AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.3641
Cite this article
177
Download
1653
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Beyond chromosomal rearrangements: The expanding landscape of gene fusions and chimeric RNAs

Sangeen Khan1,2† Yue Tang1,2† Zhenguo Song1,2,3 Xi Chen4 Lijun Wang5 Chengjuan Zhang6 Fujun Qin1,2*
Show Less
1 Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
2 Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
3 Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
4 Department of Cardiovascular, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
5 Departement of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
6 Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
Submitted: 12 May 2024 | Accepted: 26 August 2024 | Published: 28 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

BCR–ABL, the pioneering gene fusion resulting from chromosomal translocation, has marked a major milestone in understanding genetic alterations in cancer. Initially, gene fusions were linked solely to chromosomal rearrangements, serving as diagnostic markers and cancer drivers. However, advancements in high-throughput sequencing and bioinformatics have revealed additional mechanisms underlying gene fusion. The term “gene fusion” primarily refers to fusion events at the DNA level, whereas “chimeric RNA” encompasses a wide range of transcripts containing exons from different parental genes, including gene fusion transcripts. Recent developments have identified numerous chimeric RNAs in various cancer types, extending even to non-cancerous tissues. Chimeric RNAs, originating from events such as trans-splicing, read-through, and intergenic splicing, form a complex landscape with varied functions. While some chimeric RNAs have defined roles and therapeutic potential, a comprehensive understanding of their diverse functions remains a priority. Exploring the full spectrum of chimeric RNA activities is crucial for revealing their clinical and therapeutic implications. In addition, chimeric RNAs are key players in tumorigenesis, affecting cellular processes, and driving cancer progression. Understanding their intricate interactions with cellular pathways is essential for developing targeted therapies and precision medicine approaches. The dynamic nature of chimeric RNAs highlights the need for ongoing research to fully harness their diagnostic and therapeutic potential.

Keywords
Chimeric RNA
Gene fusion
Splicing
Cis-splicing
Trans-splicing
Cis-SAGe
Cancer
Funding
F.Q. was supported by the National Natural Science Foundation of China (No.81972421) and Joint Program NSFC-Henan (No.U2004135); Y.T. was supported by the Education and Teaching Reform Research and the Practice Project for international students at ZZU (2022ZZUJGXMLXS-017); L.W. was supported by the Henan Province Medical Science and Technology Research Project (LHGJ20210208); Z.S. was supported by the Program for Tackling Key Problems of Henan Department of Science and Technology (No.202102310033) and the Henan Province Medical Science and Technology Research Project (LHGJ20210191); C.Z. was supported by the Henan Provincial Young and Middle-aged Health Science and Technology Innovation Talent Project (YXKC2021032) and the Zhengzhou University Young Teachers Basic Research Training Project (JC23858081).
Conflict of interest
Fujun Qin is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143-149. doi: 10.1038/372143a0

 

  1. Heim S, Mitelman F. Molecular screening for new fusion genes in cancer. Nat Genet. 2008;40:685-686. doi: 10.1038/ng0608-685

 

  1. Nowell P. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut. 1962;8:65-66. doi: 10.1007/BF01630378

 

  1. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290- 293. doi: 10.1038/243290a0

 

  1. Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet. 1998;32:495-519. doi: 10.1146/annurev.genet.32.1.495

 

  1. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550-554. doi: 10.1038/315550a0

 

  1. Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget. 2019;10:2095. doi: 10.18632/oncotarget.26777

 

  1. Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. Wiley Interdiscip Rev RNA. 2017;8:e1427. doi: 10.1002/wrna.1427

 

  1. Zhang Y, Gong M, Yuan H, Park HG, Frierson HF, Li H. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov. 2012;2(7):598-607. doi: 10.1158/2159-8290.CD-12-0042

 

  1. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-566. doi: 10.1038/nature05945

 

  1. Li Y, Li Y, Yang T. Clinical significance of EML4-ALK fusion gene and association with EGFR and KRAS gene mutations in 208 Chinese patients with non-small cell lung cancer. PLoS One. 2013;8:e52093. doi: 10.1371/journal.pone.0052093

 

  1. Hermans KG, Van Marion R, Van Dekken H, Jenster G, Van Weerden WM, Trapman J. TMPRSS2: ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res. 2006;66:10658-10663. doi: 10.1158/0008-5472.CAN-06-1871

 

  1. Perner D, Vierkötter A, Sugiri D, et al. Association between sun-exposure, smoking behaviour and plasma antioxidant levels with the different manifestation of skin ageing signs between Japanese and German women--a pilot study. J Dermatol Sci. 2011;62:138-140. doi: 10.1016/j.jdermsci.2011.02.010

 

  1. Gisselsson D, Pettersson L, Höglund M, et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A. 2000;97:5357-5362. doi: 10.1073/pnas.090013497

 

  1. Ally A, Balasundaram M, Carlsen R, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327-1341.e1323. doi: 10.1016/j.cell.2017.05.046

 

  1. Northcott PA, Shih DJ, Peacock J, et al. Schumacher, Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49-56. doi: 10.1038/nature11327

 

  1. Teles Alves I, Hiltemann S, Hartjes T, et al. Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line. Hum Genet. 2013;132:709-713. doi: 10.1007/s00439-013-1308-1

 

  1. Efanov AA, Brenner AV, Bogdanova TI, et al. Investigation of the relationship between radiation dose and gene mutations and fusions in post-Chernobyl thyroid cancer. J Natl Cancer Inst. 2018;110:371-378. doi: 10.1093/jnci/djx209

 

  1. Su X, Li Z, He C, Chen W, Fu X, Yang A. Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/PTC3 in papillary thyroid cancer: A meta-analysis. Oncotarget. 2016;7:16716. doi: 10.18632/oncotarget.7574

 

  1. Leeman‐Neill RJ, Kelly LM, Liu P, et al. ETV6‐NTRK3 is a common chromosomal rearrangement in radiation‐associated thyroid cancer. Cancer. 2014;120:799-807. doi: 10.1002/cncr.28484

 

  1. Dacic S, Luvison A, Evdokimova V, et al. RET rearrangements in lung adenocarcinoma and radiation. J Thorac Oncol. 2014;9:118-120. doi: 10.1097/JTO.0000000000000015

 

  1. Chen Y, Li G, Lei Y, et al. Lung cancer family history and exposure to occupational/domestic coal combustion contribute to variations in clinicopathologic features and gene fusion patterns in non‐small cell lung cancer. Thorac Cancer. 2019;10:695-707. doi: 10.1111/1759-7714.12987

 

  1. Navarrete-Meneses M, Salas-Labadía C, Sanabrais-Jiménez M, et al. Exposure to the insecticides permethrin and malathion induces leukemia and lymphoma-associated gene aberrations in vitro. Toxicol In Vitro. 2017;44:17-26. doi: 10.1016/j.tiv.2017.06.013

 

  1. Egashira S, Jinnin M, Ajino M, et al. Chronic sun exposure-related fusion oncogenes EGFR-PPARGC1A in cutaneous squamous cell carcinoma. Sci Rep. 2017;7:12654. doi: 10.1038/s41598-017-12836-z

 

  1. Holly JM, Broadhurst J, Mansor R, Bahl A, Perks CM. Hyperglycemia promotes TMPRSS2-ERG gene fusion in prostate cancer cells via upregulating insulin-like growth factor-binding protein-2. Front Endocrinol (Lausanne). 2017;8:305. doi: 10.3389/fendo.2017.00305

 

  1. Eguchi-Ishimae M, Eguchi M, Ishii E, et al. Breakage and fusion of the TEL (ETV6) gene in immature B lymphocytes induced by apoptogenic signals. Blood. 2001;97:737-743. doi: 10.1182/blood.v97.3.737

 

  1. Mani RS, Tomlins SA, Callahan K, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326:1230-1230. doi: 10.1126/science.1178124

 

  1. Jividen K, Li H. Chimeric RNAs generated by intergenic splicing in normal and cancer cells. Genes Chromosomes Cancer. 2014;53:963-971. doi: 10.1002/gcc.22207

 

  1. Wang K, Ubriaco G, Sutherland LC. RBM6-RBM5 transcription-induced chimeras are differentially expressed in tumours. BMC Genomics. 2007;8:348.

 

  1. Parra G, Reymond A, Dabbouseh N, et al. Tandem chimerism as a means to increase protein complexity in the human genome. Genome Res. 2006;16:37-44. doi: 10.1101/gr.4145906

 

  1. Denoeud F, Kapranov P, Ucla C, et al. Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res. 2007;17:746-759. doi: 10.1101/gr.5660607

 

  1. Siepel A, Diekhans M, Brejová B, et al. Targeted discovery of novel human exons by comparative genomics. Genome Res. 2007;17:1763-1773. doi: 10.1101/gr.7128207

 

  1. Kannan K, Wang L, Wang J, Ittmann MM, Li W, Yen L. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proc Natl Acad Sci U S A. 2011;108:9172-9177. doi: 10.1073/pnas.1100489108

 

  1. Nacu S, Yuan W, Kan Z, et al. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med Genomics. 2011;4:1-22. doi: 10.1186/1755-8794-4-11

 

  1. Hernández-Torres F, Rastrojo A, Aguado B. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples. BMC Genomics. 2013;14:1-12. doi: 10.1186/1471-2164-14-199

 

  1. Akiva P, Toporik A, Edelheit S, et al. Transcription-mediated gene fusion in the human genome. Genome Res. 2006;16:30- 36. doi: 10.1101/gr.4137606

 

  1. Qin F, Song Z, Babiceanu M, et al. Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells. PLoS Genet. 2015;11:e1005001. doi: 10.1371/journal.pgen.1005001

 

  1. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. SLC45A3-ELK4 chimera in prostate cancer: Spotlight on cis-splicing. Cancer Discov. 2012;2:582-585. doi: 10.1158/2159-8290.CD-12-0212

 

  1. Rickman DS, Pflueger D, Moss B, et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 2009;69:2734-2738. doi: 10.1158/0008-5472.CAN-08-4926

 

  1. Wu CS, Yu CY, Chuang CY, et al. Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Res. 2014;24:25-36. doi: 10.1101/gr.159483.113

 

  1. Murphy L, Dotzlaw H, Hamerton J, Schwarz J. Investigation of the origin of variant, truncated estrogen receptor-like mRNAs identified in some human breast cancer biopsy samples. Breast Cancer Res Treat. 1993;26:149-161. doi: 10.1007/BF00689688

 

  1. Pink J, Fritsch M, Bilimoria M, Assikis V, Jordan V. Cloning and characterization of a 77-kDa oestrogen receptor isolated from a human breast cancer cell line. Br J Cancer. 1997;75:17-27. doi: 10.1038/bjc.1997.4

 

  1. Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008;321:1357-1361. doi: 10.1126/science.1156725

 

  1. Yuan H, Qin F, Movassagh H, et al. A chimeric RNA characteristic of rhabdomyosarcoma in normal myogenesis process. Cancer Discov. 2013;3:1394-1403. doi: 10.1158/2159-8290.CD-13-0186

 

  1. Sutton RE, Boothroyd JC. Evidence for trans splicing in trypanosomes. Cell. 1986;47:527-535. doi: 10.1016/0092-8674(86)90617-3

 

  1. Krause M, Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987;49:753-761. doi: 10.1016/0092-8674(87)90613-1

 

  1. Nilsen TW. Evolutionary origin of SL-addition trans-splicing: Still an enigma. Trends Genet. 2001;17:678-680. doi: 10.1016/s0168-9525(01)02499-4

 

  1. Gao Q, Liang WW, Foltz SM, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23:227-238.e223. doi: 10.1016/j.celrep.2018.03.050

 

  1. Nowell PC, Hungerford DA. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst. 1961;27:1013-1035.

 

  1. Priedigkeit N, Golub T. Potentially Targetable Fusion RNAs May Be More Common in Metastatic Breast Cancer Than Previously Realized. Massachusetts: Dana-Farber Cancer Institute; 2023.

 

  1. Metellus P, Camilla C, Bialecki E, et al. The landscape of cancer-associated transcript fusions in adult brain tumors: A longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol. 2024;14:1382394. doi: 10.3389/fonc.2024.1382394

 

  1. Tong Y, Su X, Rouse W, et al. Transcriptome-wide, unbiased profiling of ribonuclease targeting chimeras. J Am Chem Soc. 2024;146:21525-21534. doi: 10.1021/jacs.4c04717

 

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. doi: 10.3322/caac.21492

 

  1. Qin F, Zhang Y, Liu J, Li H. SLC45A3-ELK4 functions as a long non-coding chimeric RNA. Cancer Lett. 2017;404:53- 61. doi: 10.1016/j.canlet.2017.07.007

 

  1. Zhou F, Gao S, Han D, et al. TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene. 2019;38:4397-4411. doi: 10.1038/s41388-019-0730-9

 

  1. Chakravarthi BV, Dedigama-Arachchige P, Carskadon S, et al. Pseudogene associated recurrent gene fusion in prostate cancer. Neoplasia. 2019;21:989-1002. doi: 10.1016/j.neo.2019.07.010

 

  1. Ptáková N, Martínek P, Holubec L, et al. Identification of tumors with NRG1 rearrangement, including a novel putative pathogenic UNC5D‐NRG1 gene fusion in prostate cancer by data‐drilling a de‐identified tumor database. Genes Chromosomes Cancer. 2021;60:474-481. doi: 10.1002/gcc.22942

 

  1. Torre LA, Bray F, Siegel RL, Ferlay L, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108. doi: 10.3322/caac.21262

 

  1. Zhang H, Lin W, Kannan K, et al. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma. Oncotarget. 2013;4:2135. doi: 10.18632/oncotarget.1465

 

  1. Lin Y, Dong H, Deng W, et al. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal carcinoma. Clin Cancer Res. 2019;25:3035-3045. doi: 10.1158/1078-0432.CCR-18-3169

 

  1. Wang L, Xiong X, Yao Z, et al. Chimeric RNA ASTN2- PAPPAas aggravates tumor progression and metastasis in human esophageal cancer. Cancer Lett. 2021;501:1-11. doi: 10.1016/j.canlet.2020.10.052

 

  1. Luo Y, Du L, Yao Z, et al. Generation and application of inducible chimeric RNA ASTN2-PAPPAas knockin mouse model. Cells. 2022;11:277. doi: 10.3390/cells11020277

 

  1. Blidner RA, Haynes BC, Hyter S, et al. Design, optimization, and multisite evaluation of a targeted next-generation sequencing assay system for chimeric RNAs from gene fusions and exon-skipping events in non-small cell lung cancer. J Mol Diagn. 2019;21:352-365. doi: 10.1016/j.jmoldx.2018.10.003.

 

  1. Gow CH, Liu YN, Li HY, et al. Oncogenic function of a KIF5B-MET fusion variant in non-small cell lung cancer. Neoplasia. 2018;20:838-847. doi: 10.1016/j.neo.2018.06.007

 

  1. Chen HF, Wang WX, Xu CW, et al. A novel SOS1-ALK fusion variant in a patient with metastatic lung adenocarcinoma and a remarkable response to crizotinib. Lung Cancer. 2020;142:59-62. doi: 10.1016/j.lungcan.2020.02.012

 

  1. Izumi H, Matsumoto S, Liu J, et al. The CLIP1-LTK fusion is an oncogenic driver in non‐small‐cell lung cancer. Nature. 2021;600:319-323. doi: 10.1038/s41586-021-04135-5

 

  1. Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016;12:646-653. doi: 10.1038/nrendo.2016.110

 

  1. Seib CD, Sosa JS. Evolving understanding of the epidemiology of thyroid cancer. Endocrinol Metab Clin. 2019;48:23-35. doi: 10.1016/j.ecl.2018.10.002

 

  1. Jurkiewicz M, Cimic A, Murty VV, et al. Detection of STRN‐ALK fusion in thyroid nodules with indeterminate cytopathology facilitates papillary thyroid cancer diagnosis. Diagn Cytopathol. 2021;49:E146-E151. doi: 10.1002/dc.24647

 

  1. Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111:4233-4238. doi: 10.1073/pnas.1321937111

 

  1. Agrawal N, Akbani R, Arman Aksoy B, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676-690. doi: 10.1016/j.cell.2014.09.050

 

  1. Staubitz JI, Musholt TJ, Schad A, et al. ANKRD26-RET-a novel gene fusion involving RET in papillary thyroid carcinoma. Cancer Genet. 2019;238:10-17. doi: 10.1016/j.cancergen.2019.07.002

 

  1. Krishnan A, Berthelet J, Renaud E, et al. Proteogenomics analysis unveils a TFG-RET gene fusion and druggable targets in papillary thyroid carcinomas. Nat Commun. 2020;11:2056. doi: 10.1038/s41467-020-15955-w

 

  1. Tao Y, Gross N, Fan X, et al. Identification of novel enriched recurrent chimeric COL7A1-UCN2 in human laryngeal cancer samples using deep sequencing. BMC Cancer. 2018;18:248. doi: 10.1186/s12885-018-4161-8

 

  1. Wang J, Xie GF, He Y, et al. Interfering expression of chimeric transcript SEPT7P2-PSPH promotes cell proliferation in patients with nasopharyngeal carcinoma. J Oncol. 2019;2019:1654724. doi: 10.1155/2019/1654724

 

  1. Riegler J, Gill H, Ogasawara A, et al. VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia. 2019;21(10):1036- 1050. doi: 10.1016/j.neo.2019.08.003

 

  1. Ali RM, McIntosh SA, Savage KI. Homologous recombination deficiency in breast cancer: Implications for risk, cancer development, and therapy. Genes Chromosomes Cancer. 2021;60(5):358-372. doi: 10.1002/gcc.22921

 

  1. Hartman ML, Gajos-Michniewicz A, Talaj JA, et al. BH3 mimetics potentiate pro-apoptotic activity of encorafenib in BRAFV600E melanoma cells. Cancer Lett. 2021;499:122- 136. doi: 10.1016/j.canlet.2020.11.036

 

  1. Mamouni K, Zhang S, Li X, et al. A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cancer growth in preclinical models. Neoplasia. 2018;20(8):789-799. doi: 10.1016/j.neo.2018.06.003

 

  1. Sala L, Mancin M, Pastore A, Seminati D, Cortinovis D, Bidoli P, Alberti A. Aplastic anemia in a patient with advanced lung adenocarcinoma during first line osimertinib: A case report and literature review. Lung Cancer. 2020;142:120-122. doi: 10.1016/j.lungcan.2020.02.019

 

  1. Ford DJ, Dingwall AK. Corrigendum to “The cancer COMPASS: Navigating the functions of MLL complexes in cancer” [Cancer Genetics 208 (2015) pp. 178-191]. Cancer Genet. 2019;233:102. doi: 10.1016/j.cancergen.2019.03.003

 

  1. Moon JY, Zolnik CP, Wang Z, et al. Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine. 2018;37:392-400. doi: 10.1016/j.ebiom.2018.10.037

 

  1. Singh S, Qin F, Kumar S, et al. The landscape of chimeric RNAs in non-diseased tissues and cells. Nucleic Acids Res. 2020;48(4):1764-1778. doi: 10.1093/nar/gkz1223

 

  1. Elfman J, Pham LP, Li H. The relationship between chimeric RNAs and gene fusions; potential implications of reciprocity in cancer. J Genet Genomics, Yi Chuan Xue Bao. 2020;47(7):341. doi: 10.1016/j.jgg.2020.04.005

 

  1. Sun Y, Li H. Chimeric RNAs discovered by RNA sequencing and their roles in cancer and rare genetic diseases. Genes (Basel). 2022;13(5):741. doi: 10.3390/genes13050741

 

  1. Wu P, Yang S, Singh S, et al. The landscape and implications of chimeric RNAs in cervical cancer. EBioMedicine. 2018;37:158-167. doi: 10.1016/j.ebiom.2018.10.059

 

  1. Tang Y, Guan F, Li H. Case study: The recurrent fusion RNA DUS4L-BCAP29 in noncancer human tissues and cells. Methods Mol Biol. 2020;2079:243-258. doi: 10.1007/978-1-4939-9904-0_19

 

  1. Babiceanu M, Qin F, Xie Z, Jia Y, et al. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016;44:2859-2872. doi: 10.1093/nar/gkw032

 

  1. Chen C, Haddox S, Tang Y, Qin F, Li H. Landscape of chimeric RNAs in non-cancerous cells. Genes (Basel). 2021;12:466. doi: 10.3390/genes12040466

 

  1. Mukherjee S, Detroja R, Balamurali D, et al. Computational analysis of sense-antisense chimeric transcripts reveals their potential regulatory features and the landscape of expression in human cells. NAR Genom Bioinform. 2021;3(3):lqab074. doi: 10.1093/nargab/lqab074

 

  1. Shaw AT, Yeap BY, Solomon BJ, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: A retrospective analysis. Lancet Oncol. 2011;12:1004-1012. doi: 10.1016/S1470-2045(11)70232-7

 

  1. Adamo P, Ladomery M. The oncogene ERG: A key factor in prostate cancer. Oncogene. 2016;35:403-414. doi: 10.1038/onc.2015.109

 

  1. Hehlmann R. Chronic myeloid leukemia in 2020. Hemasphere. 2020;4(5):e468. doi: 10.1097/HS9.0000000000000468

 

  1. Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute promyelocytic leukemia: A constellation of molecular events around a single PML-RARA fusion gene. Cancers (Basel). 2020;12(3):624. doi: 10.3390/cancers12030624

 

  1. García-García L, Fernández-Tabanera E, Cervera ST, et al. The transcription factor FEZF1, a direct target of EWSR1- FLI1 in Ewing sarcoma cells, regulates the expression of neural-specific genes. Cancers (Basel). 2021;13(22):5668. doi: 10.3390/cancers13225668

 

  1. Zaborowski M, Vargas AC, Pulvers J, et al. When used together SS18-SSX fusion‐specific and SSX C‐terminus immunohistochemistry are highly specific and sensitive for the diagnosis of synovial sarcoma and can replace FISH or molecular testing in most cases. Histopathology. 2020;77(4):588-600. doi: 10.1111/his.14190

 

  1. Elliott J, Bai Z, Hsieh SC, et al. ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis. PLoS One. 2020;15(2):e0229179. doi: 10.1371/journal.pone.0229179

 

  1. Stopsack KH, Su XA, Vaselkiv JB, et al. Transcriptomes of prostate cancer with TMPRSS2: ERG and other ETS fusions. Mol Can Res. 2023;1(1):14-23. doi: 10.1158/1541-7786.MCR-22-0446

 

  1. Østergaard A, Fiocco M, De Groot-Kruseman H, et al. ETV6: RUNX1 Acute Lymphoblastic Leukemia: How much therapy is needed for cure? Leukemia. 2024;38:1-11. doi: 10.1038/s41375-024-02287-7

 

  1. Haura EB, Hicks JK, Boyle TA. Erdafitinib overcomes FGFR3-TACC3-mediated resistance to osimertinib. J Thorac Oncol. 2020;15(9):e154-e156. doi: 10.1016/j.jtho.2019.12.132

 

  1. Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in adenoid cystic carcinoma: Current state of knowledge and future directions. Crit Rev Oncol Hematol. 2022;176:103745. doi: 10.1016/j.critrevonc.2022.103745

 

  1. Bungaro M, Garbo E. NTRK1/2/3: Biology, detection and therapy. Precision Cancer Med. 2024;6.

 

  1. Wirth LJ, Sherman E, Robinson B, et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med. 2020;383(9):825-835. doi: 10.1056/NEJMoa2005651

 

  1. Houghton PJ. Advances in the treatment of BRAF-mutant low-grade glioma with MAPK inhibitors. Transl Pediatr. 2024;13(3):513. doi: 10.21037/tp-23-541

 

  1. Antar DA, Laabid K, Darfaoui M, El Omrani A, Khouchani, M. The role of Imatinib mesylate in the treatment of metastatic dermatofibrosarcoma protuberans: A case report and literature review. Sch J Med Case Rep. 2023;6:1219-1223.

 

  1. Goktas E, Sanal S, Tekinalp A. Blastoid variant mantle cell lymphoma with amplified IGH/CCND1 fusion: A unique case and current literature review. Med Bull Haseki. 2024;62(2):124-127. doi: 10.4274/haseki.galenos.2024.9567

 

  1. George N, Agarwal A. 25 Genetic landscape and molecular mechanisms in thyroid cancer. In: Textbook of Endocrine Surgery. California: Saunders; 2022: p. 216.

 

  1. King G, Javle M. FGFR inhibitors: clinical activity and development in the treatment of cholangiocarcinoma. Curr Oncol Rep. 2021;23:108. doi: 10.1007/s11912-021-01100-3

 

  1. Li H, Wang Q. Chimeric RNAs and their implication in prostate cancer. Cancer Pathog Ther. 2023;1(3):216-219. doi: 10.1016/j.cpt.2023.04.003

 

  1. Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9(1):57-67. doi: 10.1038/nrd3010

 

  1. Mahmoudian-Sani MR, Jalali A, Jamshidi M, et al. Long non-coding RNAs in thyroid cancer: Implications for pathogenesis, diagnosis, and therapy. Oncol Res Treat. 2019;42(3):136-142. doi: 10.1159/000495151

 

  1. Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15:371-381. doi: 10.1038/nrc3947

 

  1. Tagore S, Gorohovski A, Jensen LJ, Frenkel-Morgenstern M. ProtFus: A comprehensive method characterizing protein-protein interactions of fusion proteins. PLoS Comput Biol. 2019;15:e1007239. doi: 10.1371/journal.pcbi.1007239

 

  1. Mitelman F. Recurrent chromosome aberrations in cancer. Mutat Res. 2000;462:247-253. doi: 10.1016/s1383-5742(00)00006-5

 

  1. Kim P, Zhou X. FusionGDB: Fusion gene annotation DataBase. Nucleic Acids Res. 2019;47:D994-D1004. doi: 10.1093/nar/gky1067

 

  1. Jang YE, Jang I, Kim S, et al. ChimerDB 4.0: An updated and expanded database of fusion genes. Nucleic Acids Res. 2020;48:D817-D824. doi: 10.1093/nar/gkz1013

 

  1. Balamurali D, Gorohovski A, Detroja R, Palande V, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS 5.0: The comprehensive database of chimeric transcripts matched with druggable fusions and 3D chromatin maps. Nucleic Acids Res. 2020;48:D825-D834. doi: 10.1093/nar/gkz1025

 

  1. Hu X, Wang Q, Tang M, et al. TumorFusions: An integrative resource for cancer-associated transcript fusions. Nucleic Acids Res. 2018;46:D1144-D1149. doi: 10.1093/nar/gkx1018

 

  1. Kong F, Zhu J, Wu J, et al. dbCRID: A database of chromosomal rearrangements in human diseases. Nucleic Acids Res. 2010;39:D895-D900. doi: 10.1093/nar/gkq1038

 

  1. Novo FJ, De Mendíbil IO, Vizmanos JL. TICdb: A collection of gene-mapped translocation breakpoints in cancer. BMC Genomics. 2007;8:33. doi: 10.1186/1471-2164-8-33

 

  1. Prakash T, Sharma VK, Adati N, et al. Expression of conjoined genes: Another mechanism for gene regulation in eukaryotes. PLoS One. 2010;5:e13284. doi: 10.1371/journal.pone.0013284

 

  1. Tate JG, Bamford S, Jubb HC, et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941-D947. doi: 10.1093/nar/gky1015
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing