AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.4000
REVIEW ARTICLE

Current insights and advances in long noncoding RNA dysregulation in diabetes and its complications

Ali Afzal1† Huma Rasheed2† Shaaf Ahmad3† Sadia Ahmad1,4† Faiqa Irshad2† Mehreen Iftikhar2 Muhammad Imran5 Zaman Gul4 Umair Ali Khan Saddozai6 Xinying Ji7,8* Muhammad Babar Khawar2,6*
Show Less
1 Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Punjab, Pakistan
2 Department of Zoology, University of Narowal, Narowal, Punjab, Pakistan
3 King Edward Medical University/Mayo Hospital, Lahore, Punjab, Pakistan
4 Institute of Zoology, University of Punjab, Lahore, Punjab, Pakistan
5 Center of Applied Molecular Biology, University of the Punjab, Lahore, Punjab, Pakistan
6 Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
7 Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Jiangsu, China
8 Department of Medicine, Huaxian County People’s People’s Hospital, Huaxian Henan Province, China
Submitted: 20 June 2024 | Accepted: 23 September 2024 | Published: 10 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Long noncoding RNAs (lncRNAs) are pivotal regulators in the pathophysiology of diabetes mellitus and its complications, including diabetic retinopathy, nephropathy, and cardiomyopathy. They influence essential cellular processes such as angiogenesis, vascular smooth muscle cell behavior, inflammation, extracellular matrix remodeling, and apoptosis. In cardiomyopathy, lncRNA H19 promotes cardiomyocyte survival by regulating autophagy, highlighting its role in cardiovascular outcomes. In addition, lncRNAs hold promise as noninvasive biomarkers, detectable in extracellular fluids such as serum and urine, providing novel diagnostic tools. For example, elevated levels of HOX transcript antisense RNA and promoter of CDKN1A antisense DNA damage-activated RNA correlate with hyperglycemia and its complications, whereas maternally expressed gene 3 and metastasis-associated lung adenocarcinoma transcript 1 are linked to insulin resistance. However, the full scope of lncRNA mechanisms and therapeutic potential remains unclear. Recent research emphasizes the importance of studying the molecular pathways influenced by lncRNAs, such as the Janus kinase/signal transducer and activator of transcription and p38 mitogen-activated protein kinase pathways, which regulate inflammation and insulin signaling. Preclinical studies show promising outcomes for lncRNA-targeted therapies; however, challenges remain in precise detection and delivery. Addressing these gaps through advanced RNA sequencing and targeted therapies is crucial for developing lncRNA-based diagnostics and treatments for diabetes complications. This review explores lncRNAs as biomarkers and therapeutic targets, focusing on their regulatory mechanisms in diabetic complications such as retinopathy, nephropathy, and cardiomyopathy.

Keywords
Diabetes mellitus
Long noncoding RNA
Biomarkers
Transcriptional control
Insulin resistance
Vascular problems
Funding
None.
Conflict of interest
Umair Ali Khan Saddozai and Xinying Ji are the Editorial Board Members of this journal but were not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Melissari MT, Grote P. Roles for long non-coding RNAs in physiology and disease. Pflügers Arch. 2016;468:945-958. doi: 10.1007/s00424-016-1804-y

 

  1. Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430-447. doi: 10.1038/s41580-022-00566-8

 

  1. Wu M, Feng Y, Shi X. Advances with long non-coding RNAs in diabetic peripheral neuropathy. Diabetes Metab Syndr Obes. 2020;13:1429-1434. doi: 10.2147/dmso.s249232

 

  1. Grammatikakis I, Lal A. Significance of lncRNA abundance to function. Mamm Genome. 2022;33(2):271-280. doi: 10.1007/s00335-021-09901-4

 

  1. Li J, Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10:496. doi: 10.3389/fgene.2019.00496

 

  1. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Supplement_1):S13-S27. doi: 10.2337/dc18-S002

 

  1. Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2018;233(3):2007-2018. doi: 10.1002/jcp.25854

 

  1. Eriksson J, Laine MK. Insulin therapy in the elderly with type 2 diabetes. Minerva Endocrinol. 2015;40(4):283-295.

 

  1. Akerman I, Tu Z, Beucher A, et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks. Cell Metab. 2017;25(2):400-411. doi: 10.1016/j.cmet.2016.11.016

 

  1. Feng J, Xing W, Xie L. Regulatory roles of microRNAs in diabetes. Int J Mol Sci. 2016;17(10):1729. doi: 10.3390/ijms17101729

 

  1. Guo J, Liu Z, Gong R. Long noncoding RNA: An emerging player in diabetes and diabetic kidney disease. Clin Sci (Lond). 2019;133(12):1321-1339. doi: 10.1042/CS20190372

 

  1. He X, Ou C, Xiao Y, Han Q, Li H, Zhou S. LncRNAs: Key players and novel insights into diabetes mellitus. Oncotarget. 2017;8(41):71325-71341. doi: 10.18632/oncotarget.19921

 

  1. Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 2015;4:102-107. doi: 10.1016/j.bbacli.2015.09.001

 

  1. González-Moro I, Santin I. Long non-coding RNA-regulated pathways in pancreatic β cells: Their role in diabetes. Int Rev Cell Mol Biol. 2021;359:325-355. doi: 10.1016/bs.ircmb.2021.02.007

 

  1. Morán I, Akerman I, Van De Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 2012;16(4):435-448. doi: 10.1016/j.cmet.2012.08.010

 

  1. Ku GM, Kim H, Vaughn IW, et al. Research resource: RNA-Seq reveals unique features of the pancreatic β-cell transcriptome. Mol Endocrinol. 2012;26(10):1783-1792. doi: 10.1210/me.2012-1176

 

  1. Nica AC, Ongen H, Irminger JC, et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 2013;23(9):1554-1562. doi: 10.1101/gr.150706.112

 

  1. Rosa A, Brivanlou AH. Regulatory non-coding RNAs in pluripotent stem cells. Int J Mol Sci. 2013;14(7):14346-14373. doi: 10.3390/ijms140714346

 

  1. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703-707. doi: 10.1038/ng.381

 

  1. Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44(1):67-72. doi: 10.1038/ng.1019

 

  1. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105-116. doi: 10.1038/ng.520

 

  1. Fadista J, Vikman P, Laakso EO, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci. 2014;111(38):13924-13929. doi: 10.1073/pnas.1402665111

 

  1. Xu B, Gerin I, Miao H, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One. 2010;5(12):e14199. doi: 10.1371/journal.pone.0014199

 

  1. Liu S, Xu R, Gerin I, et al. SRA regulates adipogenesis by modulating p38/JNK phosphorylation and stimulating insulin receptor gene expression and downstream signaling. PLoS One. 2014;9(4):e95416. doi: 10.1371/journal.pone.0095416

 

  1. Yin DD, Zhang EB, You LH, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells. Cell Physiol Biochem. 2015;35(5):1892-1904. doi: 10.1159/000373999

 

  1. Feng S-D, Yang JH, Yao CH, et al. Potential regulatory mechanisms of lncRNA in diabetes and its complications. Biochem Cell Biol. 2017;95(3):361-367. doi: 10.1139/bcb-2016-0110

 

  1. Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13(4):239-250. doi: 10.1038/nrm3313

 

  1. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008;88(11):1322-1335. doi: 10.2522/ptj.20080008

 

  1. Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: The agonist versus antagonist paradox. Diabetes. 1999;48(10):1899-1906. doi: 10.2337/diabetes.48.10.1899

 

  1. Hammes HP, Feng Y, Pfister F, Brownlee M. Diabetic retinopathy: Targeting vasoregression. Diabetes. 2011;60(1):9-16. doi: 10.2337/db10-0454

 

  1. Michalik KM, You X, Manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389-1397. doi: 10.1161/CIRCRESAHA.114.303265

 

  1. Bell RD, Long X, Lin M, et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014;34(6):1249-1259. doi: 10.1161/ATVBAHA.114.303240

 

  1. Marrero MB, Fulton D, Stepp D, Stern DM. Angiotensin II-induced signaling pathways in diabetes. Curr Diabet Rev. 2005;1(2):197-202. doi: 10.2174/1573399054022802

 

  1. Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452-1465. doi: 10.1161/CIRCULATIONAHA.114.011675

 

  1. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non‐coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med. 2015;19(6):1418-1425. doi: 10.1111/jcmm.12576

 

  1. Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 2015;21(3):455-467. doi: 10.1016/j.cmet.2015.02.004

 

  1. Lange J, Yafai Y, Noack A, et al. The axon guidance molecule Netrin‐4 is expressed by Müller cells and contributes to angiogenesis in the retina. Glia. 2012;60(10):1567-1578. doi: 10.1002/glia.22376

 

  1. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A. 1993;90(5):1814-1818. doi: 10.1073/pnas.90.5.1814

 

  1. Gonzalez-Moro I, Olazagoitia-Garmendia A, Colli ML, et al. The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc Nal Acad Sci. 2020;117(16):9022-9031. doi: 10.1073/pnas.1914353117

 

  1. Alvarez ML, Khosroheidari M, Eddy E, Kiefer J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One. 2013;8(10):e77468. doi: 10.1371/journal.pone.0077468

 

  1. Choudhury D, Tuncel M, Levi M. Diabetic nephropathy--a multifaceted target of new therapies. Discov Med. 2010;10(54):406-415.

 

  1. Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol. 2011;6:395-423. doi: 10.1146/annurev.pathol.4.110807.092150

 

  1. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets. Anne N Y Acad Sci. 2015;1353(1):72-88. doi: 10.1111/nyas.12758

 

  1. Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vascul Pharmacol. 2013;58(4):259-271. doi: 10.1016/j.vph.2013.01.001

 

  1. Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes. 2014;5(3):342. doi: 10.4239/wjd.v5.i3.342

 

  1. Risdon RA, Sloper JC, De Wardener HE. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet. 1968;292(7564):363-366. doi: 10.1016/s0140-6736(68)90589-8

 

  1. Mourtada-Maarabouni M, Williams GT. Role of GAS5 noncoding RNA in mediating the effects of rapamycin and its analogues on mantle cell lymphoma cells. Clin Lymphoma Myeloma Leuk. 2014;14(6):468-473. doi: 10.1016/j.clml.2014.02.011

 

  1. Thomas MC. Epigenetic mechanisms in diabetic kidney disease. Curr Diab Rep. 2016;16:31. doi: 10.1007/s11892-016-0723-9

 

  1. Li Y, Xu K, Xu K, Chen S, Cao Y, Zhan H. Roles of identified long noncoding RNA in diabetic nephropathy. J Diabetes Res. 2019;2019:5383010. doi: 10.1155/2019/5383010

 

  1. Hanson RL, Craig DW, Millis MP, et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes. 2007;56(4):975-983. doi: 10.2337/db06-1072

 

  1. Zhou X, Liu S, Cai G, et al. Long non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. Sci Rep. 2015;5(1):15972. doi: 10.1038/srep15972

 

  1. Burzio VA, Villota C, Villegas J, et al. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc Natl Acad Sci. 2009;106(23):9430-9434. doi: 10.1073/pnas.0903086106

 

  1. Young T, Matsuda T, Cepko C. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15(6):501-512. doi: 10.1016/j.cub.2005.02.027

 

  1. Uruno A, Furusawa Y, Yagishita Y, et al. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol. 2013;33(15):2996-3010. doi: 10.1128/MCB.00225-13

 

  1. Wang L, Su N, Zhang Y, Wang G. Clinical significance of serum lncRNA cancer susceptibility candidate 2 (CASC2) for chronic renal failure in patients with type 2 diabetes. Med Sci Monit. 2018;24:6079-6084. doi: 10.12659/MSM.909510

 

  1. Blackshaw S, Harpavat S, Trimarchi J, et al. Genomic analysis of mouse retinal development. PLoS Biol. 2004;2(9):E247. doi: 10.1371/journal.pbio.0020247

 

  1. Ohnishi Y, Tanaka T, Yamada R, et al. Identification of 187 single nucleotide polymorphisms (SNPs) among 41 candidate genes for ischemic heart disease in the Japanese population. Hum Genet. 2000;106:288-292. doi: 10.1007/s004390051039

 

  1. Ishii N, Ozaki K, Sato H, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087-1099. doi: 10.1007/s10038-006-0070-9

 

  1. Yan B, Yao J, Liu JY, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143-1156. doi: 10.1161/CIRCRESAHA.116.305510

 

  1. Zhang J, Chen M, Chen J, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep. 2017;37(2):BSR20170036. doi: 10.1042/BSR20170036

 

  1. Gong Q, Dong W, Fan Y, et al. LncRNA TDRG1-mediated overexpression of VEGF aggravated retinal microvascular endothelial cell dysfunction in diabetic retinopathy. Front Pharmacol. 2020;10:1703. doi: 10.3389/fphar.2019.01703

 

  1. Dong Y, Wan G, Peng G, Yan P, Qian C, Li F. Long non-coding RNA XIST regulates hyperglycemia-associated apoptosis and migration in human retinal pigment epithelial cells. Biomed Pharmacother. 2020;125:109959. doi: 10.1016/j.biopha.2020.109959

 

  1. Dai R, Sun Z, Qian Y, Zhang B, Han Y, Deng G. LncRNA LUADT1 inhibits cell apoptosis in diabetic retinopathy by regulating miR-383/peroxiredoxin 3 axis. Arch Physiol Biochem. 2022;128(3):637-642. doi: 10.1080/13813455.2020.1716016

 

  1. Bahtiyar G, Gutterman D, Lebovitz H. Heart failure: A major cardiovascular complication of diabetes mellitus. Curr Diab Rep. 2016;16:116. doi: 10.1007/s11892-016-0809-4

 

  1. Aneja A, Tang WW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121(9):748-757. doi: 10.1016/j.amjmed.2008.03.046

 

  1. Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012;17:325-344. doi: 10.1007/s10741-011-9257-z

 

  1. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57:660-671. doi: 10.1007/s00125-014-3171-6

 

  1. Gao Y, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014;42(22):13799-13811. doi: 10.1093/nar/gku1160

 

  1. Zhuo C, Jiang R, Lin X, Shao M. LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget. 2017;8(1):1429-1437. doi: 10.18632/oncotarget.13637

 

  1. Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659-665. doi: 10.1038/ncb2521

 

  1. Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep. 2016;6(1):36340. doi: 10.1038/srep36340

 

  1. Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. 2014;28(5):491-501. doi: 10.1101/gad.234419.113

 

  1. Jiang X, Lei R, Ning Q. Circulating long noncoding RNAs as novel biomarkers of human diseases. Biomark Med. 2016;10(7):757-769. doi: 10.2217/bmm-2016-0039

 

  1. Yuan S, Xiang Y, Guo X, et al. Circulating long noncoding RNAs act as diagnostic biomarkers in non-small cell lung cancer. Front Oncol. 2020;10:537120. doi: 10.3389/fonc.2020.537120

 

  1. De Gonzalo-Calvo D, Kenneweg F, Bang C, et al. Circulating long noncoding RNAs in personalized medicine: Response to pioglitazone therapy in type 2 diabetes. J Am Coll Cardiol. 2016;68(25):2914-2916. doi: 10.1016/j.jacc.2016.10.014

 

  1. Conigliaro A, Costa V, Lo Dico A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14(1):155. doi: 10.1186/s12943-015-0426-x

 

  1. Jiao Z, Yu A, Rong W, et al. Five-lncRNA signature in plasma exosomes serves as diagnostic biomarker for esophageal squamous cell carcinoma. Aging (Albany NY). 2020;12(14):15002-15010. doi: 10.18632/aging.103559

 

  1. Lee J, Lee SH. New mediators in diabetes pathogenesis: Exosomes and metabolites. J Diabet Investig. 2021;12(11):1931-1933. doi: 10.1111/jdi.13654

 

  1. Guay C, Kruit JK, Rome S, et al. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to type 1 diabetes development. Cell Metab. 2019;29(2):348-361.e6. doi: 10.1016/j.cmet.2018.09.011

 

  1. Cao X, Xue LD, Di Y, Li T, Tian YJ, Song Y. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Life Sci. 2021;272:119232. doi: 10.1016/j.lfs.2021.119232

 

  1. Zhang J, Chen K, Tang Y, et al. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Cell Death Dis. 2021;12(4):367. doi: 10.1038/s41419-021-03650-7

 

  1. Bhan A, Mandal SS. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim Biophys Acta. 2015;1856(1):151-164. doi: 10.1016/j.bbcan.2015.07.001

 

  1. Cantile M, Di Bonito M, Cerrone M, Collina F, De Laurentiis M, Botti G. Long non-coding RNA HOTAIR in breast cancer therapy. Cancers (Basel). 2020;12(5):1197. doi: 10.3390/cancers12051197

 

  1. Biswas S, Feng B, Chen S, et al. The long non-coding RNA HOTAIR is a critical epigenetic mediator of angiogenesis in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2021;62(3):20. doi: 10.1167/iovs.62.3.20

 

  1. Qi K, Zhong J. LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway. Exp Ther Med. 2018;16(6):4817-4823. doi: 10.3892/etm.2018.6755

 

  1. Li M, Guo Y, Wang X, Duan B, Li L. HOTAIR participates in hepatic insulin resistance via regulating SIRT1. Eur Rev Med Pharmacol Sci. 2018;22(22):7883-7890. doi: 10.26355/eurrev_201811_16414

 

  1. Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules. 2020;10(7):1044. doi: 10.3390/biom10071044

 

  1. Notarte KI, Senanayake S, Macaranas I, et al. MicroRNA and other non-coding RNAs in Epstein-Barr virus-associated cancers. Cancers (Basel). 2021;13(15):3909. doi: 10.3390/cancers13153909

 

  1. Tamgue O, Mezajou CF, Ngongang NN, et al. Non-coding RNAs in the etiology and control of major and neglected human tropical diseases. Front Immunol. 2021;12:703936. doi: 10.3389/fimmu.2021.703936

 

  1. Wang H, Xia Y, Zhang Y. Diagnostic significance of serum lncRNA HOTAIR and its predictive value for the development of chronic complications in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13:97. doi: 10.1186/s13098-021-00719-3

 

  1. Chang W, Wang J. Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells. 2019;8(8):853. doi: 10.3390/cells8080853

 

  1. Sanchez-Parra C, Jacovetti C, Dumortier O, et al. Contribution of the long noncoding RNA H19 to β-cell mass expansion in neonatal and adult rodents. Diabetes. 2018;67(11):2254-2267. doi: 10.2337/db18-0201

 

  1. Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM. Circulating long noncoding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: A preliminary study. Bosn J Basic Med Sci. 2020;20(3):365-371. doi: 10.17305/bjbms.2019.4533

 

  1. Zhu X, Wu YB, Zhou J, Kang DM. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun. 2016;469(2):319-325. doi: 10.1016/j.bbrc.2015.11.048

 

  1. Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, et al. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci. 2021;22(14):7256. doi: 10.3390/ijms22147256

 

  1. Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: A valuable biomarker for metabolic syndrome. Mol Genet Genomics. 2022;297(5):1169-1183. doi: 10.1007/s00438-022-01922-1

 

  1. Zhang Y, Wu H, Wang F, Ye M, Zhu H, Bu S. Long non‐coding RNA MALAT1 expression in patients with gestational diabetes mellitus. Int J Gynecol Obstet. 2018;140(2):164-169. doi: 10.1002/ijgo.12384

 

  1. Saleh RO, Al-Ouqaili MTS, Ali E, et al. lncRNA-microRNA axis in cancer drug resistance: Particular focus on signaling pathways. Med Oncol. 2024;41(2):52. doi: 10.1007/s12032-023-02263-8

 

  1. Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 2015;87:15-24. doi: 10.1016/j.addr.2015.05.012

 

  1. Liu J, Yao J, Li X, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 2014;5(10):e1506 doi: 10.1038/cddis.2014.466

 

  1. Liu P, Jia SB, Shi JM, et al. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci Rep. 2019;39(5):BSR20181469. doi: 10.1042/BSR20181469

 

  1. Shi S, Song L, Yu H, et al. Knockdown of LncRNA-H19 ameliorates kidney fibrosis in diabetic mice by suppressing miR-29a-mediated EndMT. Front Pharmacol. 2020;11:586895. doi: 10.3389/fphar.2020.586895

 

  1. Zhang W, Cao D, Wang Y, Ren W. LncRNA MEG8 is upregulated in gestational diabetes mellitus (GDM) and predicted kidney injury. J Diabetes Complications. 2021;35(1):107749. doi: 10.1016/j.jdiacomp.2020.107749

 

  1. Zhao C, Hu J, Wang Z, Cao ZY, Wang L. Serum LncRNA PANDAR may act as a novel serum biomarker of diabetic nephropathy in patients with type 2 diabetes. Clin Lab. 2020;66(6). doi: 10.7754/Clin.Lab.2019.191032

 

  1. Li S, Li Y, Chen B, et al. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106-D112. doi: 10.1093/nar/gkx891

 

  1. Peng L, Yuan X, Jiang B, Tang Z, Li GC. LncRNAs: Key players and novel insights into cervical cancer. Tumor Biol. 2016;37:2779-2788. doi: 10.1007/s13277-015-4663-9

 

  1. Széll M, Danis J, Bata-Csörgő Z, Kemény L. PRINS, a primate-specific long non-coding RNA, plays a role in the keratinocyte stress response and psoriasis pathogenesis. Pflügers Arch. 2016;468:935-943. doi: 10.1007/s00424-016-1803-z

 

  1. Yang Y, Cai Y, Wu G, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci. (Lond). 2015;129(8):675-685. doi: 10.1042/CS20150121

 

  1. Kaur S, Mirza AH, Brorsson CA, et al. The genetic and regulatory architecture of ERBB3-type 1 diabetes susceptibility locus. Mol Cell Endocrinol. 2016;419:83-91. doi: 10.1016/j.mce.2015.10.002

 

  1. Wang M, Wang S, Yao D, Yan Q, Lu W. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. Mol Cell Endocrinol. 2016;426:136-145. doi: 10.1016/j.mce.2016.02.020

 

  1. Jin Y, Cui Z, Li X, Jin X, Peng J. Upregulation of long non-coding RNA PlncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer. Oncotarget. 2017;8(16):26090-26099. doi: 10.18632/oncotarget.15318

 

  1. Wang Q, Yang L, Hu X, et al. Upregulated NNT-AS1, a long noncoding RNA, contributes to proliferation and migration of colorectal cancer cells in vitro and in vivo. Oncotarget. 2017;8(2):3441-3453. doi: 10.18632/oncotarget.13840

 

  1. Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: A meta-analysis of controlled profiling studies. Diabetologia. 2015;58:900-911. doi: 10.1007/s00125-015-3510-2

 

  1. Kornfeld JW, Baitzel C, Könner AC, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494(7435):111-115. doi: 10.1038/nature11793

 

  1. Ríos-Barrera LD, Gutiérrez-Pérez I, Domínguez M, Riesgo- Escovar JR. acal is a long non-coding RNA in JNK signaling in epithelial shape changes during drosophila dorsal closure. PLoS Genet. 2015;11(2):e1004927. doi: 10.1371/journal.pgen.1004927

 

  1. Li M, Dou M, Liu R, Jiao Y, Hao Z, Xu Y. Identification of long non-coding RNAs in response to downy mildew stress in grape. Fruit Res. 2022;2(1):19. doi: 10.48130/FruRes-2022-0019

 

  1. Xu G, Ji C, Song G, et al. MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/ AKT pathway. Int J Obes (Lond). 2015;39(10):1523-1530. doi: 10.1038/ijo.2015.95

 

  1. Yan C, Chen J, Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep. 2016;6:22640. doi: 10.1038/srep22640

 

  1. Song A, Zhang C, Meng X. Mechanism and application of metformin in kidney diseases: An update. Biomed Pharmacother. 2021;138:111454. doi: 10.1016/j.biopha.2021.111454

 

  1. Xu J, Xiang P, Liu L, Sun J, Ye S. Metformin inhibits extracellular matrix accumulation, inflammation and proliferation of mesangial cells in diabetic nephropathy by regulating H19/miR-143-3p/TGF-β1 axis. J Pharm Pharmacol. 2020;72(8):1101-1109. doi: 10.1111/jphp.13280

 

  1. Parvar SN, Mirzaei A, Zare A, et al. Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: An in vitro and clinical trial study. Pharmacol Rep. 2023;75(1):189-198. doi: 10.1007/s43440-022-00427-3

 

  1. Chen Z, Liang H, Yan X, et al. Astragalus polysaccharide promotes autophagy and alleviates diabetic nephropathy by targeting the lncRNA Gm41268/PRLR pathway. Ren Fail. 2023;45(2):2284211. doi: 10.1080/0886022X.2023.2284211

 

  1. Wen CH, Berkman T, Li X, et al. Effect of intrathecal NIS-lncRNA antisense oligonucleotides on neuropathic pain caused by nerve trauma, chemotherapy, or diabetes mellitus. Br J Anaesth. 2023;130(2):202-216. doi: 10.1016/j.bja.2022.09.027
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing