between viruses guides lysis-lysogeny decisions. Nature. 2017;541(7638):488-493. doi: 10.1038/nature21049

 

  1. Hay ID, Lithgow T. Filamentous phages: Masters of a microbial sharing economy. EMBO Rep. 2019;20(6):e47427. doi: 10.15252/embr.201847427

 

  1. Hatfull GF. Mycobacteriophages. Microbiol Spectr. 2018;6(5). doi: 10.1128/microbiolspec.GPP3-0026-2018

 

  1. Dedrick RM, Mavrich TN, Ng WL, Hatfull GF. Expression and evolutionary patterns of mycobacteriophage D29 and its temperate close relatives. BMC Microbiol. 2017;17(1):225. doi: 10.1186/s12866-017-1131-2

 

  1. Halleran A, Clamons S, Saha M. Transcriptomic characterization of an infection of Mycobacterium smegmatis by the Cluster A4 mycobacteriophage kampy. PLoS One. 2015;10(10):e0141100. doi: 10.1371/journal.pone.0141100

 

  1. Fan X, Duan X, Tong Y, et al. The global reciprocal reprogramming between mycobacteriophage SWU1 and Mycobacterium reveals the molecular strategy of subversion and promotion of phage infection. Front Microbiol. 2016;7:41. doi: 10.3389/fmicb.2016.00041

 

  1. Dedrick RM, Marinelli LJ, Newton GL, Pogliano K, Pogliano J, Hatfull GF. Functional requirements for bacteriophage growth: Gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol. 2013;88(3):577-589. doi: 10.1111/mmi.12210

 

  1. Ko CC, Hatfull GF. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. Mol Microbiol. 2018;108(4):443-460. doi: 10.1111/mmi.13946

 

  1. Dedrick RM, Jacobs-Sera D, Bustamante CA, et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol. 2017;2:16251. doi: 10.1038/nmicrobiol.2016.251

 

  1. Hatfull GF, Cresawn SG, Hendrix RW. Comparative genomics of the mycobacteriophages: Insights into bacteriophage evolution. Res Microbiol. 2008;159(5):332-339. doi: 10.1016/j.resmic.2008.04.008

 

  1. Fullner KJ, Hatfull GF. Mycobacteriophage L5 infection of Mycobacterium bovis BCG: Implications for phage genetics in the slow-growing mycobacteria. Mol Microbiol. 1997;26(4):755-766. doi: 10.1046/j.1365-2958.1997.6111984.x

 

  1. Ford ME, Sarkis GJ, Belanger AE, Hendrix RW, Hatfull GF. Genome structure of mycobacteriophage D29: Implications for phage evolution. J Mol Biol. 1998;279(1):143-164. doi: 10.1006/jmbi.1997.1610

 

  1. Sampson T, Broussard GW, Marinelli LJ, et al. Mycobacteriophages BPs, Angel and Halo: Comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology (Reading). 2009;155(Pt 9):2962-2977. doi: 10.1099/mic.0.030486-0

 

  1. Dedrick RM, Guerrero Bustamante CA, Garlena RA, Pinches RS, Cornely K, Hatfull GF. Mycobacteriophage ZoeJ: A broad host-range close relative of mycobacteriophage TM4. Tuberculosis (Edinb). 2019;115:14-23. doi: 10.1016/j.tube.2019.01.002

 

  1. Suarez CA, Franceschelli JJ, Morbidoni HR. Mycobacteriophage CRB2 defines a new subcluster in mycobacteriophage classification. PLoS One. 2019;14(2):e0212365. doi: 10.1371/journal.pone.0212365

 

  1. Yue X, Huang Y, Zhang Y, Ouyang H, Xie J, Fu Z. Mycobacteriophage SWU1-Functionalized magnetic particles for facile bioluminescent detection of Mycobacterium smegmatis. Anal Chim Acta. 2021;1145:17-25. doi: 10.1016/j.aca.2020.12.009

 

  1. Ford ME, Stenstrom C, Hendrix RW, Hatfull GF. Mycobacteriophage TM4: Genome structure and gene expression. Tuber Lung Dis. 1998;79(2):63-73. doi: 10.1054/tuld.1998.0007

 

  1. Hatfull GF, Pedulla ML, Jacobs-Sera D, et al. Exploring the mycobacteriophage metaproteome: Phage genomics as an educational platform. PLoS Genet. 2006;2(6):e92. doi: 10.1371/journal.pgen.0020092

 

  1. Bowman BU, Newman HA, Moritz JM, Koehler RM. Properties of mycobacteriophage DS6A. II. Lipid composition. Am Rev Respir Dis. 1973;107(1):42-49. doi: 10.1164/arrd.1973.107.1.42

 

  1. Mayer O, Jain P, Weisbrod TR, et al. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria. J Bacteriol. 2016;198(23):3220-3232. doi: 10.1128/jb.00592-16

 

  1. Zalewska-Piątek B. Phage Therapy-challenges, opportunities and future prospects. Pharmaceuticals (Basel). 2023; 16(12):1638. doi: 10.3390/ph16121638

 

  1. Pérez-Sánchez T, Mora-Sánchez B, Balcázar JL. Biological approaches for disease control in aquaculture: Advantages, limitations and challenges. Trends Microbiol. 2018;26(11):896-903. doi: 10.1016/j.tim.2018.05.002

 

  1. Mahdavi SZB, Oroojalian F, Eyvazi S, et al. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; Advantages and disadvantages. Int J Biol Macromol. 2022;208:421-442. doi: 10.1016/j.ijbiomac.2022.03.113

 

  1. Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, et al. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res. 2022;264:127155. doi: 10.1016/j.micres.2022.127155

 

  1. Kasman LM, Porter LD. Bacteriophages. In: StatPearls. Treasure Island, FL: StatPearls Publishing LLC; 2024.

 

  1. Hatfull GF. Actinobacteriophages: Genomics, dynamics, and applications. Annu Rev Virol. 2020;7(1):37-61. doi: 10.1146/annurev-virology-122019-070009

 

  1. Hatfull GF. Complete genome sequences of 138 mycobacteriophages. J Virol. 2012;86(4):2382-2384. doi: 10.1128/jvi.06870-11

 

  1. Henry M, O’Sullivan O, Sleator RD, et al. In silico analysis of Ardmore, a novel mycobacteriophage isolated from soil. Gene. 2010;453(1-2):9-23. doi: 10.1016/j.gene.2009.12.007

 

  1. Pope WH, Ferreira CM, Jacobs-Sera D, et al. Cluster K mycobacteriophages: Insights into the evolutionary origins of mycobacteriophage TM4. PLoS One. 2011;6(10):e26750. doi: 10.1371/journal.pone.0026750

 

  1. Pope WH, Jacobs-Sera D, Russell DA, et al. Expanding the diversity of mycobacteriophages: Insights into genome architecture and evolution. PLoS One. 2011;6(1):e16329. doi: 10.1371/journal.pone.0016329

 

  1. Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol. 2011;1(4):298-303. doi: 10.1016/j.coviro.2011.06.009

 

  1. Crane A, Versoza CJ, Hua T, et al. Phylogenetic relationships and codon usage bias amongst cluster K mycobacteriophages. G3 (Bethesda). 2021;11(11):jkab291. doi: 10.1093/g3journal/jkab291

 

  1. Hatfull GF. Mycobacteriophages: Genes and genomes. Annu Rev Microbiol. 2010;64:331-356. doi: 10.1146/annurev.micro.112408.134233

 

  1. Froman S, Will DW, Bogen E. Bacteriophage active against virulent Mycobacterium tuberculosis. I. Isolation and activity. Am J Public Health Nations Health. 1954;44(10):1326-1333. doi: 10.2105/ajph.44.10.1326

 

  1. Sinha A, Eniyan K, Manohar P, Ramesh N, Bajpai U. Characterization and genome analysis of B1 sub-cluster mycobacteriophage PDRPxv. Virus Res. 2020;279:197884. doi: 10.1016/j.virusres.2020.197884

 

  1. Hatfull GF. The secret lives of mycobacteriophages. Adv Virus Res. 2012;82:179-288. doi: 10.1016/b978-0-12-394621-8.00015-7

 

  1. Jeżowska-Bojczuk M, Stokowa-Sołtys K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem. 2018;143:997-1009. doi: 10.1016/j.ejmech.2017.11.086

 

  1. Su Z, Huang Y, Zhou Q, et al. High-level expression and purification of human epidermal growth factor with SUMO fusion in Escherichia coli. Protein Pept Lett. 2006;13(8):785-792. doi: 10.2174/092986606777841280

 

  1. Wei L, Wu J, Liu H, et al. A mycobacteriophage-derived trehalose-6,6’-dimycolate-binding peptide containing both antimycobacterial and anti-inflammatory abilities. FASEB J. 2013;27(8):3067-3077. doi: 10.1096/fj.13-227454

 

  1. Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host antimicrobial peptides: The promise of new treatment strategies against tuberculosis. Front Immunol. 2017;8:1499. doi: 10.3389/fimmu.2017.01499

 

  1. Wang J, Yuan T, He X, et al. Production, characterization, and application of phage-derived PK34 recombinant anti-microbial peptide. Appl Microbiol Biotechnol. 2023;107(1):163-174. doi: 10.1007/s00253-022-12306-1

 

  1. Chen JM, Ren H, Shaw JE, et al. Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res. 2008;36(7):2123-2135. doi: 10.1093/nar/gkm1162

 

  1. Gordon BR, Li Y, Cote A, et al. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc Natl Acad Sci U S A. 2011;108(26):10690-10695. doi: 10.1073/pnas.1102544108

 

  1. Gordon BR, Li Y, Wang L, et al. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2010;107(11):5154-5159. doi: 10.1073/pnas.0913551107

 

  1. Summers EL, Meindl K, Usón I, et al. The structure of the oligomerization domain of Lsr2 from Mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection. PLoS One. 2012;7(6):e38542. doi: 10.1371/journal.pone.0038542

 

  1. Gordon BR, Imperial R, Wang L, Navarre WW, Liu J. Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J Bacteriol. 2008;190(21):7052-7059. doi: 10.1128/jb.00733-08

 

  1. Báez-Ramírez E, Querales L, Aranaga CA, et al. Elimination of PknL and MSMEG_4242 in Mycobacterium smegmatis alters the character of the outer cell envelope and selects for mutations in Lsr2. Cell Surf. 2021;7:100060. doi: 10.1016/j.tcsw.2021.100060

 

  1. Bartek IL, Woolhiser LK, Baughn AD, et al. Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. mBio. 2014;5(3). doi: 10.1128/mBio.01106-14

 

  1. Kocíncová D, Singh AK, Beretti JL, et al. Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb). 2008;88(5):390-398. doi: 10.1016/j.tube.2008.02.005

 

  1. Le Moigne V, Bernut A, Cortès M, et al. Lsr2 Is an important determinant of intracellular growth and virulence in Mycobacterium abscessus. Front Microbiol. 2019;10:905. doi: 10.3389/fmicb.2019.00905

 

  1. Colangeli R, Haq A, Arcus VL, et al. The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A. 2009;106(11):4414-4418. doi: 10.1073/pnas.0810126106

 

  1. Dulberger CL, Guerrero-Bustamante CA, Owen SV, et al. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat Microbiol. 2023;8(4):695-710. doi: 10.1038/s41564-023-01333-x

 

  1. Wetzel KS, Illouz M, Abad L, et al. Mycobacterium trehalose polyphleates are required for infection by therapeutically useful mycobacteriophages BPs and Muddy. bioRxiv [Preprint]. 2023. doi: 10.1101/2023.03.14.532567

 

  1. Guidry TV, Hunter RL, Actor JK. Mycobacterial glycolipid trehalose 6,6’-dimycolate-induced hypersensitive granulomas: Contribution of CD4+ lymphocytes. Microbiology (Reading). 2007;153(Pt 10):3360-3369. doi: 10.1099/mic.0.2007/010850-0

 

  1. Hurst-Hess K, Walz A, Yang Y, et al. Intrapulmonary treatment with mycobacteriophage LysB rapidly reduces Mycobacterium abscessus burden. Antimicrob Agents Chemother. 2023;67(6):e0016223. doi: 10.1128/aac.00162-23

 

  1. Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74(2):277-283. doi: 10.1007/s00284-016-1166-x

 

  1. Lange C, Chesov D, Heyckendorf J, Leung CC, Udwadia Z, Dheda K. Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology. 2018;23(7):656-673. doi: 10.1111/resp.13304

 

  1. Meacci F, Orrù G, Iona E, et al. Drug resistance evolution of a Mycobacterium tuberculosis strain from a noncompliant patient. J Clin Microbiol. 2005;43(7):3114-3120. doi: 10.1128/jcm.43.7.3114-3120.2005

 

  1. Ghazaei C. Mycobacterium tuberculosis and lipids: Insights into molecular mechanisms from persistence to virulence. J Res Med Sci. 2018;23:63. doi: 10.4103/jrms.JRMS_904_17

 

  1. To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020;9(8):2541. doi: 10.3390/jcm9082541

 

  1. Kothavade RJ, Dhurat RS, Mishra SN, Kothavade UR. Clinical and laboratory aspects of the diagnosis and management of cutaneous and subcutaneous infections caused by rapidly growing mycobacteria. Eur J Clin Microbiol Infect Dis. 2013;32(2):161-188. doi: 10.1007/s10096-012-1766-8

 

  1. Jamal F, Hammer MM. Nontuberculous mycobacterial infections. Radiol Clin North Am. 2022;60(3):399-408. doi: 10.1016/j.rcl.2022.01.012

 

  1. Locatelli ME, Tosto S, D’Agata V, et al. Disseminated disease by Mycobacterium abscessus and Mycobacterium celatum in an Immunocompromised Host. Am J Case Rep. 2020;21:e921517. doi: 10.12659/ajcr.921517

 

  1. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: A new antibiotic nightmare. J Antimicrob Chemother. 2012;67(4):810-818. doi: 10.1093/jac/dkr578

 

  1. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis. 2015;21(9):1638-1646. doi: 10.3201/2109.141634

 

  1. Chen J, Zhao L, Mao Y, et al. Clinical efficacy and adverse effects of antibiotics used to treat Mycobacterium abscessus pulmonary disease. Front Microbiol. 2019;10:1977. doi: 10.3389/fmicb.2019.01977

 

  1. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730-733. doi: 10.1038/s41591-019-0437-z

 

  1. Nick JA, Dedrick RM, Gray AL, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell. 2022;185(11):1860-1874.e12. doi: 10.1016/j.cell.2022.04.024

 

  1. Little JS, Dedrick RM, Freeman KG, et al. Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nat Commun. 2022;13(1):2313. doi: 10.1038/s41467-022-29689-4

 

  1. Diacon AH, Guerrero-Bustamante CA, Rosenkranz B, Rubio Pomar FJ, Vanker N, Hatfull GF. Mycobacteriophages to treat tuberculosis: Dream or delusion? Respiration. 2022;101(1):1-15. doi: 10.1159/000519870

 

  1. Guerrero-Bustamante CA, Dedrick RM, Garlena RA, Russell DA, Hatfull GF. Toward a phage Cocktail for tuberculosis: Susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains. mBio. 2021;12(3):e00973-21. doi: 10.1128/mBio.00973-21

 

  1. Myers JA. Can tuberculosis be eradicated? Dis Chest. 1963;43:327-329. doi: 10.1378/chest.43.3.327

 

  1. Fish W. Presidential address to preventive medicine section. R Soc Health J. 1957;77(7):340-343. doi: 10.1177/146642405707700704

 

  1. Wulandari DA, Hartati YW, Ibrahim AU, Pitaloka DAE, Irkham. Multidrug-resistant tuberculosis. Clin Chim Acta. 2024;559:119701. doi: 10.1016/j.cca.2024.119701

 

  1. Velayati AA, Masjedi MR, Farnia P, et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest. 2009;136(2):420-425. doi: 10.1378/chest.08-2427

 

  1. Lange C, Abubakar I, Alffenaar JW, et al. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement. Eur Respir J. 2014;44(1):23-63. doi: 10.1183/09031936.00188313

 

  1. Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 2022;73:197-211. doi: 10.1146/annurev-med-080219-122208

 

  1. Li P, Yong-Ai L, Baowen C, Youlun L, Xiaobing S, Guo-Zhi W. Effect of bacteriophage D29 on the immune function of guinea pigs with a model of tuberculosis. Her Med. 2006;0723:767-770.

 

  1. Gan Y, Liu P, Wu T, Guo S. Different characteristics between mycobacteriophage Chy1 and D29, which were classified as cluster A2 mycobacteriophages. Indian J Med Microbiol. 2016;34(2):186-192. doi: 10.4103/0255-0857.180282

 

  1. Gan Y, Wu T, Liu P, Guo S. Characterization and classification of Bo4 as a cluster G mycobacteriophage that can infect and lyse M. tuberculosis. Arch Microbiol. 2014;196(3):209-218. doi: 10.1007/s00203-014-0954-6

 

  1. Dunne M, Hupfeld M, Klumpp J, Loessner MJ. Molecular basis of bacterial host interactions by gram-positive targeting bacteriophages. Viruses. 2018;10(8):397. doi: 10.3390/v10080397

 

  1. Johansen MD, Alcaraz M, Dedrick RM, et al. Mycobacteriophage-antibiotic therapy promotes enhanced clearance of drug-resistant Mycobacterium abscessus. Dis Model Mech. 2021;14(9):dmm049159. doi: 10.1242/dmm.049159

 

  1. Senhaji-Kacha A, Esteban J, Garcia-Quintanilla M. Considerations for phage therapy against Mycobacterium abscessus. Front Microbiol. 2020;11:609017. doi: 10.3389/fmicb.2020.609017

 

  1. Li Q, Zhou M, Fan X, Yan J, Li W, Xie J. Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability. Sci Rep. 2016;6:28701. doi: 10.1038/srep28701

 

  1. Hatfull GF. Phage Therapy for nontuberculous mycobacteria: Challenges and opportunities. Pulm Ther. 2023;9(1):91-107. doi: 10.1007/s41030-022-00210-y

 

  1. Dedrick RM, Smith BE, Cristinziano M, et al. Phage therapy of Mycobacterium infections: Compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin Infect Dis. 2023;76(1):103-112. doi: 10.1093/cid/ciac453

 

  1. Dedrick RM, Freeman KG, Nguyen JA, et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat Med. 2021;27(8):1357-1361. doi: 10.1038/s41591-021-01403-9

 

  1. Secor PR, Dandekar AA. More than simple parasites: The sociobiology of bacteriophages and their bacterial hosts. mBio. 2020;11(2):e00041-20. doi: 10.1128/mBio.00041-20

 

  1. Mushegian AR. Are there 1031 virus particles on earth, or more, or fewer? J Bacteriol. 2020;202(9):e00052-20. doi: 10.1128/jb.00052-20

 

  1. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proc Natl Acad Sci U S A. 1999;96(5):2192-2197. doi: 10.1073/pnas.96.5.2192

 

  1. Hanauer DI, Jacobs-Sera D, Pedulla ML, Cresawn SG, Hendrix RW, Hatfull GF. Inquiry learning. Teaching scientific inquiry. Science. 2006;314(5807):1880-1881. doi: 10.1126/science.1136796

 

  1. Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev. 2020;44(6):684-700. doi: 10.1093/femsre/fuaa017

 

  1. Li X, He Y, Wang Z, et al. A combination therapy of phages and antibiotics: Two is better than one. Int J Biol Sci. 2021;17(13):3573-3582. doi: 10.7150/ijbs.60551

 

  1. Hosseiniporgham S, Sechi LA. A review on mycobacteriophages: From classification to applications. Pathogens. 2022;11(7):777. doi: 10.3390/pathogens11070777
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing