Identification of hub genes in breast cancer through genome-wide association and functional analyses of M2-like tumor-associated macrophages
Breast cancer remains a leading cause of cancer-related mortality among women, and immunosuppressive M2-like tumor-associated macrophages (TAMs) contribute to tumor progression and poor prognosis. This study investigated M2-like TAMs to identify key genes promoting breast cancer progression. Using weighted gene co-expression network analysis (WGCNA), which leveraged the opposing prognostic roles of M1/M2 macrophages, we identified 3,127 M2-associated module genes. Intersection with up-regulated differentially expressed genes from GSE42568 and the Cancer Genome Atlas Breast Invasive Carcinoma dataset yielded 85 pivotal genes. Functional enrichment analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways linked these genes to tight junctions, Rap1 signaling, and PI3K–Akt pathways. Protein–protein interaction network analysis via CytoNCA and degree algorithms prioritized four significantly up-regulated hub genes: FOXA1, AGR2, MUC1, and ERBB3. A nomogram model demonstrated their prognostic value, while receiver operator characteristic analysis confirmed its diagnostic utility in distinguishing tumor from normal tissue. Hub gene expression positively correlated with the infiltration of mast cells, M2 macrophages, CD4+ T cells, monocytes, B cells, and dendritic cells. Pan-cancer analysis revealed breast cancer-specific overexpression of FOXA1 and ERBB3. Mendelian randomization using fixed-effect inverse variance weighting indicated causal associations between elevated expression of FOXA1, MUC1, and ERBB3 (β>0) and increased breast cancer risk. Drug sensitivity analysis using the Genomics of Drug Sensitivity in Cancer database identified associations between lapatinib sensitivity and expression of FOXA1, ERBB3, and MUC1. This WGCNA-based approach defines FOXA1, AGR2, MUC1, and ERBB3 as M2-like TAM-related hub genes with diagnostic, prognostic, and therapeutic relevance for breast cancer, particularly in informing drug sensitivity strategies.

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
- Hudson BI, Lippman ME. Comment on “The lingering mysteries of metastatic recurrence in breast cancer”. Br J Cancer. 2023;128(3):484-485. doi: 10.1038/s41416-022-02012-0
- Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019;40(4): 310-327. doi: 10.1016/j.it.2019.02.003
- Cassetta L, Pollard JW. Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12): 887-904. doi: 10.1038/nrd.2018.169
- Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. doi: 10.1038/nrclinonc.2016.217
- Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
- Chung W, Eum HH, Lee HO, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun. 2017;8:15081. doi: 10.1038/ncomms15081
- Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J. 2014;35(29):1917-1924. doi: 10.1093/eurheartj/ehu208
- Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219
- Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA. 2020;26(8):903-909. doi: 10.1261/rna.074922.120
- Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi: 10.1186/s13059-016-0881-8
- Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773-782. doi: 10.1038/s41587-019-0114-2
- Zheng X, Cao J, Wang H, et al. Effects of tauroursodeoxycholate on arsenic-induced hepatic injury in mice: A comparative transcriptomic analysis. J Trace Elem Med Biol. 2024;86:127512. doi: 10.1016/j.jtemb.2024.127512
- Zheng H, Liu H, Ge Y, Wang X. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int. 2021;21(1):552. doi: 10.1186/s12935-021-02252-9
- Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi: 10.1093/nar/28.1.27
- Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364-1370. doi: 10.1200/JCO.2007.12.9791
- Park SY. Nomogram: An analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg. 2018;155(4):1793. doi: 10.1016/j.jtcvs.2017.12.107
- Matteini AM, Tanaka T, Karasik D, et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell. 2016;15(5):792-800. doi: 10.1111/acel.12468.
- Pegolo S, Cecchinato A, Savoia S, et al. Genome-wide association and pathway analysis of carcass and meat quality traits in Piemontese young bulls. Animal. 2020;14(2): 243-252. doi: 10.1017/S1751731119001812
- Schooling CM, Johnson GD, Grassman J. Effects of blood lead on coronary artery disease and its risk factors: A Mendelian Randomization study. Sci Rep. 2019;9(1):15995. doi: 10.1038/s41598-019-52482-1
- Brennan K, Offiah G, McSherry EA, Hopkins AM. Tight junctions: A barrier to the initiation and progression of breast cancer? J Biomed Biotechnol. 2010;2010:460607. doi: 10.1155/2010/460607
- Gong Z, He Y, Mi X, et al. Complement and coagulation cascades pathway-related signature as a predictor of immunotherapy in metastatic urothelial cancer. Aging (Albany NY). 2023;15(18):9479-9498. doi: 10.18632/aging.205022
- Trayes KP, Cokenakes SEH. Breast cancer treatment. Am Fam Physician. 2021;104(2):171-178.
- Lin M, Liang S, Jiang F, et al. 2003-2013, a valuable study: Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in stage IV breast cancer. Immunol Lett. 2017;183:37-43. doi: 10.1016/j.imlet.2017.01.014
- Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, et al. Breast cancer immunotherapy: Current and novel approaches. Int Immunopharmacol. 2021;98:107886. doi: 10.1016/j.intimp.2021.107886
- Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495-499. doi: 10.1038/nature22396
- Cao X, Li B, Chen J, et al. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. J Immunother Cancer. 2021;9(3):e002022. doi: 10.1136/jitc-2020-002022
- Wang N, Wang S, Wang X, et al. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med. 2021;11(1):e288. doi: 10.1002/ctm2.288
- Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021;6(1):75. doi: 10.1038/s41392-021-00484-9
- Litviakov N, Tsyganov M, Larionova I, et al. Expression of M2 macrophage markers YKL-39 and CCL18 in breast cancer is associated with the effect of neoadjuvant chemotherapy. Cancer Chemother Pharmacol. 2018;82(1):99-109. doi: 10.1007/s00280-018-3594-8
- Muraoka D, Seo N, Hayashi T, et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest. 2019;129(3): 1278-1294. doi: 10.1172/JCI97642
- De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457-474. doi: 10.1038/nrc.2017.51
- Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell. 2021;39(6):779-792.e11. doi: 10.1016/j.ccell.2021.05.002
- Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222-225. doi: 10.1038/nature10138
- Cassetta L, Fragkogianni S, Sims AH, et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 2019;35(4):588-602.e10. doi: 10.1016/j.ccell.2019.02.009
- Haddad A, Zoukar O, Daldoul A, et al. Breast diseases in women over the age of 65 in Monastir, Tunisia. Pan Afr Med J. 2018;31:67. doi: 10.11604/pamj.2018.31.67.16105
- Arruabarrena-Aristorena A, Maag JLV, Kittane S, et al. FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer. Cancer Cell. 2020;38(4):534-550.e9. doi: 10.1016/j.ccell.2020.08.003
- He Y, Wang L, Wei T, et al. FOXA1 overexpression suppresses interferon signaling and immune response in cancer. J Clin Invest. 2021;131(14):e147025. doi: 10.1172/JCI147025
- Li Y, Pang Z, Dong X, et al. MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget. 2017;9(3):3446-3458. doi: 10.18632/oncotarget.23316
- Gala H, Tomlinson I. The use of Mendelian randomisation to identify causal cancer risk factors: Promise and limitations. J Pathol. 2020;250(5):541-554. doi: 10.1002/path.5421
- Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408
