FXR1 modulates the expression of oncogenes and tumor suppressor genes associated with poor cancer prognosis

Post-transcriptional regulation by RNA-binding proteins (RBPs) is critical for mRNA stability, localization, and translation, primarily through interaction with the 3’-untranslated region. Dysregulation of RBPs has been associated with various cancers, with fragile X-related protein 1 (FXR1) emerging as a critical RBP involved in tumorigenesis through its interactions with target mRNAs. Despite its significance, the specific role of FXRI in cancer progression remains underexplored. In this study, we investigated FXR1’s function using SH-SY5Y cells. RNA immunoprecipitation (RNA-IP) assay was employed to isolate RNA complexes associated with FXR1. We generated stable cell lines with either FXR1 overexpression or silencing to assess the impact of FXRI binding to mRNA complexes. Subsequent analyses, including quantitative reverse transcription polymerase chain reaction, correlation analysis, gene expression profiling, and survival analysis, were performed to validate the interactions of FXR1 with target mRNAs. Our RNA-IP analysis identified several mRNAs significantly enriched in FXR1-bound RNA complexes, including SHISAL1, SLC43A3, NBAT1, PDZK1IP1, ACKR3, KCNN3, NECAB2, ANO5, ATOH8, IGFBP7, LEMD1, GPR35, WNT7A, and F2RL3. Notably, we observed changes in the expression levels of these genes following FXR1 overexpression or depletion, indicating FXR1-mediated functional regulation. Co-expression analysis further supported FXR1’s association with these target mRNAs. These findings highlight the significant role of FXR1 in regulating the stability and expression of key mRNAs implicated in malignancies. The dysregulation of FXR1 and its interaction with these target transcripts suggest that FXR1 plays a critical role in tumor biology, potentially offering new avenues for therapeutic interventions. This study provides a deeper understanding of FXR1’s involvement in cancer and underscores the importance of RBPs in the post-transcriptional regulatory landscape of cancer progression.

- Re A, Joshi T, Kulberkyte E, Morris Q, Workman CT. RNA-protein interactions: An overview. Methods Mol Biol. 2014;1097:491-521. doi: 10.1007/978-1-62703-709-9_23
- Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829-845. doi: 10.1038/nrg3813
- Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: Old players and new actors. Trends Cancer. 2017;3(7):506-528. doi: 10.1016/j.trecan.2017.05.003
- Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327-341. doi: 10.1038/nrm.2017.130
- Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of fragile X-related protein 1 (FXR1P) in cellular processes: An updated review on cancer and clinical applications. Cell Death Dis. 2024;15(1):72. doi: 10.1038/s41419-023-06413-8
- Bechara E, Davidovic L, Melko M, et al. Fragile X related protein 1 isoforms differentially modulate the affinity of fragile X mental retardation protein for G-quartet RNA structure. Nucleic Acids Res. 2007;35(1):299-306. doi: 10.1093/nar/gkl1021
- Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 2001;20(17):4803-4813. doi: 10.1093/emboj/20.17.4803
- Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell. 2007;128(6):1105-1118. doi: 10.1016/j.cell.2007.01.038
- Darnell JC, Fraser CE, Mostovetsky O, Darnell RB. Discrimination of common and unique RNA-binding activities among Fragile X mental retardation protein paralogs. Hum Mol Genet. 2009;18(17):3164-3177. doi: 10.1093/hmg/ddp255
- Tamanini F, Willemsen R, van Unen L, et al. Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis. Hum Mol Genet. 1997;6(8):1315-1322. doi: 10.1093/hmg/6.8.1315
- Zarnescu DC, Gregorio CC. Fragile hearts: New insights into translational control in cardiac muscle. Trends Cardiovasc Med. 2013;23(8):275-281. doi: 10.1016/j.tcm.2013.03.003
- Majumder M, House R, Palanisamy N, et al. RNA-binding protein FXR1 regulates p21 and TERC RNA to bypass p53-mediated cellular senescence in OSCC. PLoS Genet. 2016;12(9):e1006306. doi: 10.1371/journal.pgen.1006306
- Qian J, Hassanein M, Hoeksema MD, et al. The RNA binding protein FXR1 is a new driver in the 3q26-29 amplicon and predicts poor prognosis in human cancers. Proc Natl Acad Sci U S A. 2015;112(11):3469-3474. doi: 10.1073/pnas.1421975112
- Majumder M, Palanisamy V. RNA binding protein FXR1- miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. PLoS Genet. 2020;16(1):e1008580. doi: 10.1371/journal.pgen.1008580
- Muddashetty RS, Nalavadi VC, Gross C, et al. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell. 2011;42(5):673-688. doi: 10.1016/j.molcel.2011.05.006
- Li Y, Tang W, Zhang LR, Zhang CY. FMRP regulates miR196a-mediated repression of HOXB8 via interaction with the AGO2 MID domain. Mol Biosyst. 2014;10(7):1757-1764. doi: 10.1039/c4mb00066h
- Cao S, Zheng J, Liu X, et al. FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. J Exp Clin Cancer Res. 2019;38(1):37. doi: 10.1186/s13046-018-0991-0
- Davidovic L, Durand N, Khalfallah O, et al. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability. PLoS Genet. 2013;9(3):e1003367. doi: 10.1371/journal.pgen.1003367
- Qi F, Meng Q, Hayashi I, Kobayashi J. FXR1 is a novel MRE11-binding partner and participates in oxidative stress responses. J Radiat Res. 2020;61(3):368-375. doi: 10.1093/jrr/rraa011
- Kedersha N, Stoecklin G, Ayodele M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 2005;169(6):871-884.doi: 10.1083/jcb.200502088
- Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell. 2001;107(4):489-499. doi: 10.1016/s0092-8674(01)00566-9
- Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron. 2003;38(6):887-898. doi: 10.1016/s0896-6273(03)00354-4
- Prieto M, Folci A, Martin S. Post-translational modifications of the fragile X mental retardation protein in neuronal function and dysfunction. Mol Psychiatry. 2020;25(8):1688-1703. doi: 10.1038/s41380-019-0629-4
- Garnon J, Lachance C, Di Marco S, et al. Fragile X-related protein FXR1P regulates pro-inflammatory cytokine tumor necrosis factor expression at the post-transcriptional level. J Biol Chem. 2005;280(7):5750-5763. doi: 10.1074/jbc.M401988200
- Herman AB, Vrakas CN, Ray M, et al. FXR1 is an IL-19- responsive RNA-binding protein that destabilizes pro-inflammatory transcripts in vascular smooth muscle cells. Cell Rep. 2018;24(5):1176-1189. doi: 10.1016/j.celrep.2018.07.002
- Bierhoff H. Analysis of lncRNA-protein interactions by RNA-protein pull-down assays and RNA immunoprecipitation (RIP). Methods Mol Biol. 2018;1686:241-250. doi: 10.1007/978-1-4939-7371-2_17
- Khan FA, Nsengimana B, Khan NH, et al. Chimeric peptides/proteins encoded by circRNA: An update on mechanisms and functions in human cancers. Front Oncol. 2022;12:781270. doi: 10.3389/fonc.2022.781270
- Khan FA, Nsengimana B, Khan NH, et al. Differential expression profiles of circRNAs in cancers: Future clinical and diagnostic perspectives. Gene Protein Dis., 2022;1(2):138. doi: 10.36922/gpd.v1i2.138
- Nsengimana B, Khan FA, Ngowi EE, et al. Processing body (Pbody) and its mediators in cancer. Mol Cell Biochem. 2022;477(4):1217-1238. doi: 10.1007/s11010-022-04359-7
- Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther. 2024;31(10):1439-1453. doi: 10.1038/s41417-024-00789-1
- Zhijun L, Dapeng W, Hong J, Guicong W, Bingjian Y, Honglin L. Overexpression of CPEB4 in glioma indicates a poor prognosis by promoting cell migration and invasion. Tumour Biol. 2017;39(4):1010428317694538. doi: 10.1177/1010428317694538
- Tan S, Ding K, Chong QY, et al. Post-transcriptional regulation of ERBB2 by miR26a/b and HuR confers resistance to tamoxifen in estrogen receptor-positive breast cancer cells. J Biol Chem. 2017;292(33):13551-13564. doi: 10.1074/jbc.M117.780973
- Wang Z, Pang J, Ji B, et al. RNA binding protein Lin28A promotes osteocarcinoma cells progression by associating with the long noncoding RNA MALAT1. Biotechnol Lett. 2018;40(3):493-500. doi: 10.1007/s10529-017-2489-9
- Fan Y, Yue J, Xiao M, et al. FXR1 regulates transcription and is required for growth of human cancer cells with TP53/ FXR2 homozygous deletion. Elife. 2017;6:e26129. doi: 10.7554/eLife.26129
- Khan FA, Fouad D, Ataya FS, Fang N, Dong J, Ji S. FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression. Biol Direct. 2024;19(1):104. doi: 10.1186/s13062-024-00553-3
- Nsengimana B, Khan FA, Awan UA, et al. Pseudogenes and liquid phase separation in epigenetic expression. Front Oncol. 2022;12:912282. doi: 10.3389/fonc.2022.912282
- Hofmann I, Casella M, Schnölzer M, Schlechter T, Spring H, Franke WW. Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol Biol Cell. 2006;17(3):1388-1398. doi: 10.1091/mbc.e05-08-0708
- Linder B, Plöttner O, Kroiss M, et al. Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. Hum Mol Genet. 2008;17(20):3236-3246. doi: 10.1093/hmg/ddn219
- Khan FA, Fouad D, Ataya FS, Saeed U, Ji XY, Dong J. Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells. Cell Mol Biol (Noisy-le-grand). 2025;70(12):65-72. doi: 10.14715/cmb/2024.70.12.9
- Taha MS, Haghighi F, Stefanski A, et al. Novel FMRP interaction networks linked to cellular stress. FEBS J. 2021;288(3):837-860. doi: 10.1111/febs.15443
- Glauninger H, Wong Hickernell CJ, Bard JAM, Drummond DA. Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol Cell. 2022;82(14):2544-2556. doi: 10.1016/j.molcel.2022.05.014
- Didiot MC, Subramanian M, Flatter E, Mandel JL, Moine H. Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol Biol Cell. 2009;20(1):428-437. doi: 10.1091/mbc.e08-07-0737