AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.4632
REVIEW ARTICLE

G protein-coupled estrogen receptor 1 and its role in sex-specific differences in neurological and cardiovascular diseases

Oliver Dräger1 Julia Gottschalk1 Erhard Wischmeyer1 Beatrice A. Nossek1*
Show Less
1 Department of Cellular Neurophysiology, Medical School OWL, Bielefeld University, Bielefeld, Germany
Submitted: 22 August 2024 | Accepted: 22 October 2024 | Published: 22 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Estrogen receptors (ERs) and their ligands play a crucial role in physiological and pathophysiological processes, particularly in the central nervous and cardiovascular systems. There is increasing evidence that besides the two cytosolic and nuclear ERs, namely, ERα and ERβ, the seven-transmembrane G protein-coupled ER 1 (GPER1) is of great importance in the molecular mechanisms underlying various neurological and cardiovascular diseases and is probably responsible for sex-specific differences. In contrast to ERα and ERβ, GPER1 mediates its effects through not only transcriptional regulation but also rapid nongenomic signaling. This emphasizes the role of GPER1 in the modulation of acute pathophysiological mechanisms involving changes in diverse signaling pathways related to neurological and cardiological aspects. In this review, we have summarized the role of GPER1 in disorders of excitable tissues, including neuroinflammation, learning and memory, Alzheimer’s disease, Parkinson’s disease, depression and mood disorders, schizophrenia, epilepsy, autism spectrum disorders and attention-deficit/hyperactivity disorder, migraine and pain, cardiovascular hypertension, cardiovascular function and fibrosis, hypertrophy, and atrial fibrillation, with a special focus on its involvement in sex-specific differences. We have assessed reports investigating the role of GPER1 in rodents and humans using in vivo and in vitro data. We have also reviewed the role of nutraceuticals, especially phytoestrogens, in this context. Furthermore, we have discussed the potential of GPER1 as a target for novel therapeutic interventions and prognostic indicator of neurological and cardiovascular diseases with a focus on sex-specific differences.

Keywords
G protein-coupled estrogen receptor 1
Sex-specific differences
Neurological diseases
Cardiovascular diseases
Estrogen
Estrogen receptors
Funding
None.
Conflict of interest
The authors declare that they have no conflicts of interest.
References
  1. Ziemka-Nalecz M, Pawelec P, Ziabska K, Zalewska T. Sex differences in brain disorders. Int J Mol Sci. 2023;24:19. doi: 10.3390/ijms241914571

 

  1. Singh R, Nasci VL, Guthrie G, et al. Emerging roles for G protein-coupled estrogen receptor 1 in cardio-renal health: Implications for aging. Biomolecules. 2022;12(3):412. doi: 10.3390/biom12030412

 

  1. da Silva JS, Montagnoli TL, Rocha BS, et al. Estrogen receptors: Therapeutic perspectives for the treatment of cardiac dysfunction after myocardial infarction. Int J Mol Sci. 2021;22(2):525. doi: 10.3390/ijms22020525

 

  1. Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: A novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol. 2021;178(19):3849-3863. doi: 10.1111/bph.15521

 

  1. Feldman RD. Sex-specific determinants of coronary artery disease and atherosclerotic risk factors: Estrogen and beyond. Can J Cardiol. 2020;36(5):706-711. doi: 10.1016/j.cjca.2020.03.002

 

  1. Groban L, Tran QK, Ferrario CM, et al. Female heart health: Is GPER the missing link? Front Endocrinol (Lausanne). 2019;10:919. doi: 10.3389/fendo.2019.00919

 

  1. Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014;90:13-29. doi: 10.1016/j.steroids.2014.06.012

 

  1. Filardo EJ, Quinn JA, Frackelton AR Jr., Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: Stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to- MAPK signaling axis. Mol Endocrinol. 2002;16(1):70-84. doi: 10.1210/mend.16.1.0758

 

  1. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625-1630. doi: 10.1126/science.1106943

 

  1. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624-632. doi: 10.1210/en.2004-1064

 

  1. Gonzalez de Valdivia E, Sandén C, Kahn R, Olde B, Leeb- Lundberg LMF. Human G protein-coupled receptor 30 is N-glycosylated and N-terminal domain asparagine 44 is required for receptor structure and activity. Biosci Rep. 2019;39(2):BSR20182436. doi: 10.1042/BSR20182436

 

  1. Luo J, Liu D. Does GPER really function as a G protein-coupled estrogen receptor in vivo? Front Endocrinol. 2020;11:148. doi: 10.3389/fendo.2020.00148

 

  1. Sakamoto H, Matsuda KI, Hosokawa K, et al. Expression of G protein-coupled receptor-30, a G protein-coupled membrane estrogen receptor, in oxytocin neurons of the rat paraventricular and supraoptic nuclei. Endocrinology. 2007;148(12):5842-5850. doi: 10.1210/en.2007-0436

 

  1. Warfvinge K, Krause DN, Maddahi A, Edvinsson JCA, Edvinsson L, Haanes KA. Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects. J Headache Pain. 2020;21(1):131. doi: 10.1186/s10194-020-01197-0

 

  1. Goncalves GK, Scalzo S, Alves AP, Agero U, Guatimosim S, Reis AM. Neonatal cardiomyocyte hypertrophy induced by endothelin-1 is blocked by estradiol acting on GPER. American journal of physiology. Am J Physiol Cell Physiol. 2018;314(3):C310-C322. doi: 10.1152/ajpcell.00060.2017

 

  1. Sandén C, Broselid S, Cornmark L, et al. G protein-coupled estrogen receptor 1/G protein-coupled receptor 30 localizes in the plasma membrane and traffics intracellularly on cytokeratin intermediate filaments. Mol Pharmacol. 2011;79(3):400-410. doi: 10.1124/mol.110.069500.

 

  1. Cheng SB, Quinn JA, Graeber CT, Filardo EJ. Down-modulation of the G-protein-coupled estrogen receptor, GPER, from the cell surface occurs via a trans-Golgi-proteasome pathway. J Biol Chem. 2011;286(25):22441-22455. doi: 10.1074/jbc.M111.224071

 

  1. Gonzalez de Valdivia E, Broselid S, Kahn R, Olde B, Leeb- Lundberg LMF. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and-independent mechanisms. J Biol Chem. 2017;292(24):9932-9943. doi: 10.1074/jbc.M116.765875

 

  1. Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: A novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80(2):231-238. doi: 10.1016/S0960-0760(01)00190-X

 

  1. Ding X, Gao T, Gao P, et al. Activation of the G protein-coupled estrogen receptor elicits store calcium release and phosphorylation of the Mu-opioid receptors in the human neuroblastoma SH-SY5Y cells. Front Neurosci. 2019;13:1351. doi: 10.3389/fnins.2019.01351

 

  1. Chuang SC, Chen CH, Chou YS., Ho ML, Chang JK. G protein-coupled estrogen receptor mediates cell proliferation through the cAMP/PKA/CREB pathway in murine bone marrow mesenchymal stem cells. Int J Mol Sci. 2020;21(18):6490. doi: 10.3390/ijms21186490

 

  1. Conde K, Meza C, Kelly MJ, Sinchak K, Wagner EJ. Estradiol rapidly attenuates ORL-1 receptor-mediated inhibition of proopiomelanocortin neurons via Gq-coupled, membrane-initiated signaling. Neuroendocrinology. 2016;103(6):787-805. doi: 10.1159/000443765

 

  1. Ahmadian Elmi M, Motamed N, Picard D. Proteomic analyses of the G protein-coupled estrogen receptor GPER1 reveal constitutive links to endoplasmic reticulum, glycosylation, trafficking, and calcium signaling. Cells. 2023;12(21):2571. doi: 10.3390/cells12212571

 

  1. Tutzauer J, Serafin DS, Schmidt T, Olde B, Caron KM, Leeb-Lundberg LMF. G protein-coupled estrogen receptor (GPER)/GPR30 forms a complex with the β1-adrenergic receptor, a membrane-associated guanylate kinase (MAGUK) scaffold protein, and protein kinase A anchoring protein (AKAP) 5 in MCF7 breast cancer cells. Arch Biochem Biophys. 2024;752:109882.doi: 10.1016/j.abb.2024.109882

 

  1. De Francesco EM, Pellegrino M, Santolla MF, et al. GPER mediates activation of HIF1α/VEGF signaling by estrogens. Cancer Res. 2014;74(15):4053-4064. doi: 10.1158/0008-5472.CAN-13-3590

 

  1. Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: An update. Nat Rev Endocrinol. 2023;19(7):407-424. doi: 10.1038/s41574-023-00822-7

 

  1. Weiser MJ, Foradori CD, Handa RJ. Estrogen receptor beta in the brain: From form to function. Brain Res Rev. 2008;57(2):309-320. doi: 10.1016/j.brainresrev.2007.05.013

 

  1. Lu Y, Jiang Q, Yu L, et al. 17β-estradiol rapidly attenuates P2X3 receptor-mediated peripheral pain signal transduction via ERα and GPR30. Endocrinology. 2013;154(7):2421-2433. doi: 10.1210/en.2012-2119

 

  1. Takanami K, Sakamoto H, Matsuda KI, et al. Expression of G protein-coupled receptor 30 in the spinal somatosensory system. Brain Res. 2010;1310:17-28. doi: 10.1016/j.brainres.2009.11.004

 

  1. Hazell GGJ, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol. 2009;202(2):223-236. doi: 10.1677/JOE-09-0066

 

  1. Kuhn J, Dina OA, Goswami C, Suckow V, Levine JD, Hucho T. GPR30 estrogen receptor agonists induce mechanical hyperalgesia in the rat. Eur J Neurosci. 2008;27(7):1700-1709. doi: 10.1111/j.1460-9568.2008.06131.x

 

  1. Brandt N, Rune GM. Sex-dependency of oestrogen-induced structural synaptic plasticity: Inhibition of aromatase versus application of estradiol in rodents. Eur J Neurosci. 2020;52(1):2548-2559. doi: 10.1111/ejn.14541

 

  1. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7(12):715-726. doi: 10.1038/nrendo.2011.122

 

  1. Wang H, Sun X, Chou J, et al. Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis. Biochim Biophys Acta Mol Basis Dis. 2017;1863(8):1870-1882. doi: 10.1016/j.bbadis.2016.10.003

 

  1. Meyer MR, Haas E, Barton M. Gender differences of cardiovascular disease: New perspectives for estrogen receptor signaling. Hypertension. 2006;47(6):1019-1026. doi: 10.1161/01.HYP.0000223064.62762.0b

 

  1. Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol. 2020;319(4):F612-F617. doi: 10.1152/ajprenal.00045.2020

 

  1. Di Mattia RA, Mariángelo JIE, Blanco PG, et al. The activation of the G protein-coupled estrogen receptor (GPER) prevents and regresses cardiac hypertrophy. Life Sci. 2020;242:117211. doi: 10.1016/j.lfs.2019.117211

 

  1. Deschamps AM, Murphy E. Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol. 2009;297(5):H1806-H1813. doi: 10.1152/ajpheart.00283.2009

 

  1. Machuki JO, Zhang HY, Geng J, et al. Estrogen regulation of cardiac cAMP-L-type Ca2+ channel pathway modulates sex differences in basal contraction and responses to β2AR-mediated stress in left ventricular apical myocytes. Cell Commun Signal. 2019;17(1):34. doi: 10.1186/s12964-019-0346-2

 

  1. Ogola BO, Zimmerman MA, Sure VN, et al. G protein-coupled estrogen receptor protects from angiotensin II-induced increases in pulse pressure and oxidative stress. Front Endocrinol (Lausanne). 2019;10:586. doi: 10.3389/fendo.2019.00586

 

  1. Carregosa D, Mota S, Ferreira S, et al. Overview of beneficial effects of (Poly)phenol metabolites in the context of neurodegenerative diseases on model organisms. Nutrients. 2021;13(9):2940. doi: 10.3390/nu13092940

 

  1. Brahmachari G. Discovery and Development of Neuroprotective Agents from Natural Products. Netherlands: Elsevier; 2018. doi: 10.1016/C2014-0-04884-8

 

  1. Goyal A, Verma A, Agrawal N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr Neurovasc Res. 2021;18(2):254-267. doi: 10.2174/1567202618666210604121233

 

  1. Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627-642. doi: 10.1038/nrcardio.2015.152

 

  1. Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology. 2024;166:107070. doi: 10.1016/j.psyneuen.2024.107070

 

  1. Hamilton JP. Epigenetics: Principles and practice. Dig Dis. 2011;29(2):130-135. doi: 10.1159/000323874

 

  1. Muhammad A, Hixon JC, Pharmacy Yusuf A, et al. Sex-specific epigenetics drive low GPER expression in gastrointestinal smooth muscles in type 2 diabetic mice. Sci Rep. 2024;14(1):5633. doi: 10.1038/s41598-024-54213-7

 

  1. Prestegui Martel B, Chávez-Blanco AD, Domínguez- Gómez G, et al N-(2-Hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) induces apoptosis and cell cycle arrest in breast cancer cells, decreasing GPER expression. Molecules. 2024;29(15):3509. doi: 10.3390/molecules29153509

 

  1. Major KM, DeCourten BM, Li J, et al. Early life exposure to environmentally relevant levels of endocrine disruptors drive multigenerational and transgenerational epigenetic changes in a fish model. Front Mar Sci. 2020;7. doi: 10.3389/fmars.2020.00471

 

  1. Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol. 2018;182:106-118. doi: 10.1016/j.jsbmb.2018.04.016

 

  1. Prasanth MI, Sivamaruthi BS, Cheong CSY, et al. Role of epigenetic modulation in neurodegenerative diseases: Implications of phytochemical interventions. Antioxidants (Basel). 2024;13(5):606. doi: 10.3390/antiox13050606

 

  1. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267. doi: 10.1038/s41392-023-01486-5

 

  1. Lebesgue D, Traub M, de Butte-Smith M, et al. Acute administration of non-classical estrogen receptor agonists attenuates ischemia-induced hippocampal neuron loss in middle-aged female rats. PLoS One. 2010;5(1):e8642. doi: 10.1371/journal.pone.0008642

 

  1. Lebesgue D, Chevaleyre V, Zukin RS, Etgen AM. Estradiol rescues neurons from global ischemia-induced cell death: Multiple cellular pathways of neuroprotection. Steroids. 2009;74(7):555-561. doi: 10.1016/j.steroids.2009.01.003

 

  1. Tang H, Zhang Q, Yang L, et al. GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol. 2014;387(1-2):52-58. doi: 10.1016/j.mce.2014.01.024

 

  1. Bai N, Zhang Q, Zhang W, et al. G-protein-coupled estrogen receptor activation upregulates interleukin-1 receptor antagonist in the hippocampus after global cerebral ischemia: implications for neuronal self-defense. J Neuroinflamm. 2020;17(1):45. doi: 10.1186/s12974-020-1715-x

 

  1. Pan MX, Tang JC, Liu R, Feng YG, Wan Q. Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats. Chin J Traumatol. 2018;21(4):224-228. doi: 10.1016/j.cjtee.2018.04.003

 

  1. Zhang Z, Qin P, Deng Y, et al. The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J Neuroinflamm. 2018;15(1):206. doi: 10.1186/s12974-018-1246-x

 

  1. Peng J, Yu Z, Xiao R, Hu X, Xia Y. Exosomal ZEB1 derived from neural stem cells reduces inflammation injury in OGD/R-treated microglia via the GPR30-TLR4-NF-κB axis. Neurochem Res. 2023;48(6):1811-1821. doi: 10.1007/s11064-023-03866-3

 

  1. Wang XS, Yue J, Hu LN, et al. Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia. 2020;68(1):27-43. doi: 10.1002/glia.23697

 

  1. Yuan LJ, Zhang M, Chen S, Chen WF. Anti-inflammatory effect of IGF-1 is mediated by IGF-1R cross talk with GPER in MPTP/MPP+-induced astrocyte activation. Mol Cell Endocrinol. 2021;519:l111053. doi: 10.1016/j.mce.2020.111053

 

  1. Yin J, Zhang B, Yu Z, et al. Ameliorative effect of dietary tryptophan on neurodegeneration and inflammation in d-galactose-induced aging mice with the potential mechanism relying on AMPK/SIRT1/PGC-1α pathway and gut microbiota. J Agric Food Chem. 2021;69(16):4732-4744. doi: 10.1021/acs.jafc.1c00706

 

  1. Yin J, Zhang Y, Liu X, et al. Gut microbiota-derived indole derivatives alleviate neurodegeneration in aging through activating GPR30/AMPK/SIRT1 pathway. Mol Nutr Food Res. 2023;67(9):e2200739. doi: 10.1002/mnfr.202200739

 

  1. Peng J, Zuo Y, Huang L, et al. Activation of GPR30 with G1 attenuates neuronal apoptosis via src/EGFR/stat3 signaling pathway after subarachnoid hemorrhage in male rats. Exp Neurol. 2019;320:113008. doi: 10.1016/j.expneurol.2019.113008

 

  1. Shen F, Wang J, Gao F, Wang J, Zhu G. Ginsenoside Rg1 prevents cognitive impairment and hippocampal neuronal apoptosis in experimental vascular dementiamice by promoting GPR30 expression. Neural Plast. 2021;2021:2412220. doi: 10.1155/2021/2412220

 

  1. Kim J, Szinte JS, Boulware MI, Frick KM. 17β-estradiol and agonism of G-protein-coupled estrogen receptor enhance hippocampal memory via different cell-signaling mechanisms. J Neurosci. 2016;36(11):3309-3321. doi: 10.1523/JNEUROSCI.0257-15.2016

 

  1. Kim J, Schalk JC, Koss WA, et al. Dorsal hippocampal actin polymerization is necessary for activation of G-protein-coupled estrogen receptor (GPER) to increase CA1 dendritic spine density and enhance memory consolidation. J Neurosci. 2019;39(48):9598-9610. doi: 10.1523/JNEUROSCI.2687-18.2019

 

  1. Wang L, Liu J, Xu J, Zhang W, Wang R. Coupling of GPR30 mediated neurogenesis and protection with astroglial Aromatase-STAT3 signaling in rat hippocampus after global cerebral ischemia. Mol Cell Endocrinol. 2021;535:111394. doi: 10.1016/j.mce.2021.111394

 

  1. Wang X, Jiang Y, Feng B, et al. PJA1 mediates the effects of astrocytic GPR30 on learning and memory in female mice. J Clin Invest. 2023;133(18):e165812. doi: 10.1172/JCI165812

 

  1. Machado GDB, Schnitzler AL, Fleischer AW, Beamish SB, Frick KM. G protein-coupled estrogen receptor (GPER) in the dorsal hippocampus regulates memory consolidation in gonadectomized male mice, likely via different signaling mechanisms than in female mice. Horm Behav. 2024;161:105516. doi: 10.1016/j.yhbeh.2024.105516

 

  1. Rishabh, Rohilla M, Bansal S, et al. Estrogen signalling and Alzheimer’s disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci. 2024;60(1):3466-3490. doi: 10.1111/ejn.16360

 

  1. Luo W, Yan Y, Cao Y, Zhang Y, Zhang Z. The effects of GPER on age-associated memory impairment induced by decreased estrogen levels. Front Mol Biosci. 2023;10:1097018. doi: 10.3389/fmolb.2023.1097018

 

  1. Kurt AH, Yuksel KZ, Uremis N, et al. Protective effects of G protein-coupled estrogen receptor 1 (GPER1) on β-amyloid-induced neurotoxicity: Implications for Alzheimer’s disease. Neurochem J. 2019;13(1):99-104. doi: 10.1134/S1819712419010148

 

  1. Deng LJ, Cheng C, Wu J, Wang CH, Zhou HB, Huang J. Oxabicycloheptene sulfonate protects against β-amyloid-induced toxicity by activation of PI3K/Akt and ERK signaling pathways via GPER1 in C6 cells. Neurochem Res. 2017;42(8):2246-2256. doi: 10.1007/s11064-017-2237-5

 

  1. Kubota T, Matsumoto H, Kirino Y. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease. J Pharmacol Sci. 2016;131(3):219-222. doi: 10.1016/j.jphs.2016.06.005

 

  1. Meng L, Gui S, Ouyang Z, et al. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. J Hazard Mater. 2023;459:132074. doi: 10.1016/j.jhazmat.2023.132074

 

  1. Meng L, Liu J, Wang C, et al. Sex-specific oxidative damage effects induced by BPA and its analogs on primary hippocampal neurons attenuated by EGCG. Chemosphere. 2021;264(Pt 1):128450. doi: 10.1016/j.chemosphere.2020.128450

 

  1. Kiyama R. Estrogenic biological activity and underlying molecular mechanisms of green tea constituents. Trends Food Sci Technol. 2020;95:247-260. doi: 10.1016/j.tifs.2019.11.014

 

  1. Wang L, Huang C, Li L, Pang Q, Wang C, Fan R. In vitro and in silico assessment of GPER-dependent neurocytotoxicity of emerging bisphenols. Sci Total Environ. 2023;862:160762. doi: 10.1016/j.scitotenv.2022.160762

 

  1. Moreno-Ulloa A, Mendez-Luna D, Beltran-Partida E, et al. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacol Res. 2015;100:309-320. doi: 10.1016/j.phrs.2015.08.014

 

  1. Jia M, Ning F, Wen J, et al. Secoisolariciresinol diglucoside attenuates neuroinflammation and cognitive impairment in female Alzheimer’s disease mice via modulating gut microbiota metabolism and GPER/CREB/BDNF pathway. J Neuroinflamm. 2024;21(1):201. doi: 10.1186/s12974-024-03195-4

 

  1. Du ZR, Feng XQ, Li N, et al. G protein-coupled estrogen receptor is involved in the anti-inflammatory effects of genistein in microglia. Phytomedicine. 2018;43:11-20. doi: 10.1016/j.phymed.2018.03.039

 

  1. Ariyani W, Miyazaki W, Koibuchi N. A novel mechanism of S-equol action in neurons and astrocytes: The possible involvement of GPR30/GPER1. Int J Mol Sci. 2019;20(20):5178. doi: 10.3390/ijms20205178

 

  1. Ariyani W, Amano I, Koibuchi N. Isoflavones mediate dendritogenesis mainly through estrogen receptor α. Int J Mol Sci. 2023;24(10):9011.doi: 10.3390/ijms24109011

 

  1. Moriyama M, Hashimoto A, Satoh H, et al. S-equol, a major isoflavone from soybean, inhibits nitric oxide production in lipopolysaccharide-stimulated rat astrocytes partially via the GPR30-mediated pathway. Int J Inflamm. 2018;2018:8496973. doi: 10.1155/2018/8496973

 

  1. Kajta M, Rzemieniec J, Litwa E, et al. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience. 2013;238:345-360. doi: 10.1016/j.neuroscience.2013.02.005

 

  1. Valera E, Masliah E. Therapeutic approaches in Parkinson’s disease and related disorders. J Neurochem. 2016;139 Suppl 1(Suppl 1):346-352. doi: 10.1111/jnc.13529

 

  1. Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson’s disease. Lancet. 2024;403(10423):293-304. doi: 10.1016/S0140-6736(23)01478-2

 

  1. Cherian A, Divya KP, Vijayaraghavan A. Parkinson’s disease - genetic cause. Curr Opin Neurol. 2023;36(4):292-301. doi: 10.1097/WCO.0000000000001167

 

  1. Russillo MC, Andreozzi V, Erro R, et al. Sex differences in Parkinson’s disease: From bench to bedside. Brain Sci. 2022;12(7):917. doi: 10.3390/brainsci12070917

 

  1. Patel R, Kompoliti K. Sex and gender differences in Parkinson’s disease. Neurol Clin. 2023;41(2):371-379. doi: 10.1016/j.ncl.2022.12.001

 

  1. Petrovska S, Dejanova B, Jurisic V. Estrogens: Mechanisms of neuroprotective effects. J Physiol Biochem. 2012;68(3):455-460. doi: 10.1007/s13105-012-0159-x

 

  1. Simpkins JW, Singh M, Brock C, Etgen AM. Neuroprotection and estrogen receptors. Neuroendocrinology. 2021;96(2):119-130. doi: 10.1159/000338409

 

  1. Cersosimo MG, Benarroch EE. Estrogen actions in the nervous system: Complexity and clinical implications. Neurology. 2015;85(3):263-273. doi: 10.1212/WNL.0000000000001776

 

  1. Reekes TH, Higginson CI, Ledbetter CR, Sathivadivel N, Zweig RM, Disbrow EA. Sex specific cognitive differences in Parkinson disease. NPJ Parkinsons Dis. 2020;6:7. doi: 10.1038/s41531-020-0109-1

 

  1. Guan J, Yang B, Fan Y, Zhang J. GPER Agonist G1 attenuates neuroinflammation and dopaminergic neurodegeneration in Parkinson disease. Neuroimmunomodulation. 2017;24(1):60-66. doi: 10.1159/000478908

 

  1. Bourque M, Morissette M, Côté M, Soulet D, Di Paolo T. Implication of GPER1 in neuroprotection in a mouse model of Parkinson’s disease. Neurobiol Aging. 2013;34(3):887-901. doi: 10.1016/j.neurobiolaging.2012.05.022

 

  1. Côté M, Bourque M, Poirier AA, et al. GPER1-mediated immunomodulation and neuroprotection in the myenteric plexus of a mouse model of Parkinson’s disease. Neurobiol Dis. 2015;82:99-113. doi: 10.1016/j.nbd.2015.05.017

 

  1. Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G. GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. Brain Behav Immun. 2017;64:296-307. doi: 10.1016/j.bbi.2017.04.016

 

  1. Poirier AA, Côté M, Bourque M, et al. Differential contribution of estrogen receptors to the intestinal therapeutic effects of 17β-estradiol in a murine model of Parkinson’s disease. Brain Res Bull. 2022;187:85-97. doi: 10.1016/j.brainresbull.2022.06.019

 

  1. Sergi CM. Epigallocatechin gallate for Parkinson’s disease. Clin Exp Pharmacol Physiol. 2022;49(10):1029-1041. doi: 10.1111/1440-1681.13691

 

  1. Du ZR, Gu Y, Xie XM, et al. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats. J Steroid Biochem Mol Biol. 2021;214:105989. doi: 10.1016/j.jsbmb.2021.105989

 

  1. Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res. 2024;38(6):3060-3079. doi: 10.1002/ptr.8196

 

  1. Calatayud E, Marcén-Román Y, Rodríguez-Roca B, Salavera C, Gasch-Gallen A, Gómez-Soria I. Sex differences on anxiety and depression in older adults and their relationship with cognitive impairment. Semergen. 2023;49(4):101923. doi: 10.1016/j.semerg.2023.101923

 

  1. Di Benedetto MG, Landi P, Mencacci C, Cattaneo A. Depression in women: Potential biological and sociocultural factors driving the sex effect. Neuropsychobiology. 2024;83(1):2-16. doi: 10.1159/000531588

 

  1. Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011;9:90. doi: 10.1186/1741-7015-9-90

 

  1. Silveira PP, Pokhvisneva I, Howard DM, Meaney MJ.A sex-specific genome-wide association study of depression phenotypes in UK Biobank. Mol Psychiatry. 2023;28(6):2469-2479. doi: 10.1038/s41380-023-01960-0

 

  1. Herreen D, Rice S, Zajac I. Brief assessment of male depression in clinical care: Validation of the male depression risk scale short form in a cross-sectional study of Australian men. BMJ Open. 2022;12(3):e053650. doi: 10.1136/bmjopen-2021-053650

 

  1. Findikli E, Kurutas EB, Camkurt MA, et al. Increased serum G protein-coupled estrogen receptor 1 levels and its diagnostic value in drug naïve patients with major depressive disorder. Clin Psychopharmacol Neurosci. 2017;15(4):337-342. doi: 10.9758/cpn.2017.15.4.337

 

  1. Wang R, Kogler L, Derntl B. Sex differences in cortisol levels in depression: A systematic review and meta-analysis. Front Neuroendocrinol. 2024;72:101118. doi: 10.1016/j.yfrne.2023.101118

 

  1. Furlong MA, Barr DB, Wolff MS, Engel SM. Prenatal exposure to pyrethroid pesticides and childhood behavior and executive functioning. Neurotoxicology. 2017;62:231-238. doi: 10.1016/j.neuro.2017.08.005

 

  1. Viel JF, Rouget F, Warembourg C, et al. Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: The PELAGIE mother-child cohort. Occup Environ Med. 2017;74(4):275-281. doi: 10.1136/oemed-2016-104035

 

  1. Kajta M, Wnuk A, Rzemieniec J, et al. Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. J Steroid Biochem Mol Biol. 2017;171:94-109. doi: 10.1016/j.jsbmb.2017.03.001

 

  1. Kang WC, Lee YS, Park K, et al. Paeonol alleviates postmenopause-induced neuropsychiatric symptoms through the modulation of GPR30 in ovariectomized mice. J Ethnopharmacol. 2024;327:118063. doi: 10.1016/j.jep.2024.118063

 

  1. Tongta S, Daendee S, Kalandakanond-Thongsong S. Effects of estrogen receptor β or G protein-coupled receptor 30 activation on anxiety-like behaviors in relation to GABAergic transmission in stress-ovariectomized rats. Neurosci Lett. 2022;789:136885. doi: 10.1016/j.neulet.2022.136885

 

  1. Kastenberger I, Lutsch C, Schwarzer C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology. 2012;221(3):527-535. doi: 10.1007/s00213-011-2599-3

 

  1. Sun Q, Li G, Zhao F, et al. Role of estrogen in treatment of female depression. Aging (Albany NY). 2024;16(3):3021-3042. doi: 10.18632/aging.205507

 

  1. Lei B, Xu L, Zhang X, Peng W, Tang Q, Feng C. The proliferation effects of fluoxetine and amitriptyline on human breast cancer cells and the underlying molecular mechanisms. Environ Toxicol Pharmacol. 2021;83:103586. doi: 10.1016/j.etap.2021.103586

 

  1. Lupu D, Sjödin MOD, Varshney M, Lindberg J, Loghin F, Rüegg J. Fluoxetine modulates sex steroid levels in vitro. Clujul Med. 2017;90(4):420-424. doi: 10.15386/cjmed-868

 

  1. Lupu D, Varshney MK, Mucs D, et al. Fluoxetine affects differentiation of midbrain dopaminergic neurons in vitro. Mol Pharmacol. 2018;94(4):1220-1231. doi: 10.1124/mol.118.112342

 

  1. Koitmäe A, Karsten Y, Li X, Morellini F, Rune GM, Bender RA. GPER1 deficiency causes sex-specific dysregulation of hippocampal plasticity and cognitive function. J Endocrinol. 2023;258:3. doi: 10.1530/JOE-22-0204

 

  1. Ekinci GN, Sanlier N. The relationship between nutrition and depression in the life process: A mini-review. Exp Gerontol. 2023;172:112072. doi: 10.1016/j.exger.2022.112072

 

  1. Ortega MA, Fraile-Martínez Ó, García-Montero C, et al. Nutrition, epigenetics, and major depressive disorder: Understanding the connection. Front Nutr. 2022;9:867150. doi: 10.3389/fnut.2022.867150

 

  1. Gamage E, Orr R, Travica N, et al. Polyphenols as novel interventions for depression: Exploring the efficacy, mechanisms of action, and implications for future research. Neurosci Biobehav Rev. 2023;151:105225. doi: 10.1016/j.neubiorev.2023.105225

 

  1. Rondanelli M, Opizzi A, Solerte SB, Trotti R, Klersy C, Cazzola R. Administration of a dietary supplement (N-oleyl-phosphatidylethanolamine and epigallocatechin- 3-gallate formula) enhances compliance with diet in healthy overweight subjects: A randomized controlled trial. Br J Nutr. 2009;101(3):457-464. doi: 10.1017/S0007114508024008

 

  1. Borgwardt S, Hammann F, Scheffler K, Kreuter M, Drewe J, Beglinger C. Neural effects of green tea extract on dorsolateral prefrontal cortex. Eur J Clin Nutr. 2012;66(11):1187-1192. doi: 10.1038/ejcn.2012.105

 

  1. Li G, Yang J, Wang X, Zhou C, Zheng X, Lin W. Effects of EGCG on depression-related behavior and serotoninconcentration in a rat model of chronic unpredictable mild stress. Food Funct. 2020;11(10):8780-8787. doi: 10.1039/d0fo00524j

 

  1. Macêdo DS, Sanders LLO, das Candeias R, et al. G protein-coupled estrogen receptor 1 (GPER) as a novel target for schizophrenia drug treatment. Schizophrenia Bull Open. 2020;1(1):sgaa062. doi: 10.1093/schizbullopen/sgaa062

 

  1. Salehi MA, Zafari R, Mohammadi S, et al. Brain-based sex differences in schizophrenia: A systematic review of fMRI studies. Hum Brain Mapp. 2024;45(5):e26664. doi: 10.1002/hbm.26664

 

  1. Hursitoglu O, Orhan F, Kurutas E, Doganer A, Durmuş H, Bozkus O. Evaluation serum levels of G protein-coupled estrogen receptor and its diagnostic value in patients with schizophrenia. Psychiatry Clin Psychopharmacol. 2020;30(2):115. doi: 10.5455/PCP.20200521025152

 

  1. Monte AS, da Silva FER, Lima CNC, et al. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. J Psychopharmacol. 2020;34(1):125-136. doi: 10.1177/0269881119875979

 

  1. da Silva FER, Cordeiro RC, de Carvalho Lima CN, et al. Sex and the estrous-cycle phase influence the expression of G protein-coupled estrogen receptor 1 (GPER) in schizophrenia: Translational evidence for a new target. Mol Neurobiol. 2023;60(7):3650-3663. doi: 10.1007/s12035-023-03295-x

 

  1. He J, Wei Y, Li J, et al. Sex differences in the association of treatment-resistant schizophrenia and serum interleukin-6 levels. BMC Psychiatry. 2023;23(1):470. doi: 10.1186/s12888-023-04952-0

 

  1. Zhang C, Liu Q, Yu CY, et al. G protein-coupled estrogen receptor 1 knockout deteriorates MK-801-induced learning and memory impairment in mice. Front Behav Neurosci. 2020;14:157. doi: 10.3389/fnbeh.2020.00157

 

  1. Matrisciano F. Functional nutrition as integrated intervention for in- and outpatient with schizophrenia. Curr Neuropharmacol. 2023;21(12):2409-2423. doi: 10.2174/1570159X21666230322160259

 

  1. Munawar N, Ahsan K, Ahmad A. Natural molecules in the treatment of schizophrenia. In: Oliveira MR, editor. Natural Molecules in Neuroprotection and Neurotoxicity. Netherlands: Elsevier; 2024. p. 259-280. doi: 10.1016/B978-0-443-23763-8.00011-7

 

  1. Loftis JM, Wilhelm CJ, Huckans M. Effect of epigallocatechin gallate supplementation in schizophrenia and bipolar disorder: An 8-week, randomized, double-blind, placebo-controlled study. Ther Adv Psychopharmacol. 2013;3(1):21-27. doi: 10.1177/2045125312464103

 

  1. Kalpana S. Genestein, a phytoestrogens for the treatment of schizophrenia. Int J Sci Eng Res. 2013;4:296-321.

 

  1. Reddy DS, Thompson W, Calderara G. Molecular mechanisms of sex differences in epilepsy and seizure susceptibility in chemical, genetic and acquired epileptogenesis. Neurosci Lett. 2021;750:135753. doi: 10.1016/j.neulet.2021.135753

 

  1. Christensen J, Kjeldsen MJ, Andersen H, Friis ML, Sidenius P. Gender differences in epilepsy. Epilepsia. 2005;46(6):956-960. doi: 10.1111/j.1528-1167.2005.51204.x

 

  1. Betjemann JP, Lowenstein DH. Status epilepticus in adults. Lancet Neurol. 2015;14(6):615-624. doi: 10.1016/S1474-4422(15)00042-3

 

  1. Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. Handb Clin Neurol. 2020;175:223-233. doi: 10.1016/B978-0-444-64123-6.00016-3

 

  1. Bäckström T. Epileptic seizures in women related to plasma estrogen and progesterone during the menstrual cycle. Acta Neurol Scand. 1976;54(4):321-347. doi: 10.1111/j.1600-0404.1976.tb04363.x

 

  1. Logothetis J, Harner R, Morrell F, Torres F. The role of estrogens in catamenial exacerbation of epilepsy. Neurology. 1959;9(5):352-360. doi: 10.1212/wnl.9.5.352

 

  1. Mastrangelo M, Torres B, de Vita G, et al. Neurodevelopmental impairment as the main phenotypic hallmark associated with the translocation t(7;10)(7p22.3;q26.11). J Pediatr Genet. 2022;11(1):68-73. doi: 10.1055/s-0040-1715479

 

  1. Zuo D, Wang F, Rong W, et al. The novel estrogen receptor GPER1 decreases epilepsy severity and susceptivity in the hippocampus after status epilepticus. Neurosci Lett. 2020;728:134978. doi: 10.1016/j.neulet.2020.134978

 

  1. Zhang X, Yang Y, Guo L, et al. GPER1 modulates synaptic plasticity during the development of temporal lobe epilepsy in rats. Neurochem Res. 2021;46(8):2019-2032. doi: 10.1007/s11064-021-03336-8

 

  1. Kurt AH, Bosnak M, Inan SY, Celik A, Uremis MM. Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy. Pharmacol Rep. 2016;68(1):66-70. doi: 10.1016/j.pharep.2015.07.001

 

  1. Wang Z, Huang K, Yang X, et al. Downregulated GPR30 expression in the epileptogenic foci of female patients with focal cortical dysplasia type IIb and tuberous sclerosis complex is correlated with 18 F-FDG PET-CT values. Brain Pathol. 2021;31(2):346-364. doi: 10.1111/bpa.12925

 

  1. Ghosh S, Sinha JK, Ghosh S, Sharma H, Bhaskar R, Narayanan KB. A Comprehensive review of emerging trends and innovative therapies in epilepsy management. Brain Sci. 2023;13(9):1305. doi: 10.3390/brainsci13091305

 

  1. Dyńka D, Kowalcze K, Paziewska A. The role of ketogenic diet in the treatment of neurological diseases. Nutrients. 2022;14(23):5003. doi: 10.3390/nu14235003

 

  1. Arzimanoglou A, Brandl U, Cross JH, et al. Epilepsy and cannabidiol: A guide to treatment. Epileptic Disord. 2020;22(1):1-14. doi: 10.1684/epd.2020.1141

 

  1. Wells J, Swaminathan A, Paseka J, Hanson C. Efficacy and safety of a ketogenic diet in children and adolescents with refractory epilepsy-a review. Nutrients. 2020;12(6):1809. doi: 10.3390/nu12061809

 

  1. Wang S, Zhang Z, Wang J, et al. Neuronal GPER participates in genistein-mediated neuroprotection in ischemic stroke by inhibiting NLRP3 inflammasome activation in ovariectomized female mice. Mol Neurobiol. 2022;59(8):5024-5040. doi: 10.1007/s12035-022-02894-4

 

  1. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol. 2013;26(2):146-153. doi: 10.1097/WCO.0b013e32835ee548

 

  1. Altun H, Kurutaş EB, Şahin N, Sınır H, Fındıklı E. Decreased levels of G protein-coupled estrogen receptor in children with autism spectrum disorders. Psychiatry Res. 2017;257:67-71. doi: 10.1016/j.psychres.2017.06.008

 

  1. Hameed RA, Ahmed EK, Mahmoud AA, Atef AA. G protein-coupled estrogen receptor (GPER) selective agonist G1 attenuates the neurobehavioral, molecular and biochemical alterations induced in a valproic acid rat model of autism. Life Sci. 2023;328:121860. doi: 10.1016/j.lfs.2023.121860

 

  1. Jia Q, Li H, Wang M, et al. Transcript levels of 4 genes in umbilical cord blood are predictive of later autism development: A longitudinal follow-up study. J Psychiatry Neurosci. 2023;48(5):E334-E344. doi: 10.1503/jpn.230046

 

  1. Nøvik TS, Hervas A, Ralston SJ, Dalsgaard S, Rodrigues Pereira R, Lorenzo MJ. Influence of gender on attention-deficit/hyperactivity disorder in Europe--ADORE. Eur Child Adolesc Psychiatry. 2006;15 Suppl 1:I15-I24. doi: 10.1007/s00787-006-1003-z

 

  1. Sahin N, Altun H, Kurutaş EB, Fındıklı E. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD). Bosnian J Basic Med Sci. 2018;18(2):126-131. doi: 10.17305/bjbms.2018.2942

 

  1. Xiao G, Zhou X, Huang J, et al. Association of GPER gene polymorphism with social function of children with attention deficit hyperactivity disorder. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2018;35(4):587-590. doi: 10.3760/cma.j.issn.1003-9406.2018.04.028

 

  1. Berkley KJ. Vive la difference. Trends Neurosci. 1992;15(9):331-332. doi: 10.1016/0166-2236(92)90048-d

 

  1. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim- Williams B, Riley JL. Sex, gender, and pain: A review of recent clinical and experimental findings. J Pain. 2009;10(5):447-485. doi: 10.1016/j.jpain.2008.12.001

 

  1. Pieretti S, Di Giannuario A, Di Giovannandrea R, et al. Gender differences in pain and its relief. Ann Ist Super Sanita. 2016;52(2):184-189. doi: 10.4415/ANN_16_02_09

 

  1. Gupta S, McCarson KE, Welch KMA, Berman NEJ. Mechanisms of pain modulation by sex hormones in migraine. Headache. 2011;51(6):905-922. doi: 10.1111/j.1526-4610.2011.01908.x

 

  1. Artero-Morales M, González-Rodríguez S, Ferrer- Montiel A. TRP channels as potential targets for sex-related differences in migraine pain. Front Mol Biosci. 2018;5:73. doi: 10.3389/fmolb.2018.00073

 

  1. Sacco S, Ricci S, Degan D, Carolei A. Migraine in women: The role of hormones and their impact on vascular diseases. J Headache Pain. 2012;13(3):177-189. doi: 10.1007/s10194-012-0424-y

 

  1. Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76-87. doi: 10.1016/S1474-4422(16)30293-9

 

  1. Jiang M, Sun Y, Lei Y, et al. GPR30 receptor promotes preoperative anxiety-induced postoperative hyperalgesia by up-regulating GABAA-α4β1δ subunits in periaqueductal gray in female rats. BMC Anesthesiol. 2020;20(1):93. doi: 10.1186/s12871-020-01017-7

 

  1. Xu JJ, Gao P, Wu Y, et al. G protein-coupled estrogen receptor in the rostral ventromedial medulla contributes to the chronification of postoperative pain. CNS Neurosci Ther. 2021;27(11):1313-1326. doi: 10.1111/cns.13704

 

  1. Zheng W, Huang X, Wang J, et al. The chronification mechanism of orofacial inflammatory pain: Facilitation by GPER1 and microglia in the rostral ventral medulla. Front Mol Neurosci. 2022;15:1078309. doi: 10.3389/fnmol.2022.1078309

 

  1. Xu Z, Xie W, Feng Y, et al. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain. J Neuroinflamm. 2022;19(1):164. doi: 10.1186/s12974-022-02524-9

 

  1. Wang J, Wang S, Fang Z, et al. Estrogen receptor GPR30 in the anterior cingulate cortex mediates exacerbated neuropathic pain in ovariectomized mice. Brain Res. 2024;1829:148798. doi: 10.1016/j.brainres.2024.148798

 

  1. Xu E, Xia X, Jiang C, et al. GPER1 silencing suppresses the proliferation, migration, and invasion of gastric cancer cells by inhibiting PI3K/AKT-mediated EMT. Front Cell Dev Biol. 2020;8:591239. doi: 10.3389/fcell.2020.591239

 

  1. Araldi D, Ferrari LF, Green P, Levine JD. Marked sexual dimorphism in 5-HT1 receptors mediating pronociceptive effects of sumatriptan. Neuroscience. 2017;344:394-405. doi: 10.1016/j.neuroscience.2016.12.031

 

  1. Jiang M, Liu Y, Wu H, Ma Z, Gu X. High estrogen level modifies postoperative hyperalgesia via GPR30 and MMP-9 in dorsal root ganglia neurons. Neurochem Res. 2020;45(7):1661-1673. doi: 10.1007/s11064-020-03032-z

 

  1. Felix FB, Vago JP, Fernandes DO, et al. Biochanin a regulates key steps of inflammation resolution in a model of antigen-induced arthritis via GPR30/PKA-dependent mechanism. Front Pharmacol. 2021;12:662308. doi: 10.3389/fphar.2021.662308

 

  1. Liu H, Duan SR. Prostaglandin E2-mediated upregulation of neuroexcitation and persistent tetrodotoxin-resistant Na(+) currents in Ah-type trigeminal ganglion neurons isolated from adult female rats. Neuroscience. 2016;320:194-204. doi: 10.1016/j.neuroscience.2016.02.008

 

  1. Liu S, Tian Z, Guo Y, Zhang N, Feng B, Zhao M. Activation of GPR30 attenuates chronic pain-related anxiety in ovariectomized mice. Psychoneuroendocrinology. 2015; 53:94-107. doi: 10.1016/j.psyneuen.2014.12.021

 

  1. Liverman CS, Brown JW, Sandhir R, McCarson KE, Berman NEJ. Role of the oestrogen receptors GPR30 and ERalpha in peripheral sensitization: Relevance to trigeminal pain disorders in women. Cephalalgia. 2009;29(7):729-741. doi: 10.1111/j.1468-2982.2008.01789.x

 

  1. Vermeer LMM, Gregory E, Winter MK, McCarson KE, Berman NEJ. Exposure to bisphenol A exacerbates migraine-like behaviors in a multibehavior model of rat migraine. Toxicol Sci. 2014;137(2):416-427. doi: 10.1093/toxsci/kft245

 

  1. Seehusen F, Baumgärtner W. Axonal pathology and loss precede demyelination and accompany chronic lesions in a spontaneously occurring animal model of multiple sclerosis. Brain Pathol. 2010;20(3):551-559. doi: 10.1111/j.1750-3639.2009.00332.x

 

  1. Kingwell E, Marriott JJ, Jetté N, et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol. 2013;13:128. doi: 10.1186/1471-2377-13-128

 

  1. Confavreux C, Hutchinson M, Hours MM, Cortinovis- Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339(5):285-291. doi: 10.1056/NEJM199807303390501

 

  1. Blasko E, Haskell CA, Leung S, et al. Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J Neuroimmunol. 2009;214(1-2):67-77. doi: 10.1016/j.jneuroim.2009.06.023

 

  1. Bodhankar S, Offner H. GPR30 forms an integral part of e2-protective pathway in experimental autoimmune encephalomyelitis. Immunol Endocr Metab Agents Med Chem. 2011;11(4):262-274. doi: 10.2174/1871522211108040262

 

  1. Hirahara Y, Matsuda KI, Yamada H, et al. G protein-coupled receptor 30 contributes to improved remyelination after cuprizone-induced demyelination. Glia. 2013;61(3):420-431. doi: 10.1002/glia.22445

 

  1. Wang C, Dehghani B, Li Y, et al. Membrane estrogen receptor regulates experimental autoimmune encephalomyelitis through up-regulation of programmed death 1. J Immunol. 2009;182(5):3294-3303. doi: 10.4049/jimmunol.0803205

 

  1. Yates MA, Li Y, Chlebeck PJ, Offner H. GPR30, but not estrogen receptor-alpha, is crucial in the treatment of experimental autoimmune encephalomyelitis by oral ethinyl estradiol. BMC Immunol. 2010;11:20. doi: 10.1186/1471-2172-11-20

 

  1. Subramanian S, Miller LM, Grafe MR Vandenbark AA, Offner H. Contribution of GPR30 for 1,25 dihydroxyvitamin D₃ protection in EAE. Metab Brain Dis. 2012;27(1):29-35. doi: 10.1007/s11011-011-9266-6

 

  1. Huang C, Yuan P, Wu J, Huang J. Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience. 2016;319:9-22. doi: 10.1016/j.neuroscience.2016.01.027

 

  1. Kramer H, Han C, Post W, et al. Racial/ethnic differences in hypertension and hypertension treatment and control in the multi-ethnic study of atherosclerosis (MESA). Am J Hypert. 2004;17(10):963-970. doi: 10.1016/j.amjhyper.2004.06.001

 

  1. Ma Y, Hua R, Yang Z, Zhong B, Yan L, Xie W. Different hypertension thresholds and cognitive decline: A pooled analysis of three ageing cohorts. BMC medicine. 2021;19(1):287. doi: 10.1186/s12916-021-02165-4

 

  1. Burt VL, Whelton P, Roccella EJ, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension. 1995;25(3):305-313. doi: 10.1161/01.hyp.25.3.305

 

  1. Rossi GP, Caroccia B, Seccia TM. Role of estrogen receptors in modulating aldosterone biosynthesis and blood pressure. Steroids. 2019;152:108486. doi: 10.1016/j.steroids.2019.108486

 

  1. Fortepiani LA, Zhang H, Racusen L, Roberts LJ, Reckelhoff JF. Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension. 2003;41(3 Pt 2):640-645. doi: 10.1161/01.HYP.0000046924.94886.EF

