AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.4827
REVIEW ARTICLE

Targeting the NLRP3 inflammasome using Chinese herbal medicine components for the treatment of spinal cord injury

Parvaneh Behi Shahreza1 Farzaneh Majidi2 Shima Farajpour2 Ghazaleh Moshkdanian3*
Show Less
1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
Submitted: 12 September 2024 | Revised: 15 December 2024 | Accepted: 23 December 2024 | Published: 18 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Spinal cord injury (SCI) is a severe traumatic condition with increasing prevalence in developing countries. Characterized by a complex pathophysiology and a scarcity of treatment options, SCI often leads to long-term disabilities that adversely affect patients’ quality of life. A hallmark of SCI is substantial neuroinflammation and neurological damage, which may be either temporary or permanent. Inflammation is a key factor in SCI, particularly through the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome – an essential component of the body’s innate immune response. NLRP3 inflammasome activation contributes to secondary injury following SCI by releasing pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. Furthermore, NLRP3 activation exacerbates tissue damage and delays recovery. Pharmacological inhibition of NLRP3 inflammasome activation has shown potential in managing neuroinflammation, mitigating mitochondrial dysfunction, reducing the severity of spinal cord damage, and promoting neurological recovery after SCI. Recently, Chinese herbal medicine (CHM) has garnered interest as a novel therapeutic approach for SCI treatment. Various herbal compounds, including curcumin, resveratrol, and quercetin, have demonstrated the ability to target the NLRP3 inflammasome, reduce pro-inflammatory cytokines release, and protect neural tissue in SCI models. This review explores the inhibitory effects of CHM on NLRP3 inflammasome activation, highlighting the therapeutic potential of these natural compounds in improving outcomes for SCI patients. Ultimately, a deeper understanding of the interaction between NLRP3 and CHM may pave the way for innovative therapeutic strategies to enhance recovery following SCI.

Graphical abstract
Keywords
NOD-like receptor protein 3 inflammasome
Inflammation
Spinal cord injury
Chinese herbal medicine
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Chen J, Shen Y, Shao X, Wu W. An emerging role of inflammasomes in spinal cord injury and spinal cord tumor. Front Immunol. 2023;14:1119591. doi: 10.3389/fimmu.2023.1119591

 

  1. Fallah N, Noonan VK, Sharwood LN. Epidemiology, evidence-based care, and outcomes in spinal cord injury. Front Neurol. 2024;15:1383757. doi: 10.3389/fneur.2024.1383757

 

  1. Hu X, Xu W, Ren Y, et al. Spinal cord injury: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):245. doi: 10.1038/s41392-023-01477-6

 

  1. Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell. 2023;14(9):635-652. doi: 10.1093/procel/pwad003

 

  1. Liu X, Zhang Y, Wang Y, Qian T. Inflammatory response to spinal cord injury and its treatment. World Neurosurg. 2021;155:19-31. doi: 10.1016/j.wneu.2021.07.148

 

  1. Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation. 2017;14:207. doi: 10.1186/s12974-017-0980-9

 

  1. Zhu Y, Zhu H, Wang Z, Gao F, Wang J, Zhang W. Wogonoside alleviates inflammation induced by traumatic spinal cord injury by suppressing NFκB and NLRP3 inflammasome activation. Exp Ther Med. 2017;14(4):3304-3308. doi: 10.3892/etm.2017.4904

 

  1. Schmid-Burgk JL, Chauhan D, Schmidt T, et al. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem. 2016;291(1):103-109. doi: 10.1074/jbc.C115.700492

 

  1. Li Y, Li L, Yu M, Wang Y, Ge HY, Song C. Beneficial effects of the herbal medicine Di Huang Yin Zi in patients with spinal cord injury: A randomized, placebo-controlled clinical study. J Int Med Res. 2012;40(5):1715-1724. doi: 10.1177/030006051204000510

 

  1. Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997-1004. doi: 10.1038/ni.1932

 

  1. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379. doi: 10.3389/fimmu.2018.02379

 

  1. Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. Int J Mol Sci. 2021;22(24):13397. doi: 10.3390/ijms222413397

 

  1. Seoane PI, Lee B, Hoyle C, et al. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol. 2020;219(12):e202006194. doi: 10.1083/jcb.202006194

 

  1. Ting JPY, Lovering RC, Alnemri ES, et al. The NLR gene family: A standard nomenclature. Immunity. 2008;28(3):285-287. doi: 10.1016/j.immuni.2008.02.005

 

  1. Rada B, Park JJ, Sil P, Geiszt M, Leto TL. NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm Res. 2014;63:821-830. doi: 10.1007/s00011-014-0756-y

 

  1. Lemmers B, Salmena L, Bidere N, et al. Essential role for caspase-8 in Toll-like receptors and NFκB signaling. J Biol Chem. 2007;282(10):7416-7423. doi: 10.1074/jbc.M606721200

 

  1. Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol. 2019;10:2538. doi: 10.3389/fimmu.2019.02538

 

  1. Xu J, Núñez G. The NLRP3 inflammasome: Activation and regulation. Trends Biochem Sci. 2023;48(4):331-344. doi: 10.1016/j.tibs.2022.10.002

 

  1. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328

 

  1. de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harbor Perspect Biol. 2014;6(12):a016287. doi: 10.1101/cshperspect.a016287

 

  1. Chen H, Deng J, Gao H, et al. Involvement of the SIRT1- NLRP3 pathway in the inflammatory response. Cell Commun Signal. 2023;21(1):185. doi: 10.1186/s12964-023-01177-2

 

  1. Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci. 2022;14:879021. doi: 10.3389/fnagi.2022.879021

 

  1. Allam R, Lawlor KE, Yu ECW, et al. Mitochondrial apoptosis is dispensable for NLRP 3 inflammasome activation but nonlammasome. lease in macrophages require calcium but iming. EMBO Rep. 2014;15(9):982-990. doi: 10.15252/embr.201438463

 

  1. Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes. Cell Mol Immunol. 2017;14(1):65-79. doi: 10.1038/cmi.2016.29

 

  1. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141-1160. doi: 10.1038/s41423-021-00670-3

 

  1. Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488(7413):670-674. doi: 10.1038/nature11290

 

  1. Yanagisawa S, Katoh H, Imai T, Nomura S, Watanabe M. The relationship between inflammasomes and the endoplasmic reticulum stress response in the injured spinal cord. Neurosci Lett. 2019;705:54-59. doi: 10.1016/j.neulet.2019.04.033

 

  1. Jiang W, Huang Y, Han N, et al. Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord. 2016;54(8):592-596. doi: 10.1038/sc.2015.227

 

  1. Zhou C, Zheng J, Fan Y, Wu J. TI: NLRP3 inflammasome-dependent pyroptosis in CNS trauma: A potential therapeutic target. Front Cell Dev Biol. 2022;10:821225. doi: 10.3389/fcell.2022.821225

 

  1. Sharma HS, Winkler T, Stålberg E, Gordh T, Alm P, Westman J. Topical application of TNF-α antiserum attenuates spinal cord trauma induced edema formation, microvascular permeability disturbances and cell injury in the rat. Acta Neurochir Suppl. 2003;86:407-413. doi: 10.1007/978-3-7091-0651-8_85

 

  1. Cheng J, Hao J, Jiang X, et al. Ameliorative effects of miR- 423-5p against polarization of microglial cells of the M1 phenotype by targeting a NLRP3 inflammasome signaling pathway. Int Immunopharmacol. 2021;99:108006. doi: 10.1016/j.intimp.2021.108006

 

  1. Kopper TJ, Gensel JC. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. J Neurosci Res. 2018;96(6):969-977. doi: 10.1002/jnr.24114

 

  1. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol. 2016;34(4 Suppl 98):12-16.

 

  1. Mortezaee K, Khanlarkhani N, Beyer C, Zendedel AJ. Inflammasome: Its role in traumatic brain and spinal cord injury. J Cell Physiol. 2018;233(7):5160-5169. doi: 10.1002/jcp.26287

 

  1. Curto-Reyes V, Kirschmann G, Pertin M, Drexler SK, Decosterd I, Suter MR. Neuropathic pain phenotype does not involve the NLRP3 inflammasome and its end product interleukin-1β in the mice spared nerve injury model. PLoS One. 2015;10(7):e0133707. doi: 10.1371/journal.pone.0133707

 

  1. Ramos HJ, Lanteri MC, Blahnik G, et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012;8(11):e1003039. doi: 10.1371/journal.ppat.1003039

 

  1. Compan V, Baroja-Mazo A, López-Castejón G, et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity. 2012;37(3):487-500. doi: 10.1016/j.immuni.2012.06.013

 

  1. Gu G, Yu H, Zou H, et al. Pyroptosis in spinal cord injury: Implications for pathogenesis and therapeutic approaches. Front Biosci (Landmark Ed). 2024;29(6):210. doi: 10.31083/j.fbl2906210

 

  1. Mangan MS, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588-606. doi: 10.1038/nrd.2018.97

 

  1. Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Regulation of the NLRP3 inflammasome by post-translational modifications and small molecules. Front Immunol. 2021;11:618231. doi: 10.3389/fimmu.2020.618231

 

  1. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius RJ. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 2010;7:30. doi: 10.1186/1742-2094-7-30

 

  1. Guo R, Gao S, Feng Y, Mao C, Sheng W. Ulinastatin attenuates spinal cord injury by targeting AMPK/NLRP3 signaling pathway. J Chem Neuroanat. 2022;125:102145. doi: 10.1016/j.jchemneu.2022.102145

 

  1. Al Mamun A, Wu Y, Monalisa I, et al. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res. 2021;28:97-109. doi: 10.1016/j.jare.2020.08.004

 

  1. Lin S, Mei X. Role of NLRP3 inflammasomes in neuroinflammation diseases. Eur Neurol. 2021;83(6):576-580. doi: 10.1159/000509798

 

  1. Ravindran R, Loebbermann J, Nakaya HI, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531(7595):523-527. doi: 10.1038/nature17186

 

  1. Yamamoto S, Yamashina K, Ishikawa M, et al. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating. J Neuroinflammation. 2017;14:142. doi: 10.1186/s12974-017-0923-5

 

  1. Baazm M, Behrens V, Beyer C, Nikoubashman O, Zendedel A. Regulation of inflammasomes by application of omega-3 polyunsaturated fatty acids in a spinal cord injury model. Cells. 2021;10(11):3147. doi: 10.3390/cells10113147

 

  1. Shiraishi Y, Kimura A, Kimura H, Ohmori T, Takahashi M, Takeshita K. Deletion of inflammasome adaptor protein ASC enhances functional recovery after spinal cord injury in mice. J Orthop Sci. 2021;26(3):487-493. doi: 10.1016/j.jos.2020.04.006

 

  1. Dick MS, Sborgi L, Rühl S, Hiller S, Broz P. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun. 2016;7(1):11929. doi: 10.1038/ncomms11929

 

  1. Wu D, Zhang Y, Zhao C, et al. Disruption of C/EBPβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain. J Transl Med. 2022;20(1):583. doi: 10.1186/s12967-022-03779-9

 

  1. Rahman SM, Janssen RC, Choudhury M, et al. CCAAT/ enhancer-binding protein β (C/EBPβ) expression regulates dietary-induced inflammation in macrophages and adipose tissue in mice. J Biol Chem. 2012;287(41):34349-34360. doi: 10.1074/jbc.M112.410613

 

  1. Liu P, Cheng J, Ma S, Zhou J. Paeoniflorin attenuates chronic constriction injury-induced neuropathic pain by suppressing spinal NLRP3 inflammasome activation. Inflammopharmacology. 2020;28:1495-1508. doi: 10.1007/s10787-020-00737-z

 

  1. Wang YH, Tang YR, Gao X, et al. The anti-inflammatory and analgesic effects of intraperitoneal melatonin after spinal nerve ligation are mediated by inhibition of the NF-κB/ NLRP3 inflammasome signaling pathway. Brain Res Bull. 2021;169:156-166. doi: 10.1016/j.brainresbull.2021.01.015

 

  1. Zendedel A, Johann S, Mehrabi S, et al. Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. 2016;53:3063-3075. doi: 10.1007/s12035-015-9203-5

 

  1. Hu X, Zhang Y, Wang L, et al. Microglial activation in the motor cortex mediated NLRP3-related neuroinflammation and neuronal damage following spinal cord injury. Front Cell Neurosci. 2022;16:956079. doi: 10.3389/fncel.2022.956079

 

  1. Müller N, Scheld M, Voelz C, et al. Lipocalin-2 deficiency diminishes canonical NLRP3 inflammasome formation and IL-1β production in the subacute phase of spinal cord injury. 2023;24(10):8689. doi: 10.3390/ijms24108689

 

  1. Sun X, Jones ZB, Chen XM, Zhou L, So KF, Ren Y. Multiple organ dysfunction and systemic inflammation after spinal cord injury: A complex relationship. J Neuroinflammation. 2016;13:260. doi: 10.1186/s12974-016-0736-y

 

  1. Jiao J, Zhao G, Wang Y, Ren P, Wu M. MCC950, a selective inhibitor of NLRP3 inflammasome, reduces the inflammatory response and improves neurological outcomes in mice model of spinal cord injury. Front Mol Biosci. 2020;7:37. doi: 10.3389/fmolb.2020.00037

 

  1. Martinon F, Tschopp J. Differentiation. Inflammatory caspases and inflammasomes: Master switches of inflammation. 2007;14(1):10-22. doi: 10.1038/sj.cdd.4402038

 

  1. Mamik MK, Power C. Inflammasomes in neurological diseases: Emerging pathogenic and therapeutic concepts. Brain. 2017;140(9):2273-2285. doi: 10.1093/brain/awx133

 

  1. de Rivero Vaccari JP, Dietrich WD, Keane RW. Metabolism. Activation and regulation of cellular inflammasomes: Gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369-375. doi: 10.1038/jcbfm.2013.227

 

  1. Latz E. The inflammasomes: Mechanisms of activation and function. Curr Opin Immunol. 2010;22(1):28-33. doi: 10.1016/j.coi.2009.12.004

 

  1. Yang H, Hu B, Wang X, Chen W, Zhou H. The effects of hyaluronan and proteoglycan link protein 1 (HAPLN1) in ameliorating spinal cord injury mediated by Nrf2. Biotechnol Appl Biochem. 2024;71:929-939. doi: 10.1002/bab.2587

 

  1. Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucoseprotein 1 (HAPLN1) in ameliorating spinal cord injury mediated by Nrf2. s in mice model of spinal cord injury. signaling pathway. disturJ Diabetes Res. 2019;2019(1):8151836. doi: 10.1155/2019/8151836

 

  1. Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401-414. doi: 10.1016/j.immuni.2012.01.009

 

  1. Patel B, Zheleznova NN, Ray SC, Sun J, Cowley AW Jr., O’Connor PM. Voltage gated proton channels modulate mitochondrial reactive oxygen species production by complex I in renal medullary thick ascending limb. Redox Biol. 2019;27:101191. doi: 10.1016/j.redox.2019.101191

 

  1. Li X, Yu Z, Zong W, et al. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation. 2020;17:263. doi: 10.1186/s12974-020-01942-x

 

  1. Wang J, Zhang F, Xu H, et al. TLR4 aggravates microglial pyroptosis by promoting DDX3X‐mediated NLRP3 inflammasome activation via JAK2/STAT1 pathway after spinal cord injury. Clin Transl Med. 2022;12(6):e894. doi: 10.1002/ctm2.894

 

  1. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245-254. doi: 10.1016/j.tibs.2016.10.004

 

  1. Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 2000;17(10):915-925. doi: 10.1089/neu.2000.17.915

 

  1. Ni H, Jin W, Zhu T, et al. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J Spinal Cord Med. 2015;38(2):199-206. doi: 10.1179/2045772313Y.0000000179

 

  1. Fann DYW, Lim YA, Cheng YL, et al. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol. 2018;55:1082-1096. doi: 10.1007/s12035-017-0394-9

 

  1. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787-791. doi: 10.4049/jimmunol.0901363

 

  1. Pecorelli A, Cordone V, Messano N, et al. Altered inflammasome machinery as a key player in the perpetuation of Rett syndrome oxinflammation. Redox Biol. 2020;28:101334. doi: 10.1016/j.redox.2019.101334

 

  1. Peng L, Wen L, Shi QF, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3- mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 2020;11(11):978. doi: 10.1038/s41419-020-03178-2

 

  1. Larner SF, Hayes RL, Wang KKW. Unfolded protein response after neurotrauma. J Neurotrauma. 2006;23(6):807-829. doi: 10.1089/neu.2006.23.807

 

  1. Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-789. doi: 10.1146/annurev.biochem.73.011303.074134

 

  1. Shin S, Argon Y. Stressed-Out endoplasmic reticulum inflames the mitochondria. Immunity. 2015;43(3):409-411. doi: 10.1016/j.immuni.2015.08.027

 

  1. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136-140. doi: 10.1038/ni.1831

 

  1. Matsuyama D, Watanabe M, Suyama K, Kuroiwa M, Mochida J. Endoplasmic reticulum stress response in the rat contusive spinal cord injury model-susceptibility in specific cell types. Spinal Cord. 2014;52(1):9-16. doi: 10.1038/sc.2013.118

 

  1. Leal-Filho MB. Spinal cord injury: From inflammation to glial scar. Surg Neurol Int. 2011;2:112. doi: 10.4103/2152-7806.83732

 

  1. Coulter ID. Evidence based complementary and alternative medicine: Promises and problems. Forsch Komplementmed. 2007;14(2):102-108. doi: 10.1159/000101054

 

  1. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338-378. doi: 10.2174/1570159X11311040002

 

  1. Ahsan R, Arshad M, Khushtar M, et al. A comprehensive review on physiological effects of curcumin. Drug Res (Stuttg). 2020;70(10):441-447. doi: 10.1055/a-1207-9469

 

  1. Tsutsui H, Cai X, Hayashi S. Interleukini X, Hayashi S. physiological effectss. Mediators Inflamm. 2015;2015(1):630265. doi: 10.1155/2015/630265

 

  1. He Q, Jiang L, Man S, Wu L, Hu Y, Chen W. Curcumin reduces neuronal loss and inhibits the NLRP3 inflammasome activation in an epileptic rat model. Curr Neurovasc Res. 2018;15(3):186-192. doi: 10.2174/1567202615666180731100224

 

  1. Ghaffari N, Mokhtari T, Adabi M, et al. Neurological recovery and neurogenesis by curcumin sustained‐release system cross‐linked with an acellular spinal cord scaffold in rat spinal cord injury: Targeting NLRP3 inflammasome pathway. Phytother Res. 2024;38:2669-2686. doi: 10.1002/ptr.8179

 

  1. Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res. 2021;35(9):4804-4833. doi: 10.1002/ptr.7118

 

  1. Yin H, Guo Q, Li X, et al. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol. 2018;200(8):2835-2846. doi: 10.4049/jimmunol.1701495

 

  1. Yarahmadi A, Malek F, Poorhassan M, et al. Curcumin attenuates development of depressive-like behavior in male rats after spinal cord injury: Involvement of NLRP3 inflammasome. J Contemp Med Sci. 2022;8(3):176-183.

 

  1. Kaşıkcı MB, Bağdatlıoğlu NJ. Bioavailability of Quercetin. In: Nutrition in Conference; 2016. p. 146-151.

 

  1. Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167. doi: 10.3390/nu8030167

 

  1. Li W, Wang Y, Tang Y, et al. Quercetin alleviates osteoarthritis progression in rats by suppressing inflammation and apoptosis via inhibition of IRAK1/NLRP3 signaling. J Inflamm Res. 2021:3393-3403. doi: 10.2147/JIR.S311924

 

  1. Wang X, Fu Y, Botchway BO, et al. Quercetin can improve spinal cord injury by regulating the mTOR signaling pathway. Front Neurol. 2022;13:905640. doi: 10.3389/fneur.2022.905640

 

  1. Ebrahimi B, Mokhtari T, Ghaffari N, Adabi M, Hassanzadeh G. Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats. Inflammopharmacology. 2024;32:2505-2524. doi: 10.1007/s10787-024-01478-z

 

  1. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493-506. doi: 10.1038/nrd2060

 

  1. Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114-1123. doi: 10.1016/j.bbadis.2014.10.005

 

  1. Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol. 2010;635(1-3):1-8. doi: 10.1016/j.ejphar.2010.02.054

 

  1. Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res. 2011;1374:100-109. doi: 10.1016/j.brainres.2010.11.061

 

  1. Xu L, Botchway BO, Zhang S, Zhou J, Liu X. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury. Front Neurosci. 2018;12:690. doi: 10.3389/fnins.2018.00690

 

  1. Fu S, Lv R, Wang L, Hou H, Liu H, Shao S. Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway. Saudi J Biol Sci. 2018;25(2):259-266.

 

  1. Jiang L, Zhang L, Kang K, et al. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed Pharmacother. 2016;84:130-138. doi: 10.1016/j.biopha.2016.09.020

 

  1. Yang SJ, Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism. 2014;63(5):693-701. doi: 10.1016/j.metabol.2014.02.003

 

  1. Jiang W, Hu X, Chen Y, et al. Esveratrol inhibits NLRP3 inflammasome activation in rabbits with spinal cord injury. J Cell Physiol. 2020;25(8):850. doi: 10.1002/jcp.24903

 

  1. Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J. 2017;25(2):149-164. doi: 10.1016/j.jsps.2016.04.025

 

  1. Frutos MJ, Rincón-Frutos L, Valero-Cases E. Rutin. Nonvitamin and Nonmineral Nutritional Supplements. Netherlands: Elsevier; 2019. p. 111-117.

 

  1. Wu J, Maoqiang L, Fan H, et al. Rutin attenuates neuroinflammation in spinal cord injury rats. J Surg Res. 2016;203(2):331-337. doi: 10.1016/j.jss.2016.02.041

 

  1. Hung WL, Ho CT, Pan MH. Targeting the NLRP3 inflammasome in neuroinflammation: Health promoting effects of dietary phytochemicals in neurological disorders. Mol Nutr Food Res. 2020;64(4):1900550. doi: 10.1002/mnfr.201900550

 

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing