AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.1760
ORIGINAL RESEARCH ARTICLE

Pre-clinical studies for oral enzyme replacement therapy in Pompe disease knockout mice with tobacco seeds expressing human GAA

Frank Martiniuk1,2* Adra Mack1,2 Justin Martiniuk1,2 Gregory O. Voronin3 Shoreh Miller4 David Reimer5 Nancy Rossi6 Leslie Sheppard Bird7 Sussan Saleh7 Ruby Gupta7 Mariel Nigro7 Peter Meinke8 Benedikt Schoser8 Feng Wu9 Angelo Kambitsis1,2 John Arvanitopoulos1,2 Elena Arvanitopoulos1,2 Pavlos Arvanitopoulos10 Alexander Demetriades11 Kam-Meng Tchou-Wong12
Show Less
1 JME Group Associates, Inc, 24 Ford Lane, Roseland, NJ, United States of America
2 PsychoGenetics Center, 215 College Rd., Lab 213, Paramus, NJ, United States of America
3 In Vivo Research Services Rutgers, The State University of New Jersey, United States of America
4 Department of Pediatric, RWJMS Director, In Vivo Research Services (IVRS) Rutgers University Animal Care U (RUAC) Rutgers, the State University of New Jersey Rm 017, CABM 679 Hoes Lane West Piscataway, NJ, United States of America
5 Veterinary Services Comparative Medicine Resources Office, United States of America
6 Nelson Biological Laboratories Rutgers, The State University of New Jersey, Allison Road, Room D-105 Piscataway, NJ, United States of America
7 RLATg Veterinary Technician Supervisor Comparative Medicine Resources Rutgers, The State University of New Jersey, D108 Nelson Biological Laboratories, Allison Road Piscataway, NJ, United States of America
8 Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, 1, München, Germany
9 Department of Population Health, NYU Langone Medical Center, Smilow Research Center, First Avenue, NY, United States of America
10 West Essex High School, 65 Greenbrook Rd, NJ, United States of America
11 Manhasset High School, 200 Memorial Pl., Manhasset, NY, United States of America
12 Columbia University Mailman School of Public Health, West 168th Street, Room 1404, New York, NY, United States of America
Submitted: 5 September 2023 | Accepted: 20 June 2024 | Published: 2 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Genetic deficiency of acid a-glucosidase (GAA) results in Pompe disease (PD) encompassing four clinical subtypes of varying severity. Our objective is to develop an innovative and affordable approach for enzyme replacement therapy (ERT) through oral administration (Oral-ERT) to maintain a sustained therapeutic level of enzyme daily to improve treatment efficacy. Tobacco seeds contain the metabolic machinery compatible with mammalian glycosylation-phosphorylation. We have shown that transgenic tobacco seeds expressing human GAA (tobrhGAA) were enzymatically active and can correct the enzyme deficiency in cultured cells and in GAA knockout (GAAKO) mice administered IP. We have extended these studies in PD KO mice with ground tobrhGAA seeds. Briefly, in PD knockout mice, Oral-ERT with ground tobrhGAA seeds showed a significant reversal of fore-limb and hind-limb muscle weakness, increased motor coordination/balance/strength/mobility, improved spontaneous learning, increased GAA activity in tissues, reduced glycogen in tissues and negligible serum titers to GAA. Pharmacokinetics showed maximum serum GAA concentration at 8 – 10 h and peak urine excretion at 10 – 12 h post-administration. The tobrhGAA was taken up in PD fibroblast, lymphoid, and myoblast cells. Enzyme kinetics compared favorably to hGAA, plus alglucosidase alfa or other recombinant human GAAs for Km, Vmax, pH optima, thermal heat stability, and IC50 for inhibitors. The tobrhGAA in seeds was stable for 15 years at room temperature. Thus, Oral-ERT with ground tobrhGAA seeds is an innovative approach that overcomes some of the challenges of alglucosidase alfa-ERT and provides a more effective, safe, and significantly less expensive treatment.

Keywords
Recombinant human acid maltase
Transgenic tobacco plants
Pompe disease
Oral enzyme replacement
Funding
This study was supported in part by the NIH-SBIR Phase I grant-Oral-ERT of PD with Tobacco Seed-Derived Recombinant Acid Maltase RFA-AR-18-005 grant #1R43AR073522-01.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Slonim A, Bulone L, Ritz S, Goldberg T, Chen A, Martiniuk F. Identification of two subtypes of infantile acid maltase deficiency: Evaluation of twenty-two patients and review of the literature. J Pediatr. 2000;137:283-285. doi: 10.1067/mpd.2000.107112

 

  1. Engel AG. Acid maltase deficiency. In: Engel AG, Franzini- Armstrong C, editors. Myology. New York: McGraw Hill, Inc.; 1994. p. 1533.

 

  1. Reuser AJJ, Kroos M, Willemsen R, Swallow D, Tager JM, Galjaard H. Clinical diversity in glycogenosis type II. J Clin Invest. 1987;79:1689-1699. doi: 10.1172/JCI113008

 

  1. Beratis N, LaBadie GU, Hirschhorn R. Genetic heterogeneity in acid alpha glucosidase deficiency. Am J Hum Genet. 1983;35(1):21-33.

 

  1. Tagers JM, Oude Elferink RPJ, Reuser AJJ, et al. Alpha glucosidase deficiency; Pompe’s disease. Enzyme. 1987;38:280-285.

 

  1. van den Hout HM, Hop W, van Diggelen OP, et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112:332-340. doi: 10.1542/peds.112.2.332

 

  1. Winkel LP, Hagemans ML, van Doorn PA, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol. 2005;252:875-884. doi: 10.1007/s00415-005-0922-9

 

  1. Engel AG, Gomez MR, Seybold ME, Lambert EH. The spectrum and diagnosis of acid maltase deficiency. Neurology. 1973;23:95-106. doi: 10.1212/wnl.23.1.95

 

  1. Mehler M, DiMauro S. Residual acid maltase activity in late-onset acid maltase deficiency. Neurology. 1997;27:178-184. doi: 10.1212/wnl.27.2.178

 

  1. La Badie GU. Biochemical and Immunologic Studies of Acid Alpha Glucosidase Deficiency, a Genetically Heterogeneous, Inherited Neuromuscular Disease. Ph.D. Thesis, City University of New York, Mt. Sinai Hospital; 1986.

 

  1. Raben N, Ralston E, Chien YH, et al. Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with Pompe disease: Implications for therapy. Mol Genet Metab. 2010;101:324-331. doi: 10.1016/j.ymgme.2010.08.001

 

  1. Martiniuk F, Chen A, Mack A, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am J Med Genet. 1998;79:69-72. doi: 10.1002/(sici)1096-8628(19980827)79:1<69:aid-ajmg16>3.0.co;2-k

 

  1. Park KS. Carrier frequency and predicted genetic prevalence of Pompe disease based on a general population database. Mol Genet Metab Rep. 2021;27:100734. doi: 10.1016/j.ymgmr.2021.100734

 

  1. Colburn R, Lapidus D. An analysis of Pompe newborn screening data: A new prevalence at birth, insight and discussion. Front Pediatr. 2024;11:1221140. doi: 10.3389/fped.2023.1221140

 

  1. Reuser AJ, Kroos M, Elferink RP, Tager JM. Defects in synthesis, phosphorylation, and maturation of acid alpha glucosidase. J Biol Chem. 1985;260:8336-8341.

 

  1. Strothotte S, Strigl-Pill N, Grunert B, et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2:12- month results of an observational clinical trial. J Neurol. 2010;257:91-97.

 

  1. van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 2010;362:1396-1406. doi: 10.1056/NEJMoa0909859

 

  1. Douillard-Guilloux G, Raben N, Takikita S, et al. Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease. Hum Mol Genet. 2010;19:684-696. doi: 10.1093/hmg/ddp535

 

  1. Lim JA, Li L, Raben N. Pompe disease: From pathophysiology to therapy and back again. Front Aging Neurosci. 2014;6:177. doi: 10.3389/fnagi.2014.00177

 

  1. van Gelder CM, Hoogeveen-Westerveld M, Kroos MA, et al. Enzyme therapy and immune response in relation to CRIM status: The Dutch experience in classic infantile Pompe disease. J Inherit Metab Dis. 2015;38:305-314. doi: 10.1007/s10545-014-9707-6

 

  1. Lacana E, Yao LP, Pariser AR, Rosenberg AS. The role of immune tolerance induction in restoration of the efficacy of ERT in Pompe disease. Am J Med Genet Part C Semin Med Genet. 2012;160C:30-39. doi: 10.1002/ajmg.c.31316

 

  1. Bali DS, Goldstein JL, Banugaria S, et al. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: Lessons learned from 10 years of clinical laboratory testing experience. Am J Med Genet Part C Semin. 2012;160C:40-49.doi: 10.1002/ajmg.c.31319

 

  1. Joseph A, Munroe K, Housman M, Garman R, Richards S. Immune tolerance induction to enzyme-replacement therapy by co-administration of short-term, low-dose methotrexate in a murine Pompe disease model. Clin Exp Immunol. 2013;152:138-146. doi: 10.1002/ajmg.c.31319

 

  1. Banugaria SG, Prater SN, McGann JK, et al. Bortezomib in the rapid reduction of high sustained antibody titers in disorders treated with therapeutic protein: Lessons learned from Pompe disease. Genet Med. 2013;15:123-131. doi: 10.1038/gim.2012.110

 

  1. Berrier KL, Kazi ZB, Prater SN, et al. CRIM-negative infantile Pompe disease: Characterization of immune responses in patients treated with ERT monotherapy. Genet Med. 2015;17:912-918. doi: 10.1038/gim.2015.6

 

  1. Banugaria SG, Prater SN, Ng YK, et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: Lessons learned from infantile Pompe disease. Genet Med. 2011;13:729-736. doi: 10.1097/GIM.0b013e3182174703

 

  1. Messinger YH, Mendelsohn NJ, Rhead W, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM–negative infantile Pompe disease. Genet Med. 2012;14:135-142. doi: 10.1038/gim.2011.4

 

  1. Al Khallaf HH, Geffrard J, Botha E, Ali Pervaiz M. CRIM-negative Pompe disease patients with satisfactory clinical outcomes on enzyme replacement therapy. JIMD Rep. 2012;192:133-137. doi: 10.1007/8904_2012_192

 

  1. Brooks DS. Immune response to enzyme replacement therapy in lysosomal storage disorder patients and animal models. Mol Genet Metab. 1999;68:268-275. doi: 10.1006/mgme.1999.2894

 

  1. Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26-33. doi: 10.1016/j.ymgme.2009.08.003

 

  1. de Vries JM, van der Beek N, Kroos MA, et al. High antibody titer in an adult with Pompe disease affects treatment with alglucosidase alfa. Mol Genet Metab. 2010;101:338-345. doi: 10.1016/j.ymgme.2010.08.009

 

  1. Patel TT, Banugaria SG, Case LE, Wenninger S, Schoser B, Kishnani PS. The impact of antibodies in late-onset Pompe disease: A case series and literature review. Mol Genet Metab. 2012;106:301-309. doi: 10.1016/j.ymgme.2012.04.027

 

  1. Wang J, Lozier J, Johnson G, et al. Neutralizing antibodies to therapeutic enzymes: Considerations for testing, prevention and treatment. Nat Biotechnol. 2008;26:901-908. doi: 10.1038/nbt.1484

 

  1. Mendelsohn NJ, Messinger YH, Rosenberg AS, Kishnani PS. Elimination of antibodies to recombinant enzyme in Pompe’s disease. N Engl J Med. 2009;360:194-195. doi: 10.1056/NEJMc0806809

 

  1. Hunley TE, Corzo D, Dudek M, et al. Nephrotic syndrome complicating α-glucosidase replacement therapy for Pompe disease. Pediatrics. 2004;114:e532-e535. doi: 10.1542/peds.2003-0988-L

 

  1. Banugaria SG, Prater N, Patel TT, et al. Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic Infantile Pompe disease: A step towards improving the efficacy of ERT. PLoS One. 2013;8:e67052-12.

 

  1. Nayak S, Doerfler PA, Porvasnik SL, et al. Immune responses and hypercoagulation in ERT for Pompe disease are mutation and rhGAA dose dependent. PLoS One. 2014;9:e98336. doi: 10.1371/journal.pone.0098336

 

  1. de Vries JM, Kuperus E, Hoogeveen-Westerveld M, et al. Pompe disease in adulthood: Effects of antibody formation on enzyme replacement therapy. Genet Med. 2017;19:90-97. doi: 10.1038/gim.2016.70

 

  1. Ohashi T, Iizuka S, Shimada Y, et al. Oral administration of recombinant human acid α-glucosidase reduces specific antibody formation against enzyme in mouse. Mol Genet Metab. 2011;103:98-100.

 

  1. Parini R, De Lorenzo P, Dardis A, et al. Long term clinical history of an Italian cohort of infantile onset Pompe disease treated with enzyme replacement therapy. Orphanet J Rare Dis. 2018;13:32-44. doi: 10.1186/s13023-018-0771-0

 

  1. Gutschmidt K, Musumeci O, Díaz-Manera J, et al. STIG study: Real-world data of long-term outcomes of adults with Pompe disease under enzyme replacement therapy with alglucosidase alfa. J Neurol. 2021;268:2482-2492. doi: 10.1007/s00415-021-10409-9

 

  1. Korlimarla A, Spiridigliozzib GA, Stefanescua M, Austina SL, Kishnania PS. Behavioral, social and school functioning in children with Pompe disease. Mol Genet Metab Rep. 2020;25:100635. doi: 10.1016/j.ymgmr.2020.100635

 

  1. Raben N, Jatkar T, Lee A, et al. Glycogen stored in skeletal but not in cardiac muscle in acid a-glucosidase mutant (Pompe) mice is highly resistant to transgene-encoded human enzyme. Mol Ther. 2002;6:601-608.

 

  1. Neufeld EF. Lysosomal storage diseases. Annu Rev Biochem. 1991;60:257-280. doi: 10.1146/annurev.bi.60.070191.001353

 

  1. van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, van der Ploeg AT. Enzyme therapy for Pompe disease with recombinant human a-glucosidase from rabbit milk. J Inherit Metab Dis. 2001;24:266-274. doi: 10.1023/a:1010383421286

 

  1. Reuser AJ, Kroos MA, Hermans MM, et al. Glycogenosis type II (acid maltase deficiency). Muscle Nerve Suppl. 1995;3S:61-69. doi: 10.1002/mus.880181414

 

  1. van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, van der Ploeg AT. Recombinant human a-glucosidase from rabbit milk in Pompe patients. Lancet. 2000;356:397-398. doi: 10.1016/s0140-6736(00)02533-2

 

  1. Amalfitano A, Bengur AR, Morse RP, et al. Recombinant human acid a-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genet Med. 2001;3:132-138.

 

  1. Corti M, Liberati C, Smith BK, et al. Safety of intradiaphragmatic delivery of adeno-associated virus mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease. Hum Gene Ther Clin Dev. 2017;28:208-218. doi: 10.1089/humc.2017.146

 

  1. Miyamoto Y, Etoh Y, Joh R, Noda K, Ohya I, Morimatsu M. Adult-onset acid maltase deficiency in siblings. Acta Pathol Jpn. 1985;35:1533-1542. doi: 10.1111/j.1440-1827.1985.tb01450.x

 

  1. Anneser JMH, Pongratz DE, Podskarbi T, Shin YS, Schoser BGH. Mutations in the acid α-glucosidase gene (M. Pompe) in a patient with an unusual phenotype. Neurology. 2005;64:368-370. doi: 10.1212/01.WNL.0000149528.95362.20

 

  1. Refai D, Lev R, Cross DT, Shimony JS, Leonard JR. Thrombotic complications of a basilar artery aneurysm in a young adult with Pompe disease. Surg Neurol. 2008;70:518-520. doi: 10.1016/j.surneu.2007.05.049

 

  1. Kretzschmar HA, Wagner H, Hubner G, Danek A, Witt TN, Mehraein P. Aneurysms and vacuolar degeneration of cerebral arteries in late-onset acid maltase deficiency. J Neurol Sci. 1990;98:169-183. doi: 10.1016/0022-510x(90)90258-o

 

  1. Makos MM, McComb RD, Hart MN, Bennett DR. Alpha-glucosidase deficiency and basilar artery aneurysm: Report of a sibship. Ann Neurol. 1987;22:629-633. doi: 10.1002/ana.410220512

 

  1. Kobayashi H, Shimada Y, Ikegami M, et al. Prognostic factors for the late onset Pompe disease with enzyme replacement therapy: From our experience of 4 cases including an autopsy case. Mol Genet Metab. 2010;100:14-19. doi: 10.1016/j.ymgme.2010.01.015

 

  1. Kenney-Jung D, Korlimarla A, Spiridigliozzi GA, et al. Severe CNS involvement in a subset of long-term treated children with infantile-onset Pompe disease. Mol Genet Metab. 2023;141:108119. doi: 10.1016/j.ymgme.2023.108119

 

  1. McCall AL, Dhindsa JS, Bailey AM, Pucci LA, Strickland LM, Eimallah MK. Glycogen accumulation in smooth muscle of a Pompe disease mouse model. J Smooth Muscle Res. 2021;57:8-18. doi: 10.1540/jsmr.57.8

 

  1. Hundsberger T, Rohrbach M, Kern L, Rösler KM. Swiss national guideline for reimbursement of enzyme replacement therapy in late-onset Pompe disease. J Neurol. 2013;260:2279-2285. doi: 10.1007/s00415-013-6980-5

 

  1. Kusnadi AR, Evangelista RL, Hood EE, Howard JA, Nikolov ZL. Processing of transgenic corn seed and its effect on the recovery of recombinant beta-glucuronidase. Biotechnol Bioeng. 1998;60:44-52. doi: 10.1002/(sici)1097-0290(19981005)60:1<44:aid-bit5>3.0.co;2-0

 

  1. Reggi S, Marchetti S, Patti T, et al. Recombinant human acid β-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. Plant Mol Biol. 2005;57: 101-113. doi: 10.1007/s11103-004-6832-x

 

  1. Stoeger E, Vaquero C, Torres E, et al. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol. 2000;42:583-590. doi: 10.1023/a:1006301519427

 

  1. Kermode AR. Plants as factories for production of biopharmaceutical and bioindustrial proteins: Lessons from cell biology. Can J Bot. 2006;84:679-694.

 

  1. Kermode AR. Seed expression systems for molecular farming. In: Wang A, Ma S, editors. Molecular Farming in Plants: Recent Advances and Future Prospects. New York: Springer; 2012. p. 89-123.

 

  1. Lau OS, Sun SSM. Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv. 2009;27:1015-1022. doi: 10.1016/j.biotechadv.2009.05.005

 

  1. Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv. 2012;30:434-439. doi: 10.1016/j.biotechadv.2011.08.007

 

  1. Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. The use of plants for the production of therapeutic human peptides. Plant Cell Rep. 2012;31:439-451. doi: 10.1007/s00299-011-1215-7

 

  1. Twyman RM, Ramessar K, Quemada H, Capell T, Christou P. Plant biotechnology: The importance of being accurate. Trends Biotechnol. 2009;27:609-612. doi: 10.1016/j.tibtech.2009.08.004

 

  1. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R. Molecular farming in plants: Host systems and expression technology. Trends Biotechnol. 2003;21:570-578. doi: 10.1016/j.tibtech.2003.10.002

 

  1. Kwon K, Verma D, Singh N, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev. 2013;65:782-799. doi: 10.1016/j.addr.2012.10.005

 

  1. Verma D, Moghimi B, LoDuca PA, et al. Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci U S A. 2010;107:7101-7106. doi: 10.1073/pnas.0912181107

 

  1. Sherman A, Su J, Lin S, Wang X, Herzog RW, Daniell H. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood. 2014;124:1659-1668. doi: 10.1182/blood-2013-10-528737

 

  1. Boothe J, Nykiforuk C, Shen Y, et al. Seed-based expression system for plant molecular farming. Plant Biotechnol J. 2010;8:588-606. doi: 10.1111/j.1467-7652.2010.00511.x

 

  1. Kwon KC, Daniell H. Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol J. 2015;13:1017-1022. doi: 10.1111/pbi.12462

 

  1. Kaufman J. The economic potential of plant-made pharmaceuticals in the manufacture of biologic pharmaceuticals. J Commercial Biotechnol. 2011;17:173-182.

 

  1. Kaiser J. Is the drought over for Pharming? Science. 2008;320:473-475. doi: 10.1126/science.320.5875.473

 

  1. Maxmen A. Drug making plant blooms. Nature. 2012;485:160. doi: 10.1038/485160a

 

  1. Spok A, Karner S. Plant made Farming-Opportunities and Challenges. Sevilla (Spain): JRC European Commission; 2008. p. 1-148.

 

  1. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette- Lainé AC, Gomord V, Faye L. N-glycosylation of recombinant pharmaceutical glycoproteins produced in transgenic plants: Towards an humanisation of plant N-glycans. Plant Mol Biol. 1998;38:31-48.

 

  1. Stoeger E, Ma JK. Sowing the seeds of success: Pharmaceutical proteins from plants. Curr Opin Biotechnol. 2005;16:167-173. doi: 10.1016/j.copbio.2005.01.005

 

  1. Gomord V, Fischette AC, Menu-Bouaouiche L, et al. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J. 2010;8:564-587.

 

  1. Saint-Jore-Dupas C, Faye L, Gomord V. From planta to pharma with glycosylation in the toolbox. Trends Biotechnol. 2007;25:317-323. doi: 10.1016/j.tibtech.2007.04.008

 

  1. Gomord V, Faye L. Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol. 2004;7:171-181. doi: 10.1016/j.pbi.2004.01.015

 

  1. Kermode AR. Mechanisms of intracellular protein transport and targeting. Crit Rev Plant Sci. 1996;15:285-423. doi: 10.1038/372055a0

 

  1. He X, Galpin JD, Tropak MB, et al. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology. 2012;22:492-503. doi: 10.1093/glycob/cwr157

 

  1. Aviezer D, Almon-Brilla EY, Chertkoffa R, Hashmuelia S, Zimranb A. Novel enzyme replacement therapy for Gaucher disease: Phase III pivotal clinical trial with plant cell expressed recombinant glucocerebrosidase (prGCD)- taliglucerase alpha. Mol Gen Metab. 2010;99:S9.

 

  1. Shaaltiel Y, Bartfeld D, Hashmueli S, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J. 2007;5:579-590. doi: 10.1111/j.1467-7652.2007.00263.x

 

  1. Grabowski GA, Golembo M, Shaaltiel Y. Taliglucerase alfa: An enzyme replacement therapy using plant cell expression technology. Mol Genet Metab. 2014;112:1-8. doi: 10.1016/j.ymgme.2014.02.011

 

  1. Tekoah Y, Shulman A, Kizhner T, et al. Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant Biotechnol J. 2015;13:1199-1208.

 

  1. Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D. Plant-based oral delivery of b-glucocerebrosidase as an enzyme replacement therapy for Gaucher’s disease. Plant Biotechnol J. 2015;13:1033-1040. doi: 10.1111/pbi.12366

 

  1. Martiniuk F, Reggi S, Tchou-Wong KM, Rom WN, Busconi M, Fogher C. Production of a functional human acid maltase in tobacco seeds: Biochemical analysis, uptake by human GSDII cells, and in vivo studies in GAA knockout mice. Appl Biochem Biotechnol. 2013;171:916-926. doi: 10.1007/s12010-013-0367-z

 

  1. Martiniuk F, Chen A, Donnabella V, et al. Correction of glycogen storage disease type II by enzyme replacement with a recombinant human acid maltase produced by over-expression in a CHO-DHFR (neg) cell line. Biochem Biophys Res Commun. 2000;276:917-923. doi: 10.1006/bbrc.2000.3555

 

  1. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Roger SD, Fraley RT. A simple 344 and general method for transferring genes into plants. Science. 1985;227:1229-1231. doi: 10.1126/science.227.4691.1229

 

  1. Martiniuk F, Honig J, Hirschhorn R. Further studies of the structure of human placental acid alpha-glucosidase. Arch Biochem Biophys. 1984;231:454-460. doi: 10.1016/0003-9861(84)90408-9

 

  1. Paul M, Ma JKC. Plant-made pharmaceuticals: Leading products and production. Biotech Appl Biochem. 2011;58:58-67. doi: 10.1002/bab.6

 

  1. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharm Res. 1998;15:11-22. doi: 10.1023/a:1011984216775

 

  1. Martiniuk F, Hirschhorn R. Characterization of neutral isozymes of human alpha-glucosidase. Biochim Biophys Acta. 1981;658:248-261. doi: 10.1016/0005-2744(81)90295-3

 

  1. Kakkis E, Lester T, Yang R, et al. Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. Proc Natl Acad Sci U S A. 2004;101:829-834. doi: 10.1073/pnas.0305480101

 

  1. White RR, Crawley FE, Vellini M, Rovati LA. Bioavailability of 125I bromelain after oral administration to rats. Biopharm Drug Dispos. 1988;9:397-403. doi: 10.1002/bod.2510090408

 

  1. van Hove JK, Yang HW, Wu JY, Brady RO, Chen YT. High-level production of recombinant human lysosomal acid α-glucosidase in Chinese hamster ovary cells which targets to heart muscle and corrects glycogen accumulation in fibroblasts from patients with Pompe disease. Proc Natl Acad Sci U S A. 1996;93:65-70. doi: 10.1073/pnas.93.1.65

 

  1. Fuller M, van der Ploeg A, Reuser AJJ, Anson DS, Hopwood JJ. Isolation and characterisation of a recombinant, precursor form of lysosomal acid a-glucosidase. Eur J Biochem. 1995;234:903-909. doi: 10.1111/j.1432-1033.1995.903_a.x

 

  1. Hirschhorn R, Reuser AJJ. Glycogen Storage Disease Type 2 Acid Alpha-Glucosidase Acid Maltase Deficiency. Ch. 135. United States: Macgraw-Hill; 2001. p. 3389-3420.

 

  1. Chadalavada DM, Sivakami S. Purification and biochemical characterisation of human placental acid a-glucosidase. Biochem Mol Biol Int. 1997;42:1051-1061. doi: 10.1080/15216549700203511

 

  1. Bijvoet AGA, Kroos MA, Pieper FR, et al. Recombinant human acid a-glucosidase: High level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Hum Mol Genet. 1998;7:1815-1824. doi: 10.1093/hmg/7.11.1815

 

  1. van Diggelen OP, Oemardien LF, van der Beek NAME, et al. Enzyme analysis for Pompe disease in leukocytes; superior results with natural substrate compared with artificial substrates. J Inherit Metab Dis. 2009;32:416-423. doi: 10.1007/s10545-009-1082-3

 

  1. Okumiya T, Keulemans JLM, Kroos MA, et al. A new diagnostic assay for glycogen storage disease type II in mixed leukocytes. Mol Genet Metab. 2006;88:22-28. doi: 10.1016/j.ymgme.2005.10.016

 

  1. Porto C, Ferrara MC, Meli M, et al. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine. Mol Ther. 2012;20:2201-2211. doi: 10.1038/mt.2012.152

 

  1. Khanna R, Flanagan JJ, Feng J, et al. The pharmacological chaperone AT2220 increases recombinant human acid a-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS One. 2012;7:e40776. doi: 10.1371/journal.pone.0040776

 

  1. Hintze S, Limmer S, Dabrowska-Schlepp P, et al. Moss-derived human recombinant GAA provides an optimized enzyme uptake in differentiated human muscle cells of Pompe disease. Int J Mol Sci. 2020;21:2642-2657. doi: 10.3390/ijms21072642

 

  1. Raben N, Nagaraju K, Lee E, et al. Targeted disruption of the acid alpha glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J Biol Chem. 1998;273:19086-19092. doi: 10.1074/jbc.273.30.19086

 

  1. Wheeler TL, Eppolito AK, Smith LN, Huff TB, Smith RF. A novel method for oral stimulant administration in the neonate rat and similar species. J Neurosci Methods. 2007;159:282-285. doi: 10.1016/j.jneumeth.2006.07.019

 

  1. Martiniuk F, Chen A, Mack A, et al. Helios gene gun particle delivery for therapy of acid maltase deficiency. DNA Cell Biol. 2002;21:717-725. doi: 10.1089/104454902760599690

 

  1. Gomez-Lechon MJ, Ponsada X, Castell JV. A microassay for measuring glycogen in 96 well cultured cells. Anal Biochem. 1996;236:296-301. doi: 10.1006/abio.1996.0170

 

  1. Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Nat Acad Sci U S A. 1973;70:782-786. doi: 10.1073/pnas.70.3.782

 

  1. Lin K, Wang A. UV mutagenesis in Escherichia coli K-12: Cell survival and mutation frequency of the chromosomal genes lacZ, rpoB, ompF, and ampA. J Exp Microbiol Immunol. 2001;1:32-46.

 

  1. Reesora MJ, King IJ, Michael J. Development of a tetracycline resistant strain of E. coli sensitive to ultraviolet radiation. J Stud Res. 2014;3:63-68.

 

  1. Liu A, Tran L, Becket E, et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother. 2010;54:1393-1403. doi: 10.1128/AAC.00906-09

 

  1. National Toxicology Program. The Salmonella/E. coli Mutagenicity. Available from: https://ntp.niehs.nih.gov/ go/9407 [Last accessed on 2014 Jun 27].

 

  1. Cheung SCK, Liu LZ, Lan LL, et al. Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: In vitro and in vivo studies. BMC Biotechnol. 2011;11:37-47. doi: 10.1186/1472-6750-11-37

 

  1. Iarmon CS, Phizackerlet PJ. The effects of starvation and re-feeding on glycogen metabolism in mouse tail skin. Biochem J. 1983;212:679-683. doi: 10.1042/bj2120679

 

  1. Inagawa H, Kohchi C, Soma GI. Oral administration of lipopolysaccharides for the prevention of various diseases: Benefit and usefulness. Anticancer Res. 2011;31:2431-2436.

 

  1. Martiniuk F, Bodkin M, Tzall S, Hirschhorn R. Identification of the base pair responsible for a α-glucosidase allele with lower affinity for glycogen (GAA 2) and transient gene expression in deficient cells. Am J Hum Genet. 1990;47:440-445.

 

  1. Martiniuk F, Ellenbogen A, Hirschhorn K, Hirschhorn R. Further regional localization of the genes for human acid alpha glucosidase (GAA), peptidase D (PEPD) and alpha mannosidase (MANB) by somatic cell hybridization. Hum Genet. 1985;69:109-111. doi: 10.1007/BF00293278

 

  1. Eskelinen EL, Illert AL, Tanaka Y, et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell. 2002;13:3355-3368. doi: 10.1091/mbc.E02-02-0114

 

  1. Eskelinen EL, Schmidt CK, Neu S, et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell. 2004;15:3132-3145.

 

  1. Koike M, Shibata M, Waguri S, et al. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol. 2005;167:1713-1728. doi: 10.1016/S0002-9440(10)61253-9

 

  1. Tanaka Y, Guhde G, Suter A, et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2- deficient mice. Nature. 2000;406:902-906. doi: 10.1038/35022595

 

  1. Theeuwes F, Yum SI. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng. 1976;4:343-353. doi: 10.1007/BF02584524

 

  1. Cao Y, Espinola JA, Fossale E, et al. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem. 2006;29:20483-20493. doi: 10.1074/jbc.M602180200

 

  1. Raben N, Shea L, Hill V, Plotz P. Monitoring autophagy in lysosomal. Methods Enzymol. 2009;453:417-449. doi: 10.1016/S0076-6879(08)04021-4

 

  1. Schmued LC, Stowerts CC, Scallet AC, Xu L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035:24-31. doi: 10.1016/j.brainres.2004.11.054

 

  1. Bian GL, Wei LC, Shi M, Wang YQ, Cao R, Chen LW. Fluoro-Jade C can specifically stain the degenerative neurons in the substantia nigra of the 1-methyl-4-phenyl- 1,2,3,6-tetrahydro pyridine-treated C57BL/6 mice. Brain Res. 2007;1150:55-61. doi: 10.1016/j.brainres.2007.02.078

 

  1. Falk DJ, Todd AG, Lee S, et al. Peripheral nerve and neuromuscular junction pathology in Pompe disease. Hum Mol Genet. 2015;24:625-636.doi: 10.1093/hmg/ddu476

 

  1. Bourne D. A First Course in Pharmacokinetics and Biopharmaceutics/Biopharmaceutics; 2010. Available from: https://www.boomer.org/c/p1 [last accessed on 2024 Dec 17].

 

  1. loannou Y, Zeidner K, Gordon R, Desnick R. Fabry disease: Preclinical studies demonstrate the effectiveness of b-galactosidase a replacement in enzyme-deficient mice. Am J Hum Genet. 2001;68:14-25. doi: 10.1086/316953

 

  1. Schinkel A, Mayer U, Wagnenaar E, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A. 1997;94:4028-4033. doi: 10.1073/pnas.94.8.4028

 

  1. van Tellingen O, Beijnen J, Verweij J, Scherrenburg E, Nooijen W, Sparreboom A. Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. Clin Cancer Res. 1999;5:2918-2924.

 

  1. Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice. J Biol Chem. 2013;288:1428-1434. doi: 10.1074/jbc.M112.438663

 

  1. Zhu Y, Li X, McVie-Wylie A, et al. Carbohydrate-remodelled acid α-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J. 2005;389:619-628. doi: 10.1042/BJ20050364

 

  1. McVie-Wylie AJ, Lee KL, Qiu H, et al. Biochemical and pharmacological characterization of different recombinant acid α-glucosidase preparations evaluated for the treatment of Pompe disease. Mol Genet Metab. 2008;94:448-455. doi: 10.1016/j.ymgme.2008.04.009

 

  1. Tong PY, Kornfeld S. Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor. J Biol Chem. 1989;264:7970-7975.

 

  1. Diaz-Manera J, Kishnani PS, Kushlaf H, et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): A phase 3, randomised, multicentre trial. Lancet Neurol. 2021;20:1012-1026. doi: 10.1016/S1474-4422(21)00241-6

 

  1. Zhu Y, Li X, Kyazike J, et al. Conjugation of mannose 6-phosphate-containing oligosaccharides to acid a-glucosidase improves the clearance of glycogen in Pompe mice. J Biol Chem. 2004;279:50336-50341. doi: 10.1074/jbc.M409676200

 

  1. Zhu Y, Jiang JL, Gumlaw NK, et al. Glycoengineered acid a-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther. 2009;17:954-963. doi: 10.1038/mt.2009.37

 

  1. Zhou Q, Stefano JE, Harrahy J, et al. Pan Strategies for neoglycan conjugation to human acid α-glucosidase. Bioconjug Chem. 2011;22:741-751. doi: 10.1021/bc1005416

 

  1. Fukuda T, Ewan L, Bauer M, et al. Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol. 2006;59:700-708. doi: 10.1002/ana.20807

 

  1. Raben N, Schreiner C, Baum R, et al. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder-murine Pompe disease. Autophagy. 2010;6:1078-1089. doi: 10.4161/auto.6.8.13378

 

  1. Lim JA, Li L, Shirihai OS, Trudeau KM, Rosa Puertollano R, Raben N. Modulation of mTOR signaling as a strategy for the treatment of Pompe disease. EMBO Mol Med. 2017;9:353-370. doi: 10.15252/emmm.201606547

 

  1. Carroll B, Maetzel D, Maddocks OD, et al. Control of TSC2- Rheb signaling axis by arginine regulates mTORC1 activity. Elife. 2016;5:e11058. doi: 10.7554/eLife.11058

 

  1. Jung JW, Kim NS, Jang SH, Shin YJ, Yang MS. Production and characterization of recombinant human acid alpha-glucosidase in transgenic rice cell suspension culture. J Biotechnol. 2016;226:44-53. doi: 10.1016/j.jbiotec.2016.03.031

 

  1. Jung JW, Huy NX, Kim HB, Kim NS, Giap DV, Yanga MS. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J Biotechnol. 2017;249:42-50. doi: 10.1016/j.jbiotec.2017.03.033

 

  1. Sariyatun R, Florence, Kajiura H, Ohashi T, Misaki R, Fujiyama K. Production of human acid-alpha glucosidase with a paucimannose structure by glycoengineered Arabidopsis cell culture. Front Plant Sci. 2021;12:703020. doi: 10.3389/fpls.2021.703020

 

  1. Cohen JL, Chakraborty P, Fung-Kee-Fung K, et al. In utero enzyme-replacement therapy for infantile-onset Pompe’s disease. N Engl J Med. 2022;387:2150-2158. doi: 10.1056/NEJMoa2200587

 

  1. van der Ploeg AT. Science behind the study-prenatal enzyme-replacement therapy. N Eng J Med. 2022;387:2189-2193.doi: 10.1056/NEJMe2211515

 

  1. Hashizume F, Hino S, Kakehashi M, et al. Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res. 2008;17:1117-1129. doi: 10.1007/s11248-008-9187-2

 

  1. Keum YS, Khor TO, Lin W, et al. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: Implication of induction of Nrf2, H0-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res. 2009;26:2324-2331. doi: 10.1007/s11095-009-9948-5

 

  1. Lamphear BJ, Streatfield SJ, Jilka JM, et al. Delivery of subunit vaccines in maize seed. J Control Release. 2002;85:169-180. doi: 10.1016/s0168-3659(02)00282-1

 

  1. Ning T, Xie T, Qiu Q, et al. Oral administration of recombinant human granulocyte macrophage colony stimulating factor expressed in rice endosperm can increase leukocytes in mice. Biotech Lett. 2008;30:1679-1686. doi: 10.1007/s10529-008-9717-2

 

  1. Pena Ramırez YJ, Tasciotti E, Gutierrez-Ortega A, et al. Fruit-specific expression of the human immunodeficiency virus type 1 Tat gene in tomato plants and its immunogenic potential in mice. Clin Vaccine Immunol. 2007;14:685-692. doi: 10.1128/CVI.00028-07

 

  1. Sardana RK, Alli Z, Dudani A, et al. Biological activity of human granulocyte-macrophage colony stimulating factor is maintained in a fusion with seed glutelin peptide. Transgenic Res. 2002;11:521-531. doi: 10.1023/a:1020343501475

 

  1. Streatfield SJ, Lane JR, Brooks CA, et al. Corn as a production system for human and animal vaccines. Vaccine. 2003;21:812-815. doi: 10.1016/s0264-410x(02)00605-9

 

  1. Suzuki K, Kaminuma O, Yang L, et al. Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: Induction of allergen-specific oral tolerance without bystander suppression. Plant Biotechnol J. 2011;9:982-990.

 

  1. Tackaberry ES, Dudani AK, Prior F, et al. Development of biopharmaceuticals in plant expression systems: Cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine. 1990;17:3020-3029. doi: 10.1016/s0264-410x(99)00150-4

 

  1. Takagi H, Hiroi T, Yang I, et al. A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci U S A. 2005;102:17525-17530. doi: 10.1073/pnas.0503428102

 

  1. Takagi H, Hiroi T, Yang L, et al. Efficient induction of oral tolerance by fusing cholera toxin B subunit with allergen-specific T-cell epitopes accumulated in rice seed. Vaccine. 2008;26:6027-6030. doi: 10.1016/j.vaccine.2008.09.019

 

  1. Takagia H, Hiroi T, Hirosea S, Yanga L, Takaiwaa F. Rice seed ER-derived protein body as an efficient delivery vehicle for oral tolerogenic peptides. Peptides. 2009;31:1421-1425. doi: 10.1016/j.peptides.2010.04.032

 

  1. Takaiwa F. Update on the use of transgenic rice seeds in oral immunotherapy. Immunotherapy. 2013;5:301-312. doi: 10.2217/imt.13.4

 

  1. Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X. Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol. J. 2007;5:570-578. doi: 10.1111/j.1467-7652.2007.00270.x

 

  1. Xie T, Qiu Q, Zhang W, et al. A biologically active rhIGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides. 2008;29:1862-1870. doi: 10.1016/j.peptides.2008.07.014

 

  1. Yamada Y, Nishizawa K, Yokoo M, et al. Anti-hypertensive activity of genetically modified soybean seeds accumulating novokinin. Peptides. 2008;29:331-337.

 

  1. Yang L, Kajiura H, Suzuki H, Hirose S, Fujiyama K, Takaiwa F. Generation of a transgenic rice seed-based edible vaccine against house dust mite allergy. Bioch Biophys Res Commun. 2008;365:334-339. doi: 10.1016/j.bbrc.2007.10.186

 

  1. Yang L, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiw F. A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett. 2006;580:3315-3320. doi: 10.1016/j.febslet.2006.04.092

 

  1. Yang L, Wakasa Y, Takaiwa F. Biopharming to increase bioactive peptides in rice seed. JAOAC Int. 2008;91:957-966.

 

  1. Zimmermann J, Saalbach I, Jahn D, et al. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol. 2009;9:79. doi: 10.1186/1472-6750-9-79

 

  1. Tisdale A, Cutillo CM, Nathan R, et al. The IDeaS initiative: Pilot study to assess the impact of rare diseases on patients and healthcare systems. Orphanet J Rare Dis. 2021;16:429. doi: 10.1186/s13023-021-02061-3
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing