Promoting stem cells activity using Chinese medicine herbs in treatment of neurological disorder: A review on novel therapeutic approaches
Stem cell therapy represents a burgeoning and swiftly advancing modality for the treatment of a diverse array of neurological disorders. However, despite continued clinical trials, the underlying mechanisms of action often remain elusive. Traditional Chinese medicine (TCM), with its holistic approach, provides a valuable resource for the identification and evaluation of potential neuroprotective agents. Research has shown that TCM, including herbs, herbal extracts, and specific Chinese herbal constituents, can modulate the proliferation and differentiation of neural stem cells (NSCs) to some extent. This review examines the potential of TCM as a treatment for neurodegenerative diseases. Given the limitations of current therapies due to a lack of understanding of disease pathogenesis, a holistic approach to TCM offers a promising alternative. This paper also summarizes the role of stem cells in the management of neurological disorders and evaluates prior studies concerning stem cell transplantation. In addition, it explores the capacity of TCM to influence the proliferation and differentiation of NSCs. The ultimate aim of this review is to enhance our understanding of how TCM can be utilized to influence stem cell behavior and potentially treat neurodegenerative diseases.
- Argueti-Ostrovsky S, Alfahel L, Kahn J, Israelson A. All roads lead to Rome: Different molecular players converge to common toxic pathways in neurodegeneration. Cells. 2021;10(9):2438. doi: 10.3390/cells10092438
- Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):40. doi: 10.1186/s13024-020-00391-7
- Chen KS, Feldman EL. Stem cell therapy for amyotrophic lateral sclerosis. In: Boulis N, O’Connor D, Donsante A, editors. Molecular and Cellular Therapies for Motor Neuron Diseases. Ch. 9. United States: Academic Press; 2017. p. 207-231.
- Mokhtari T, Shayan M, Rashnudi AR, Hassanzadeh G, Nia KM. Wharton’s jelly mesenchymal stem cells attenuate global hypoxia-induced learning and memory impairment via preventing blood-brain barrier breakdown. Iran J Basic Med Sci. 2023;26(9):1053. doi: 10.22038/IJBMS.2023.70137.15250
- Bonaventura G, Munafò A, Bellanca CM, et al. Stem cells: Innovative therapeutic options for neurodegenerative diseases? Cells. 2021;10(8):1992. doi: 10.3390/cells10081992
- Mehrannia K, Mokhtari T, Noori Mogehi SMH, et al. Intracerebroventricular injection of Wharton’ jelly mesenchymal stem cells attenuates brain damage in rat model of hypoxia: Optimization of vascular endothelial growth factor and downregulation of inflammatory factors. J Contemp Med Sci. 2018;4(3): 134-139.
- Guo Y, Peng Y, Zeng H, Chen G. Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int. 2021;2021:9923566. doi: 10.1155/2021/9923566
- Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ. 2021;373:n955. doi: 10.1136/bmj.n955
- Chiu AY, Rao MSJN. Cell-based therapy for neural disorders-anticipating challenges. Neurotherapeutics. 2011;8(4):744-752. doi: 10.1007/s13311-011-0066-9
- Chan SF, Sances S, Brill LM, et al. ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage. J Neursci. 2014;34(13):4640-4653. doi: 10.1523/JNEUROSCI.2510-12.2014
- Surguchov A, Bernal L and Surguchev AA. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules. 2021;11(5):624. doi: 10.3390/biom11050624
- Gaur R. A brief history: Traditional Chinese medicinal system. Pharmacol Res Mod Chin Med. 2024;10:100387. doi: 10.1016/j.prmcm.2024.100387
- Mazzanti G, Di Giacomo S. Curcumin and resveratrol in the management of cognitive disorders: What is the clinical evidence? Molecules. 2016;21(9):1243. doi: 10.3390/molecules21091243
- Broman-Fulks JJ, Canu WH, Trout KL and Nieman DC. The effects of quercetin supplementation on cognitive functioning in a community sample: A randomized, placebo-controlled trial. Ther Adv Psychopharmacol. 2012;2(4):131-138. doi: 10.1177/2045125312445894
- Shu T, Pang M, Rong L, et al. Effects of Salvia miltiorrhiza on neural differentiation of induced pluripotent stem cells. J Ethnopharmacol. 2014;153(1):233-241. doi: 10.1016/j.jep.2014.02.028
- Pao LH, Lu SW, Sun GG, Chiou SH, Ma KH. Three Chinese herbal medicines promote neuroproliferation in vitro, and reverse the effects of chronic mild stress on behavior, the HPA axis, and proliferation of hippocampal precursor cell in vivo. J Ethnopharmacol. 2012;144(2):261-269. doi: 10.1016/j.jep.2012.09.002
- Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272. doi: 10.1038/s41392-022-01134-4
- Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9(1):17. doi: 10.1038/s41392-023-01704-0
- Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3-10. doi: 10.1159/000345615
- Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. doi: 10.1016/j.cell.2007.11.019
- Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019;10(1):68. doi: 10.1186/s13287-019-1165-5
- Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS. Stem cell therapy for neurological disorders. S Afr Med J. 2019;109(8b):70-77. doi: 10.7196/SAMJ.2019.v109i8b.14009
- Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523-531. doi: 10.1016/j.stem.2020.09.014
- Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci United States Am. 2009;106(32):13594-13599. doi: 10.1073/pnas.0901402106
- Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21(2):103-115. doi: 10.1038/s41583-019-0257-7
- Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: Current progress, challenges, and future perspectives. Eur J Med Res. 2024;29(1):386. doi: 10.1186/s40001-024-01987-1
- Pluchino S, Martino G. The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders. J Neurol Sci. 2005;233(1-2):117-119. doi: 10.1016/j.jns.2005.03.026
- Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet. 2016;388(10046):787-796. doi: 10.1016/S0140-6736(16)30513-X
- Alizamir T, Akbari M, Mokhtari T, Hassanzadeh G. Associated functional motor recovery induced by Intracerebroventricular (ICV) microinjection of Wharton’s jelly mesenchymal stem cells following brain ischemia/ reperfusion injury in rat: Decreased dark neurons and Bax gene expression in the cerebral cortex. J Contemp Med Sci. 2017;3(12):319-325.
- Ross CA, Tabrizi SJ. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83-98. doi: 10.1016/S1474-4422(10)70245-3
- Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):637-647. doi: 10.1038/nn.4541
- Noori L, Arabzadeh S, Mohamadi Y, et al. Intrathecal administration of the extracellular vesicles derived from human Wharton’s jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neurosci Res. 2021;170:87-98. doi: 10.1016/j.neures.2020.07.011
- Reis C, Akyol O, Ho WM, et al. Phase I and Phase II therapies for acute ischemic stroke: An update on currently studied drugs in clinical research. Biomed Res Int. 2017;2017:4863079. doi: 10.1155/2017/4863079
- Thomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol. 2014;262(Pt B):127-137. doi: 10.1016/j.expneurol.2014.02.021
- Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, Xiong Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg. 2017;126(3):782-795. doi: 10.3171/2016.3.JNS152699
- Christine CW, Richardson RM, Van Laar AD, et al. Safety of AADC gene therapy for moderately advanced Parkinson disease: Three-year outcomes from the PD-1101 trial. Neurology. 2022;98(1):e40-e50. doi: 10.1212/WNL.0000000000012952
- Greene PE, Fahn S, Eidelberg D, Bjugstad KB, Breeze RE, Freed CR. Persistent dyskinesias in patients with fetal tissue transplantation for Parkinson disease. NPJ Parkinsons Dis. 2021;7(1):38. doi: 10.1038/s41531-021-00183-w
- Wang YK, Zhu WW, Wu MH, et al. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Reports. 2018;11(1):171-182. doi: 10.1016/j.stemcr.2018.05.010
- Nakamura R, Nonaka R, Oyama G, et al. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson’s disease. Front Neurosci. 2023;17:1202027. doi: 10.3389/fnins.2023.1202027
- Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson’s disease using human pluripotent stem cells. Front Cell Dev Biol. 2023;11:1288168. doi: 10.3389/fcell.2023.1288168
- Zeng L, Yu G, Yang K, Xiang W, Li J, Chen H. Efficacy and safety of mesenchymal stem cell transplantation in the treatment of autoimmune diseases (Rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, and ankylosing spondylitis): A systematic review and meta-analysis of randomized controlled trial. Stem Cells Int. 2022;2022:9463314. doi: 10.1155/2022/9463314
- Islam MA, Alam SS, Kundu S, et al. Mesenchymal stem cell therapy in multiple sclerosis: A systematic review and meta-analysis. J Clin Med. 2023;12(19):6311. doi: 10.3390/jcm12196311
- Bose G, Thebault S, Rush CA, Atkins HL, Freedman MS. Autologous hematopoietic stem cell transplantation for multiple sclerosis: A current perspective. Mult Scler. 2021;27(2):167-173. doi: 10.1177/1352458520917936
- Cohen JA, Imrey PB, Planchon SM, et al. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler. 2018;24(4):501-511. doi: 10.1177/1352458517703802
- Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal stem cells in multiple sclerosis: Recent evidence from pre-clinical to clinical studies. Int J Mol Sci. 2020;21(22):8662. doi: 10.3390/ijms21228662
- Horak J, Nalos L, Martinkova V, et al. Evaluation of mesenchymal stem cell therapy for sepsis: A randomized controlled porcine study. Front Immunol. 2020;11:126. doi: 10.3389/fimmu.2020.00126
- Yang G, Van Kaer L. Therapeutic targeting of immune cell autophagy in multiple sclerosis: Russian roulette or silver bullet? Front Immunol. 2021;12:724108. doi: 10.3389/fimmu.2021.724108
- Yuan TF, Dong Y, Zhang L, et al. Neuromodulation-based stem cell therapy in brain repair: Recent advances and future perspectives. Neurosci Bull. 2021;37(5):735-745. doi: 10.1007/s12264-021-00667-y
- Yoo DY, Nam Y, Kim W, et al. Effects of Ginkgo biloba extract on promotion of neurogenesis in the hippocampal dentate gyrus in C57BL/6 mice. J Vet Med Sci. 2011;73(1):71-76. doi: 10.1292/jvms.10-0294
- Ivanova Stojcheva E, Quintela JC. The effectiveness of Rhodiola rosea L. preparations in alleviating various aspects of life-stress symptoms and stress-induced conditions-encouraging clinical evidence. Molecules. 2022;27(12):3902. doi: 10.3390/molecules27123902
- Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurol Res. 2004;26(4):422-428. doi: 10.1179/016164104225016047
- Ghaffari N, Mokhtari T, Adabi M, et al. Neurological recovery and neurogenesis by curcumin sustained‐release system cross‐linked with an acellular spinal cord scaffold in rat spinal cord injury: Targeting NLRP3 inflammasome pathway. Phytother Res. 2024;38:2669-2686. doi: 10.1002/ptr.8179
- Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: Possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7):1785-1793. doi: 10.1016/j.pnpbp.2011.06.012
- Daugherty DJ, Marquez A, Calcutt NA, Schubert D. A novel curcumin derivative for the treatment of diabetic neuropathy. Neuropharmacology. 2018;129:26-35. doi: 10.1016/j.neuropharm.2017.11.007
- Attari F, Zahmatkesh M, Aligholi H, et al. Curcumin as a double-edged sword for stem cells: Dose, time and cell type-specific responses to curcumin. Daru. 2015;23:33. doi: 10.1186%2Fs40199-015-0115-8
- Farooqui AA, Farooqui T. Therapeutic potentials of curcumin in Parkinson’s disease. In: Curcumin for Neurological and Psychiatric Disorders. Netherlands: Elsevier; 2019. p. 333-344. doi: 10.1016/B978-0-12-815461-8.00018-9
- Currais A, Goldberg J, Farrokhi C, et al. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY). 2015;7(11):937-955. doi: 10.18632/aging.100838
- Prior M, Dargusch R, Ehren JL, Chiruta C, Schubert D. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res Ther. 2013;5(3):25. doi: 10.1186/alzrt179
- Nichols M, Zhang J, Polster BM, et al. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience. 2015;308:75-94. doi: 10.1016/j.neuroscience.2015.09.012
- Ebrahimi B, Mokhtari T, Ghaffari N, Adabi M, Hassanzadeh G. Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats. Inflammopharmacology. 2024;32:2505-2524. doi: 10.1007/s10787-024-01478-z
- Zhang L, Ma J, Yang F, et al. Neuroprotective effects of quercetin on ischemic stroke: A literature review. Front Pharmacol. 2022;13:854249. doi: 10.3389/fphar.2022.854249
- Ichwan M, Walker TL, Nicola Z, et al. Apple peel and flesh contain pro-neurogenic compounds. Stem Cell Rep. 2021;16(3):548-565. doi: 10.1016/j.stemcr.2021.01.005
- Boydens C, Pauwels B, Vanden Daele L, Van de Voorde J. Protective effect of resveratrol and quercetin on in vitro-induced diabetic mouse corpus cavernosum. Cardiovasc Diabetol. 2016;15:46. doi: 10.1186/s12933-016-0366-9
- Grau L, Soucek R, Pujol MD. Resveratrol derivatives: Synthesis and their biological activities. Eur J Med Chem. 2023;246:114962. doi: 10.1016/j.ejmech.2022.114962
- Zarebavani M, Baghaei Naeini F, Farahvash A, Moradi F, Dashti N. Resveratrol attenuates chronic social isolation stress‐induced affective disorders: Involvement of NF‐κB/ NLRP3 axis. J Biochem Mol Toxicol. 2023;37(5):e23311. doi: 10.1002/jbt.23311
- Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A. 2007;104(17):7217-7222. doi: 10.1073/pnas.0610068104
- Thomas J, Garg ML, Smith DW. Dietary resveratrol supplementation normalizes gene expression in the hippocampus of streptozotocin-induced diabetic C57Bl/6 mice. J Nutr Biochem. 2014;25(3):313-318. doi: 10.1016/j.jnutbio.2013.11.005
- Kodali M, Parihar VK, Hattiangady B, Mishra V, Shuai B, Shetty AK. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep. 2015;5:8075. doi: 10.1038/srep08075
- Chen X, Lee TJ. Ginsenosides-induced nitric oxide-mediated relaxation of the rabbit corpus cavernosum. Br J Pharmacol. 1995;115(1):15-18. doi: 10.1111/j.1476-5381.1995.tb16313.x
- Hou R, Zhou L, Fu Y, et al. Chemical characterization of two fractions from Sanghuangporus sanghuang and evaluation of antidiabetic activity. J Funct Foods. 2021;87:104825. doi: 10.1016/j.jff.2021.104825
- Si YC, Li Q, Xie CE, Niu X, Xia XH, Yu CY. Chinese herbs and their active ingredients for activating xue (blood) promote the proliferation and differentiation of neural stem cells and mesenchymal stem cells. Chin Med. 2014;9(1):13. doi: 10.1186/1749-8546-9-13
- Qin W, Chen S, Yang S, Xu Q, Xu C, Cai J. The effect of traditional Chinese medicine on neural stem cell proliferation and differentiation. Aging Dis. 2017;8(6):792-811. doi: 10.14336/AD.2017.0428
- Gao H, Dou L, Shan L, Sun Y, Li W. Proliferation and committed differentiation into dopamine neurons of neural stem cells induced by the active ingredients of radix astragali. Neuroreport. 2018;29(7):577-582. doi: 10.1097/wnr.0000000000000997
- Sharifi S, Zununi Vahed S, Ahmadian E, et al. Stem cell therapy: Curcumin does the trick. Phytother Res. 2019;33(11):2927-2937. doi: 10.1002/ptr.6482
- Yang Q, Leong SA, Chan KP, Yuan XL, Ng TK. Complex effect of continuous curcumin exposure on human bone marrow‐derived mesenchymal stem cell regenerative properties through matrix metalloproteinase regulation. Basic Clin Pharmacol Toxicol. 2021;128(1):141-153. doi: 10.1111/bcpt.13477
- Wang JL, Wang JJ, Cai ZN, Xu CJ. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int J Mol Med. 2018;42(5):2481-2488. doi: 10.3892/ijmm.2018.3847
- Gorabi AM, Kiaie N, Hajighasemi S, Jamialahmadi T, Majeed M, Sahebkar A. The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage. Molecules. 2019;24(22):4029. doi: 10.3390/molecules24224029
- Zhou Y, Wu Y, Jiang X, et al. The effect of quercetin on the osteogenesic differentiation and angiogenic factor expression of bone marrow-derived mesenchymal stem cells. PLoS One. 2015;10(6):e0129605. doi: 10.1371/journal.pone.0129605
- Pang XG, Cong Y, Bao NR, Li YG, Zhao JN. Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor-mediated pathway. BioMed Res Int. 2018;2018(1):4178021. doi: 10.1155/2018/4178021
- Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H. The role of flavonoids in the osteogenic differentiation of mesenchymal stem cells. Front Pharmacol. 2022;13:849513. doi: 10.3389/fphar.2022.849513
- Yan L, Guo X, Zhou J, Zhu Y, Zhang Z, Chen H. Quercetin prevents intestinal stem cell aging via scavenging ROS and inhibiting insulin signaling in Drosophila. Antioxidants. 2022;12(1):59. doi: 10.3390/antiox12010059
- Huang P, Wan H, Shao C, Li C, Zhang L, He Y. Recent advances in Chinese herbal medicine for cerebral ischemic reperfusion injury. Front Pharmacol. 2021;12:688596. doi: 10.3389/fphar.2021.688596
- Wang K, Zhou C, Li L, et al. Aucubin promotes bone-fracture healing via the dual effects of anti-oxidative damage and enhancing osteoblastogenesis of hBM-MSCs. Stem Cell Res Ther. 2022;13(1):424. doi: 10.1186/s13287-022-03125-2
- Xiao S, Zhong N, Yang Q, et al. Aucubin promoted neuron functional recovery by suppressing inflammation and neuronal apoptosis in a spinal cord injury model. Int Immunopharmacol. 2022;111:109163. doi: 10.1016/j.intimp.2022.109163
- Hu F, Bi Y, Zheng X, Lu M, Diao Q, Tu Y. Effect of baicalin supplementation on the growth, health, antioxidant and anti-inflammatory capacity, and immune function of preweaned calves. Anim Feed Sci Technol. 2023;298:115598. doi: 10.1016/j.anifeedsci.2023.115598
- Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol. 2022;13:986436. doi: 10.3389/fphar.2022.986436
- Li M, Wang Y, Xue J, et al. Baicalin can enhance odonto/ osteogenic differentiation of inflammatory dental pulp stem cells by inhibiting the NF-κB and β-catenin/Wnt signaling pathways. Mol Biol Rep. 2023;50(5):4435-4446. doi: 10.1007/s11033-023-08398-1
- Zhuang PW, Cui GZ, Zhang YJ, et al. Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats. CNS Neurosci Therapeut. 2013;19(3):154-162. doi: 10.1111/cns.12050
- Li MY, Chang CT, Han YT, Liao CP, Yu JY, Wang TW. Ginkgolide B promotes neuronal differentiation through the Wnt/β-catenin pathway in neural stem cells of the postnatal mammalian subventricular zone. Sci Rep. 2018;8(1):14947. doi: 10.1038/s41598-018-32960-8
- Chan WH. Ginkgolide B induces apoptosis and developmental injury in mouse embryonic stem cells and blastocysts. Hum Reprod. 2006;21(11):2985-2995. doi: 10.1093/humrep/del255
- Ren C, Ji YQ, Liu H, et al. Effects of Ginkgo biloba extract EGb761 on neural differentiation of stem cells offer new hope for neurological disease treatment. Neural Regen Res. 2019;14(7):1152-1157. doi: 10.4103/1673-5374.251191
- He F, Yao G. Ginsenoside Rg1 as a potential regulator of hematopoietic stem/progenitor cells. Stem Cells Int. 2021;2021(1):4633270. doi: 10.1155/2021/4633270
- Wang Z, Jiang R, Wang L, et al. Ginsenoside Rg1 improves differentiation by inhibiting senescence of human bone marrow mesenchymal stem cell via GSK‐3β and β‐catenin. Stem Cells Int. 2020;2020(1):2365814. doi: 10.1155/2020/2365814
- Liu Y, Jiang L, Song W, et al. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol. 2023;11:1190266. doi: 10.3389/fcell.2023.1190266
- Safaeinejad Z, Kazeminasab F, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH. Multi-effects of Resveratrol on stem cell characteristics: Effective dose, time, cell culture conditions and cell type-specific responses of stem cells to resveratrol. Eur J Med Chem. 2018;155:651-657. doi: 10.1016/j.ejmech.2018.06.037
- Moon DK, Kim BG, Lee AR, et al. Resveratrol can enhance osteogenic differentiation and mitochondrial biogenesis from human periosteum-derived mesenchymal stem cells. J Orthop Surg Res. 2020;15:203. doi: 10.1186/s13018-020-01684-9
- Wang YJ, Zhao P, Sui BD, et al. Resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Exp Mol Med. 2018;50(6):1-15. doi: 10.1038/s12276-018-0109-y
- Yang N, Chen H, Gao Y, et al. Tanshinone IIA exerts therapeutic effects by acting on endogenous stem cells in rats with liver cirrhosis. Biomed Pharmacother. 2020;132:110815. doi: 10.1016/j.biopha.2020.110815
- Yuan P, Qin HY, Wei JY, Chen G, Li X. Proteomics reveals the potential mechanism of Tanshinone IIA in promoting the ex vivo expansion of human bone marrow mesenchymal stem cells. Regen Ther. 2022;21:560-573. doi: 10.1016/j.reth.2022.11.004
- Kaiser EE, Waters ES, Yang X, et al. Tanshinone IIA-loaded nanoparticle and neural stem cell therapy enhances recovery in a pig ischemic stroke model. Stem Cells Transl Med. 2022;11(10):1061-1071. doi: 10.1093/stcltm/szac062
- Huang P, Li H, Ren L, et al. Astragaloside IV enhances the sensitivity of breast cancer stem cells to paclitaxel by inhibiting stemness. Transl Cancer Res. 2023;12(12):3703. doi: 10.21037/tcr-23-1885
- Liang Y, Chen B, Liang D, et al. Pharmacological effects of astragaloside IV: A review. Molecules. 2023;28(16):6118. doi: 10.3390/molecules28166118
- Wang W, Shen Z, Tang Y, et al. Astragaloside IV promotes the angiogenic capacity of adipose-derived mesenchymal stem cells in a hindlimb ischemia model by FAK phosphorylation via CXCR2. Phytomedicine. 2022;96:153908. doi: 10.1016/j.phymed.2021.153908
- Udalamaththa VL, Jayasinghe CD, Udagama PV. Potential role of herbal remedies in stem cell therapy: Proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Res Therapy. 2016;7(1):110. doi: 10.1186/s13287-016-0366-4
- Sha Z, Liu W, Jiang T, Zhang K, Yu Z. Astragaloside IV induces the protective effect of bone marrow mesenchymal stem cells derived exosomes in acute myocardial infarction by inducing angiogenesis and inhibiting apoptosis. Biotechnol Genet Eng Rev. 2023;40:1438-1455. doi: 10.1080/02648725.2023.2194087
- Khalid H, Khalid S, Sufyan M, Ashfaq UA. In-silico elucidation reveals potential phytochemicals against angiotensin-converting enzyme 2 (ACE-2) receptor to fight coronavirus disease 2019 (COVID-19). Z Naturforsch C J Biosci. 2022;77(11-12):473-482. doi: 10.1515/znc-2021-0325
- Zhang H, Liu R, Li H, Yang Y, Zhou F. Isoflavonoids from Astragalus membranaceus hairy roots. Chem Nat Compounds. 2022;58(3):541-544. doi: 10.1007/s10600-022-03729-3