 

  1. Yanes LL, Reckelhoff JF. Postmenopausal hypertension. Am J Hypertens. 2011;24(7):740-749. doi: 10.1038/ajh.2011.71

 

  1. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: A report from the American heart association. Circulation. 2019;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659

 

  1. Liu S, Ding T, Liu H, Jian L. GPER was associated with hypertension in post-menopausal women. Open Med (Wars). 2018;13:338-343. doi: 10.1515/med-2018-0051

 

  1. Alencar AKN, Montes GC, Costa DG, et al. Cardioprotection induced by activation of GPER in ovariectomized rats with pulmonary hypertension. J Gerontol A Biol Sci Med Sci. 2018;73(9):1158-1166. doi: 10.1093/gerona/gly068

 

  1. Ghaffari S, Naderi Nabi F, Sugiyama MG, Lee WL. Estrogen inhibits LDL (low-density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler Thromb Vasc Biol. 2018;38(10):2283-2294. doi: 10.1161/ATVBAHA.118.310792

 

  1. Li F, Yu X, Szynkarski CK, et al. Activation of GPER induces differentiation and inhibition of coronary artery smooth muscle cell proliferation. PLoS One. 2013;8(6):e64771. doi: 10.1371/journal.pone.0064771

 

  1. Salehiyeh S, Alborzi N, Azizian H, Esmailidehaj M, Hafizi Barjin Z, Safari F. Sex-related differences in hypertrophy response and cardiac expression of G protein-coupled estrogen receptor in rats with pressure overload. Gene. 2024;928:148769. doi: 10.1016/j.gene.2024.148769

 

  1. da Silva JS, Sun X, Ahmad S, et al. G-protein-coupled estrogen receptor agonist G1 improves diastolic function and attenuates cardiac renin-angiotensin system activation in estrogen-deficient hypertensive rats. J Cardiovasc Pharmacol. 2019;74(5):443-452. doi: 10.1097/FJC.0000000000000721

 

  1. Wang H, Zhao Z, Lin M, Groban L. Activation of GPR30 inhibits cardiac fibroblast proliferation. Mol Cell Biochem. 2015;405(1-2):135-148. doi: 10.1007/s11010-015-2405-3

 

  1. Zhao Z, Wang H, Lin M, Groban L. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number. Biochem Biophys Res Commun. 2015;459(1):131-136. doi: 10.1016/j.bbrc.2015.02.082

 

  1. Lafferty AR, Torpy DJ, Stowasser M, et al. A novel genetic locus for low renin hypertension: Familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet. 2000;37(11):831-835. doi: 10.1136/jmg.37.11.831

 

  1. Tropea T, de Francesco EM, Rigiracciolo D, et al. Pregnancy augments G protein estrogen receptor (GPER) induced vasodilation in rat uterine arteries via the nitric oxide - cGMP signaling pathway. PLoS One. 2015;10(11):e0141997. doi: 10.1371/journal.pone.0141997

 

  1. Meyer MR, Field AS, Kanagy NL, Barton M, Prossnitz ER. GPER regulates endothelin-dependent vascular tone and intracellular calcium. Life Sci. 2012;91(13-14):623-627. doi: 10.1016/j.lfs.2012.01.007

 

  1. Yu X, Zhang Q, Zhao Y, et al. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/ Rho kinase pathway in parallel with PKA. PLoS One. 2017;12(3):e0173085. doi: 10.1371/journal.pone.0173085

 

  1. Yu X, Stallone JN, Heaps CL, Han G. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries. PLoS One. 2018;13(1):e0191418. doi: 10.1371/journal.pone.0191418

 

  1. Bologa CG, Revankar CM, Young SM, et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol. 2006;2(4):207-212. doi: 10.1038/nchembio775

 

  1. Arefin S, Simoncini T, Wieland R, et al. Vasodilatory effects of the selective GPER agonist G-1 is maximal in arteries of postmenopausal women. Maturitas. 2014;78(2):123-130. doi: 10.1016/j.maturitas.2014.04.002

 

  1. Feldman RD, Gros R, Ding Q, et al. A common hypofunctional genetic variant of GPER is associated with increased blood pressure in women. Br J Clin Pharmacol. 2014;78(6):1441-1452. doi: 10.1111/bcp.12471

 

  1. Fredette NC, Malik E, Mukhtar ML, Prossnitz ER, Terada N. A hypertension patient-derived iPSC model demonstrates a role for G protein-coupled estrogen receptor in hypertension risk and development. Am J Physiol Cell Physiol. 2020;319(5):C825-C838. doi: 10.1152/ajpcell.00350.2019

 

  1. Fredette NC, Meyer MR, Prossnitz ER. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol. 2018;176:65-72. doi: 10.1016/j.jsbmb.2017.05.006

 

  1. Meyer MR, Rosemann T, Barton M, Prossnitz ER. GPER mediates functional endothelial aging in renal arteries. Pharmacology. 2017;100(3-4):188-193. doi: 10.1159/000478732

 

  1. Davis GK, Newsome AD, Cole AB, Ojeda NB, Alexander BT. Chronic estrogen supplementation prevents the increase in blood pressure in female intrauterine growth-restricted offspring at 12 months of age. Hypertension. 2019;73(5):1128-1136. doi: 10.1161/HYPERTENSIONAHA.118.12379

 

  1. Magness RR, Parker CR, Rosenfeld CR. Systemic and uterine responses to chronic infusion of estradiol-17 beta. Am J Physiol. 1993;265(5 Pt 1):E690-E698. doi: 10.1152/ajpendo.1993.265.5.E690

 

  1. Đogo A, Dožić B, Vujović S, Srebro D, Dožić I. Effects of continuous-combined oral drospirenone- estradiol on blood pressure, body weight & lipid profile in early menopausal women. Indian J Med Res. 2021;154(6):857-865. doi: 10.4103/ijmr.IJMR_478_20

 

  1. Delgado NTB, Rouver WN, Freitas-Lima LC, et al. Sex differences in the vasodilation mediated by G protein-coupled estrogen receptor (GPER) in hypertensive rats. Front Physiol. 2021;12:659291. doi: 10.3389/fphys.2021.659291

 

  1. Lam CSP, Arnott C, Beale AL, et al. Sex differences in heart failure. Eur Heart J. 2019;40(47):3859-3868c. doi: 10.1093/eurheartj/ehz835

 

  1. Iorga A, Li J, Sharma S, et al. Rescue of pressure overload-induced heart failure by estrogen therapy. J Am Heart Assoc. 2016;5:1. doi: 10.1161/JAHA.115.002482

 

  1. Recchia AG, de Francesco EM, Vivacqua A, et al. The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes. J Biol Chem. 2011;286(12):10773-10782. doi: 10.1074/jbc.M110.172247

 

  1. Bae S, Lim YH, Lee YA, Shin CH, Oh SY, Hong YC. Maternal urinary bisphenol a concentration during midterm pregnancy and children’s blood pressure at age 4. Hypertension. 2017;69(2):367-374. doi: 10.1161/HYPERTENSIONAHA.116.08281

 

  1. Lombó M, González-Rojo S, Fernández-Díez C, Herráez MP. Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate. Environ Pollut. 2019;246:1008-1019. doi: 10.1016/j.envpol.2019.01.004

 

  1. Morselli E, Santos RS, Criollo A, Nelson MD, Palmer BF, Clegg DJ. The effects of oestrogens and their receptors on cardiometabolic health. Nat Rev Endocrinol. 2017;13(6):352-364. doi: 10.1038/nrendo.2017.12

 

  1. Feng Z, Wang C, Yue J, Meng Q, Wu J, Sun H. Kaempferol-induced GPER upregulation attenuates atherosclerosis via the PI3K/AKT/Nrf2 pathway. Pharm Biol. 2021;59(1):1106-1116. doi: 10.1080/13880209.2021.1961823

 

  1. Zhao W, Shan X, Li X, et al. Icariin inhibits hypertrophy by regulation of GPER1 and CaMKII/HDAC4/MEF2C signaling crosstalk in ovariectomized mice. Chem Biol Interact. 2023;384:110728. doi: 10.1016/j.cbi.2023.110728

 

  1. Aubin MC, Lajoie C, Clément R, Gosselin H, Calderone A, Perrault LP. Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: Therapeutic potentialof resveratrol. J Pharmacol Exp Ther. 2008;325(3):961-968. doi: 10.1124/jpet.107.135061

 

  1. Santoro F, Mango F, Mallardi A, et al. Arrhythmic risk stratification among patients with hypertrophic cardiomyopathy. J Clin Med. 2023;12(10):3397. doi: 10.3390/jcm12103397

 

  1. Fang Z, Raza U, Song J, et al. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail. 2024. doi: 10.1002/ehf2.14947

 

  1. Kang S, Liu Y, Sun D, et al. Chronic activation of the G protein-coupled receptor 30 with agonist G-1 attenuates heart failure. PLoS One. 2012;7(10):e48185. doi: 10.1371/journal.pone.0048185

 

  1. Shao Z, Shen Q, Kong M, Ni H, Hou X. Involvement of GPR30 in protection effect of Dexmedetomidine against myocardial ischemia/reperfusion injury in rat via AKT pathway. Acta Biochim Pol. 2021;68(1):119-126. doi: 10.18388/abp.2020_5473

 

  1. Pei H, Wang W, Zhao DI, Su H, Su G, Zhao Z. G Protein-coupled estrogen receptor 1 inhibits angiotensin II-induced cardiomyocyte hypertrophy via the regulation of PI3K-Akt-mTOR signalling and autophagy. Int J Biol Sci. 2019;15(1):81-92. doi: 10.7150/ijbs.28304

 

  1. Patten RD, Pourati I, Aronovitz MJ, et al. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res. 2004;95(7):692-699. doi: 10.1161/01.RES.0000144126.57786.89

 

  1. Lenhart PM, Broselid S, Barrick CJ, Leeb-Lundberg LMF, Caron KM. G-protein-coupled receptor 30 interacts with receptor activity-modifying protein 3 and confers sex-dependent cardioprotection. J Mol Endocrinol. 2013;51(1):191-202. doi: 10.1530/JME-13-0021

 

  1. Watanabe H, Takahashi E, Kobayashi M, et al. The estrogen-responsive adrenomedullin and receptor-modifying protein 3 gene identified by DNA microarray analysis are directly regulated by estrogen receptor. J Mol Endocrinol. 2006;36(1):81-89. doi: 10.1677/jme.1.01825

 

  1. Barrick CJ, Lenhart PM, Dackor RT, Nagle E, Caron KM. Loss of receptor activity-modifying protein 3 exacerbates cardiac hypertrophy and transition to heart failure in a sex-dependent manner. J Mol Cell Cardiol. 2012;52(1):165-174. doi: 10.1016/j.yjmcc.2011.10.021

 

  1. De Francesco EM, Angelone T, Pasqua T, Pupo M, Cerra MC, Maggiolini M. GPER mediates cardiotropic effects in spontaneously hypertensive rat hearts. PLoS One. 2013;8(8):e69322. doi: 10.1371/journal.pone.0069322

 

  1. Kabir ME, Singh H, Lu R, Olde B, Leeb-Lundberg LMF, Bopassa JC. G Protein-coupled estrogen receptor 1 mediates acute estrogen-induced cardioprotection via MEK/ERK/ GSK-3β pathway after ischemia/reperfusion. PLoS One. 2015;10(9):e0135988. doi: 10.1371/journal.pone.0135988

 

  1. Roubille F, Combes S, Leal-Sanchez J, et al. Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation. 2007;116(23):2709-2717. doi: 10.1161/CIRCULATIONAHA.107.694844

 

  1. Li WL, Xiang W, Ping Y. Activation of novel estrogen receptor GPER results in inhibition of cardiocyte apoptosis and cardioprotection. Mol Med Rep. 2015;12(2):2425-2430. doi: 10.3892/mmr.2015.3674

 

  1. Algoet M, Janssens S, Himmelreich U, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2023;33(6):357-366. doi: 10.1016/j.tcm.2022.02.005

 

  1. Wang X, Lu L, Tan Y, et al. GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway. Life Sci. 2019;226:22-32. doi: 10.1016/j.lfs.2019.03.049

 

  1. Krishnan SM, Ling YH, Huuskes BM, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res. 2019;115(4):776-787. doi: 10.1093/cvr/cvy252

 

  1. van Hout GPJ, Bosch L, Ellenbroek GHJM, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 2017;38(11):828-836. doi: 10.1093/eurheartj/ehw247

 

  1. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014;34(1):106-135. doi: 10.1002/med.21280

 

  1. De Francesco EM, Rocca C, Scavello F, et al. Protective role of GPER agonist G-1 on cardiotoxicity induced by doxorubicin. J Cell Physiol. 2017;232(7):1640-1649. doi: 10.1002/jcp.25585

 

  1. Wang H, Sun X, Lin MS, Ferrario CM, van Remmen H, Groban L. G protein-coupled estrogen receptor (GPER)deficiency induces cardiac remodeling through oxidative stress. Transl Res. 2018;199:39-51. doi: 10.1016/j.trsl.2018.04.005

 

  1. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024-1032. doi: 10.1111/jcmm.13038

 

  1. Ide T, Tsutsui H, Ohashi N, et al. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol. 2002;22(3):438-442. doi: 10.1161/hq0302.104515

 

  1. Bopassa JC, Eghbali M, Toro L, Stefani E. A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2010;298(1):H16-H23. doi: 10.1152/ajpheart.00588.2009

 

  1. Adu-Amankwaah J, Adekunle AO, Tang Z, et al. Estradiol contributes to sex differences in resilience to sepsis-induced metabolic dysregulation and dysfunction in the heart via GPER-1-mediated PPARδ/NLRP3 signaling. Metabolism. 2024;156:155934. doi: 10.1016/j.metabol.2024.155934

 

  1. Sharma M, Bhatt LK. Emerging therapeutic targets for heart failure. Curr Cardiol Rep. 2022;24(11):1737-1754. doi: 10.1007/s11886-022-01789-z

 

  1. Linz D, Gawalko M, Betz K, et al. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg Health Europe. 2024;37:100786. doi: 10.1016/j.lanepe.2023.100786

 

  1. Gopinathannair R, Chen LY, Chung MK, et al. Managing atrial fibrillation in patients with heart failure and reduced ejection fraction: A scientific statement from the American Heart Association. Circ Arrhythm Electrophysiol. 2021;14(6):HAE0000000000000078. doi: 10.1161/HAE.0000000000000078

 

  1. Soliman EZ, Safford MM, Muntner P, et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern Med. 2014;174(1):107-114. doi: 10.1001/jamainternmed.2013.11912

 

  1. Chao TF, Huang YC, Liu CJ, et al. Acute myocardial infarction in patients with atrial fibrillation with a CHA2DS2-VASc score of 0 or 1: A nationwide cohort study. Heart Rhythm. 2014;11(11):1941-1947. doi: 10.1016/j.hrthm.2014.08.003

 

  1. Pierdomenico SD, Coccina F. Atrial cardiopathy and hypertension: A deadly association. Am J Hypertens. 2023;36(1):14-16. doi: 10.1093/ajh/hpac095

 

  1. Bagchi RA, Weeks KL. Histone deacetylases in cardiovascular and metabolic diseases. J Mol Cell Cardiol. 2019;130:151-159. doi: 10.1016/j.yjmcc.2019.04.003

 

  1. Sawa Y, Matsushita N, Sato S, et al. Chronic HDAC6 activation induces atrial fibrillation through atrial electrical and structural remodeling in transgenic mice. Int Heart J. 2021;62(3):616-626. doi: 10.1536/ihj.20-703

 

  1. Sugishita K, Uchida M, Ikeda M, et al. Gender difference in subjective symptoms related to paroxysmal atrial fibrillation is also detected in postmenopausal women. Int Heart J. 2005;46(4):669-678. doi: 10.1536/ihj.46.669

 

  1. Liu D, Zhan Y, Ono K, et al. Pharmacological activation of estrogenic receptor G protein-coupled receptor 30 attenuates angiotensin II-induced atrial fibrosis in ovariectomized mice by modulating TGF-β1/smad pathway. Mol Biol Rep. 2022;49(7):6341-6355. doi: 10.1007/s11033-022-07444-8

 

  1. Baik SH, Baye F, McDonald CJ. Use of menopausal hormone therapy beyond age 65 years and its effects on women’s health outcomes by types, routes, and doses. Menopause. 2024;31(5):363-371. doi: 10.1097/GME.0000000000002335
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing