AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.4100
REVIEW

Understanding the fundamental mechanisms and conditions of the tumor-suppressive and oncogenic roles of sirtuins in cancer: A review

Daniela Szabóová1 Zuzana Guľašová2 Zdenka Hertelyová2 Roman Beňačka1*
Show Less
1 Department of Pathophysiology, Faculty of Medicine, P.J. Šafarik University, Košice, Slovakia
2 Center of Clinical and Preclinical Research MEDIPARK, P.J. Šafarik University, Košice, Slovakia
Submitted: 1 July 2024 | Accepted: 5 September 2024 | Published: 10 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Silent information regulators (SIRTs) or sirtuins represent a group of class III nicotinamide adenine dinucleotide–dependent histone deacetylases. In mammals, seven types of sirtuins are distinguished, differing in their target structures, enzymatic activities, and subcellular localization. Histone deacetylation is a form of epigenetic regulation of gene expression that can cause activation or deactivation of selected genetic targets. Activation of sirtuins is part of the response to nutritional and environmental stimuli (starvation, DNA damage, and oxidative stress). Activated sirtuins subsequently stimulate specific transcriptional programs to make mitochondrial oxidative metabolism more efficient in the fight against oxidative stress or regulate proteins responsible for DNA repair after damage. As a result of their multifunctional involvement in cellular metabolism, dysregulation and aberrant expression of sirtuins have been observed in various cancers. Sirtuins play a dual role in carcinogenesis, acting as either oncogenes or tumor suppressors and affecting the proliferation, apoptosis, and survival of cancerous cells.

Keywords
Sirtuins
Oxidative stress
Cancer
Funding
This work was supported by VEGA grant no. 1/0622/20 of the Scientific Grant Agency of the Ministry of Education, Research and Sport of the Slovak Republic, and VVGS grant no. VVGS – 2022-2199.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol. 2007;21:1745-1755. doi: 10.1210/me.2007-0079

 

  1. Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation. J Biol Chem. 2012;287:42419-42427. doi: 10.1074/jbc.R112.378877

 

  1. Haigis MC, Sinclair DA. Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol. 2010;5:253-295. doi: 10.1146/annurev.pathol.4.110807.092250

 

  1. Bonkowski MS, Sinclair DA. Slowing ageing by design: The rise of NAD and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17:679-690. doi: 10.1038/nrm.2016.93

 

  1. Watroba M, Szukiewicz D. Sirtuins at the service of healthy longevity. Front Physiol. 2021;12:724506. doi: 10.3389/fphys.2021.724506

 

  1. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417-435. doi: 10.1146/annurev.biochem.73.011303.073651

 

  1. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16;4623-4635. doi: 10.1091/mbc.e05-01-0033

 

  1. Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: From chemistry to the clinic. Clin Epigenetics. 2016;8:61. doi: 10.1186/s13148-016-0224-3

 

  1. Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022;13:831168. doi: 10.3389/fimmu.2022.831168

 

  1. Lu C, Zhao H, Liu Y, et al. Novel role of the SIRT1 in endocrine and metabolic diseases. Int J Biol Sci. 2023;19(2):484-501. doi: 10.7150/ijbs.78654

 

  1. Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol. 2023;14:1174180. doi: 10.3389/fimmu.2023.1174180

 

  1. Chen G, Huang P, Hu C. The role of SIRT2 in cancer: A novel therapeutic target. Int J Cancer. 2020;147(12):3297-3304. doi: 10.1002/ijc.33118

 

  1. Mishra Y, Kaundal RK. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today. 2023;28(6):103583. doi: 10.1016/j.drudis.2023.103583

 

  1. Li Y, Zhou Y, Wang F, et al. SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg Med Chem. 2018;26(14):3861-3865. doi: 10.1016/j.bmc.2018.07.031

 

  1. Wang Y, Chen H, Zha X. Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors. Eur J Med Chem. 2022;236:114363. doi: 10.1016/j.ejmech.2022.114363

 

  1. Yang Y, Zhu M, Liang J, et al. SIRT6 mediates multidimensional modulation to maintain organism homeostasis. J Cell Physiol. 2022;237(8):3205-3221. doi: 10.1002/jcp.30791

 

  1. Raza U, Tang X, Liu Z, Liu B. SIRT7: The seventh key to unlocking the mystery of aging. Physiol Rev. 2024;104(1):253-280. doi: 10.1152/physrev.00044.2022

 

  1. Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. 2019;20(13):3153. doi: 10.3390/ijms20133153

 

  1. Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 2020;43:1589-1598. doi: 10.1007/s10753-020-01242-9

 

  1. Lin L, Guo Z, He E, et al. SIRT2 regulates extracellular vesicle-mediated liver-bone communication. Nat Metab. 2023;5:821-841. doi: 10.1038/s42255-023-00803-0

 

  1. Rack JGM, VanLinden MR, Lutter T, Aasland R, Ziegler M. Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform. J Mol Biol. 2014;426:1677-1691.doi: 10.1016/j.jmb.2013.10.027

 

  1. Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6:1011-1018. doi: 10.4161/cc.6.9.4219

 

  1. Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019;55:100961. doi: 10.1016/j.arr.2019.100961

 

  1. Maxwell MM, Tomkinson EM, Nobles J, et al. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet. 2011;20:3986-3996. doi: 10.1093/hmg/ddr326

 

  1. Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res. 2016;35:182. doi: 10.1186/s13046-016-0461-5

 

  1. Diao Z, Ji Q, Wu Z, et al. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 2021;49:4203-4219. doi: 10.1093/nar/gkab161

 

  1. Wang Q, Li L, Li CY, Pei Z, Zhou M, Li N. SIRT3 protects cells from hypoxia via PGC-1α- and MnSOD-dependent pathways. Neuroscience. 2015;286:109-121. doi: 10.1016/j.neuroscience.2014.11.045

 

  1. Zhang J, Xiang H, Liu J, Chen Y, He RR, Liu B. Mitochondrial sirtuin 3: New emerging biological function and therapeutic target. Theranostics. 2020;10:8315-8342. doi: 10.7150/thno.45922

 

  1. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137:560-570. doi: 10.1016/j.cell.2009.02.026

 

  1. Matsushita N, Yonashiro R, Ogata Y, et al. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells. 2011;16:190-202. doi: 10.1111/j.1365-2443.2010.01475.x

 

  1. Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol. 2018;53:311-334. doi: 10.1080/10409238.2018.1458071

 

  1. Wang YQ, Wang HL, Xu J, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9:545. doi: 10.1038/s41467-018-02951-4

 

  1. Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a mammalian deacylase with multitasking abilities. Physiol Rev. 2020;100:145-169. doi: 10.1152/physrev.00030.2018

 

  1. Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev. 2021;41:1089-1137. doi: 10.1002/med.21753

 

  1. Lagunas-Rangel FA. SIRT7 in the aging process. Cell Mol Life Sci. 2022;79:297. doi: 10.1007/s00018-022-04342-x

 

  1. Tang M, Tang H, Tu B, Zhu WG. SIRT7: A sentinel of genome stability. Open Biol. 2021;11:210047. doi: 10.1098/rsob.210047

 

  1. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20:1075-1080. doi: 10.1101/gad.1399706

 

  1. Hubbi ME, Hu H, Kshitiz, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem. 2013;288:20768-20775. doi: 10.1074/jbc.M113.476903

 

  1. Varghese B, Chianese U, Capasso L, et al. SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism. J Transl Med. 2023;21(1):627. doi: 10.1186/s12967-023-04440-9

 

  1. Bosch-Presegué L, Vaquero A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J. 2015;282(9):1745-1767. doi: 10.1111/febs.13053

 

  1. Betsinger CN, Justice JL, Tyl MD, et al. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems. 2023;8(6):e0051023. doi: 10.1128/msystems.00510-23

 

  1. Polletta L, Vernucci E, Carnevale I, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11(2):253-270. doi: 10.1080/15548627.2015.1009778

 

  1. Akter R, Afrose A, Rahman MR, et al. A comprehensive analysis into the therapeutic application of natural products as SIRT6 modulators in Alzheimer’s disease, aging, cancer, inflammation, and diabetes. Int J Mol Sci. 2021;22(8):4180. doi: 10.3390/ijms22084180

 

  1. Jaiswal A, Xudong Z, Zhenyu J, Saretzki G. Mitochondrial sirtuins in stem cells and cancer. FEBS J. 2022;289(12):3393-3415. doi: 10.1111/febs.15879

 

  1. Lee H, Yoon H. Mitochondrial sirtuins: Energy dynamics and cancer metabolism. Mol Cells. 2024;47(2):100029. doi: 10.1016/j.mocell.2024.100029

 

  1. Shen H, Ma W, Hu Y, et al. Mitochondrial sirtuins in cancer: A revisited review from molecular mechanisms to therapeutic strategies. Theranostics. 2024;14(7):2993-3013. doi: 10.7150/thno.97320

 

  1. Wen Y, Huang H, Huang B, Liao X. HSA-miR-34a-5p regulates the SIRT1/TP53 axis in prostate cancer. Am J Transl Res. 2022;14(7):4493-4504.

 

  1. Jin X, Wei Y, Xu F, et al. SIRT1 promotes formation of breast cancer through modulating Akt activity. J Cancer. 2018;9(11):2012-2023. doi: 10.7150/jca.24275

 

  1. Fang H, Huang Y, Luo Y, et al. SIRT1 induces the accumulation of TAMs at colorectal cancer tumor sites via the CXCR4/CXCL12 axis. Cell Immunol. 2022;371:104458. doi: 10.1016/j.cellimm.2021.104458

 

  1. Guo S, Li F, Liang Y, et al. AIFM2 promotes hepatocellular carcinoma metastasis by enhancing mitochondrial biogenesis through activation of SIRT1/PGC-1α signaling. Oncogenesis. 2023;12(1):46. doi: 10.1038/s41389-023-00491-1

 

  1. Tian WL, Guo R, Wang F, et al. The IRF9-SIRT1-P53 axis is involved in the growth of human acute myeloid leukemia. Exp Cell Res. 2018;365(2):185-193. doi: 10.1016/j.yexcr.2018.02.036

 

  1. Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta. 2010;1804:1684-1689. doi: 10.1016/j.bbapap.2010.05.002

 

  1. Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 2008;3:e2020. doi: 10.1371/journal.pone.0002020

 

  1. Wang RH, Zheng Y, Kim HS, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32:11-20. doi: 10.1016/j.molcel.2008.09.011

 

  1. Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312-323. doi: 10.1016/j.ccr.2008.09.001

 

  1. Herranz D, Muñoz-Martin M, Cañamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:3. doi: 10.1038/ncomms1001

 

  1. Hao C, Zhu PX, Yang X, et al. Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma. BMC Cancer. 2014;14:978. doi: 10.1186/1471-2407-14-978

 

  1. Jiang K, Lyu L, Shen Z, et al. Overexpression of SIRT1 is a poor prognostic factor for advanced colorectal cancer. Chin Med J (Engl). 2014;127(11):2021-2024.

 

  1. Wang J, Wu J, Wang L, Min X, Chen Z. The LINC00152/miR- 138 axis facilitates gastric cancer progression by mediating SIRT2. J Oncol. 2021;2021:1173869. doi: 10.1155/2021/1173869

 

  1. Du Y, Wu J, Zhang H, Li S, Sun H. Reduced expression of SIRT2 in serous ovarian carcinoma promotes cell proliferation through disinhibition of CDK4 expression. Mol Med Rep. 2017;15(4);1638-1646. doi: 10.3892/mmr.2017.6183

 

  1. Wilking-Busch MJ, Ndiaye MA, Huang W, Ahmad N. Expression profile of SIRT2 in human melanoma and implications for sirtuin-based chemotherapy. Cell Cycle. 2017;16(6):574-577. doi: 10.1080/15384101.2017.1288323

 

  1. Deng A, Ning Q, Zhou L, Liang Y. SIRT2 is an unfavorable prognostic biomarker in patients with acute myeloid leukemia. Sci Rep. 2016;6:27694. doi: 10.1038/srep27694

 

  1. Schmidt AV, Monga SP, Prochownik EV, Goetzman ES. A novel transgenic mouse model implicates Sirt2 as a promoter of hepatocellular carcinoma. Int J Mol Sci. 2023;24(16):12618. doi: 10.3390/ijms241612618

 

  1. Zhang L, Kim S, Ren X. The clinical significance of SIRT2 in malignancies: A tumor suppressor or an oncogene? Front Oncol. 2020;10:1721. doi: 10.3389/fonc.2020.01721

 

  1. Chen J, Chan AW, To KF, et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling. Hepatology. 2013;57(6):2287-2298. doi: 10.1002/hep.26278

 

  1. Cui Y, Qin L, Wu J, et al. SIRT3 enhances glycolysis and proliferation in SIRT3-expressing gastric cancer cells. PLoS One. 2015;10(6):e0129834. doi: 10.1371/journal.pone.0129834

 

  1. Wang Y, Sun X, Ji K, et al. Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway. Biomed Pharmacother. 2018;105:1172-1182. doi: 10.1016/j.biopha.2018.06.071

 

  1. Zu Y, Chen XF, Li Q, Zhang ST, Si LN. PGC-1α activates SIRT3 to modulate cell proliferation and glycolytic metabolism in breast cancer. Neoplasma. 2021;68(2):352-361. doi: 10.4149/neo_2020_200530N584

 

  1. George J, Nihal M, Singh CK, Zhong W, Liu X, Ahmad N. Pro-proliferative function of mitochondrial sirtuin deacetylase SIRT3 in human melanoma. J Invest Dermatol. 2016;136(4):809-818. doi: 10.1016/j.jid.2015.12.026

 

  1. Yan SM, Han X, Han PJ, Chen HM, Huang LY, Li Y. SIRT3 is a novel prognostic biomarker for esophageal squamous cell carcinoma. Med Oncol. 2014;31(8):103. doi: 10.1007/s12032-014-0103-8

 

  1. Elkady N, Aldesoky AI, Dawoud MM. Evaluation of ARK5 and SIRT3 expression in renal cell carcinoma and their clinical significance. Diagn Pathol. 2023;18(1):125. doi: 10.1186/s13000-023-01409-6

 

  1. Torrens-Mas M, Oliver J, Roca P, Sastre-Serra J. SIRT3: Oncogene and tumor suppressor in cancer. Cancers (Basel). 2017;9:90. doi: 10.3390/cancers9070090

 

  1. Chen Y, Fu LL, Wen X, et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 2014;5:e1047. doi: 10.1038/cddis.2014.14

 

  1. Xu L, Li Y, Zhou L, et al. SIRT3 elicited an anti- Warburg effect through HIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma tumorigenesis. Cancer Med. 2019;8:2380-2391. doi: 10.1002/cam4.2089

 

  1. Zou X, Zhu Y, Park SH, et al. SIRT3-mediated dimerization of IDH2 directs cancer cell metabolism and tumor growth. Cancer Res. 2017;77:3990-3999. doi: 10.1158/0008-5472.CAN-16-2393

 

  1. Paku M, Haraguchi N, Takeda M, et al. SIRT3-mediated SOD2 and PGC-1α contribute to chemoresistance in colorectal cancer cells. Ann Surg Oncol. 2021;28:4720-4732. doi: 10.1245/s10434-020-09373-x

 

  1. Chen J, Wang A, Chen Q. SirT3 and p53 deacetylation in aging and cancer. J Cell Physiol. 2017;232:2308-2311. doi: 10.1002/jcp.25669

 

  1. Luo K, Huang W, Tang S. Sirt3 enhances glioma cell viability by stabilizing Ku70-BAX interaction. Onco Targets Ther. 2018;11:7559-7567. doi: 10.2147/OTT.S172672

 

  1. Chen Z, Lin J, Feng S, et al. SIRT4 inhibits the proliferation, migration, and invasion abilities of thyroid cancer cells by inhibiting glutamine metabolism. Onco Targets Ther. 2019;12:2397-2408. doi: 10.2147/OTT.S189536

 

  1. Fu L, Dong Q, He J, et al. SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 2017;36(19):2724-2736. doi: 10.1038/onc.2016.425

 

  1. Yin J, Cai G, Wang H, Chen W, Liu S, Huang G. SIRT4 is an independent prognostic factor in bladder cancer and inhibits bladder cancer growth by suppressing autophagy. Cell Div. 2023;18(1):9. doi: 10.1186/s13008-023-00091-w

 

  1. Wang H, Li J, Huang R, Fang L, Yu S. SIRT4 and SIRT6 serve as novel prognostic biomarkers with competitive functions in serous ovarian cancer. Front Genet. 2021;12:666630. doi: 10.3389/fgene.2021.666630

 

  1. Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett. 2020;20:11. doi: 10.3892/ol.2020.11872

 

  1. Min Z, Gao J, Yu Y. The roles of mitochondrial SIRT4 in cellular metabolism. Front Endocrinol (Lausanne). 2019;9:783. doi: 10.3389/fendo.2018.00783

 

  1. Cai G, Ge Z, Xu Y, Cai L, Sun P, Huang G. SIRT4 functions as a tumor suppressor during prostate cancer by inducing apoptosis and inhibiting glutamine metabolism. Sci Rep. 2022;12:12208. doi: 10.1038/s41598-022-16610-8

 

  1. Bai W, Cheng L, Xiong L, et al. Protein succinylation associated with the progress of hepatocellular carcinoma. J Cell Mol Med. 2022;26:5702-5712. doi: 10.1111/jcmm.17507

 

  1. Dai Y, Liu S, Li J, et al. SIRT4 suppresses the inflammatory response and oxidative stress in osteoarthritis. Am J Transl Res. 2020;12:1965-1975.

 

  1. Wang K, Hu Z, Zhang C, et al. SIRT5 contributes to colorectal cancer growth by regulating T cell activity. J Immunol Res. 2020;2020:3792409. doi: 10.1155/2020/3792409

 

  1. Abril YLN, Fernandez IR, Hong JY, et al. Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene. 2021;40(9):1644-1658. doi: 10.1038/s41388-020-01637-w

 

  1. Sun X, Wang S, Gai J, et al. SIRT5 promotes cisplatin resistance in ovarian cancer by suppressing DNA damage in a ROS-dependent manner via regulation of the Nrf2/HO-1 pathway. Front Oncol. 2019;9:754. doi: 10.3389/fonc.2019.00754

 

  1. Yan D, Franzini A, Pomicter AD, et al. SIRT5 is a druggable metabolic vulnerability in acute myeloid leukemia. Blood Cancer Discov. 2021;2(3):266-287. doi: 10.1158/2643-3230.BCD-20-0168

 

  1. Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging roles of SIRT5 in metabolism, cancer, and SARS-CoV-2 infection. Cells. 2023;12:852. doi: 10.3390/cells12060852

 

  1. Chen X, Xu Z, Zeng S, et al. SIRT5 downregulation is associated with poor prognosis in glioblastoma. Cancer Biomark. 2019;24(4):449-459. doi: 10.3233/CBM-182197

 

  1. Yao L, Wang Y. Bioinformatic analysis of the effect of the sirtuin family on differentiated thyroid carcinoma. Biomed Res Int. 2022;2022:5794118. doi: 10.1155/2022/5794118

 

  1. Rizzo A, Iachettini S, Salvati E, et al. SIRT6 interacts with TRF2 and promotes its degradation in response to DNA damage. Nucleic Acids Res. 2017;45:1820-1834. doi: 10.1093/nar/gkw1202

 

  1. Mao Z, Hine C, Tian X, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443-1446. doi: 10.1126/science.1202723

 

  1. Tao NN, Ren JH, Tang H, et al. Deacetylation of Ku70 by SIRT6 attenuates Bax-mediated apoptosis in hepatocellular carcinoma. Biochem Biophys Res Commun. 2017;485:713-719. doi: 10.1016/j.bbrc.2017.02.111

 

  1. Chen W, Liu N, Zhang H, et al. Sirt6 promotes DNA end joining in iPSCs derived from old mice. Cell Rep. 2017;18:2880-2892. doi: 10.1016/j.celrep.2017.02.082

 

  1. Fiorentino F, Carafa V, Favale G, Altucci L, Mai A, Rotili D. The two-faced role of SIRT6 in cancer. Cancers (Basel). 2021;13:1156. doi: 10.3390/cancers13051156

 

  1. Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell. 2012;151(6):1185-1199. doi: 10.1016/j.cell.2012.10.047

 

  1. Zhang ZG, Qin CY. Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signalregulated kinase signaling pathway. Mol Med Rep. 2014;9(3):882-888. doi: 10.3892/mmr.2013.1879

 

  1. Han Z, Liu L, Liu Y, Li S. Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. Int J Clin Exp Pathol. 2014;7(8):4774-81.

 

  1. Bae JS, Noh SJ, Kim KM, et al. SIRT6 is involved in the progression of ovarian carcinomas via β-catenin-mediated epithelial to mesenchymal transition. Front Oncol. 2018;8:538. doi: 10.3389/fonc.2018.00538

 

  1. Liu Y, Xie QR, Wang B, et al. Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell. 2013;4(9):702-710. doi: 10.1007/s13238-013-3054-5

 

  1. Khongkow M, Olmos Y, Gong C, et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis. 2013;34(7):1476-1486. doi: 10.1093/carcin/bgt098

 

  1. Wang L, Guo W, Ma J, et al. Aberrant SIRT6 expression contributes to melanoma growth: Role of the autophagy paradox and IGF-AKT signaling. Autophagy. 2018;14(3):518-533. doi: 10.1080/15548627.2017.1384886

 

  1. Cagnetta A, Soncini D, Orecchioni S, et al. Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells’ vulnerability to DNA-damaging agents. Haematologica. 2018;103(1):80-90. doi: 10.3324/haematol.2017.176248

 

  1. Kim JK, Noh JH, Jung KH, et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology. 2013;57(3):1055-1067. doi: 10.1002/hep.26101

 

  1. Monteiro-Reis S, Lameirinhas A, Miranda-Gonçalves V, et al. Sirtuins’ deregulation in bladder cancer: SIRT7 is implicated in tumor progression through epithelial to mesenchymal transition promotion. Cancers (Basel). 2020;12(5):1066. doi: 10.3390/cancers12051066

 

  1. Paredes S, Villanova L, Chua KF. Molecular pathways: Emerging roles of mammalian Sirtuin SIRT7 in cancer. Clin Cancer Res. 2014;20:1741-1746. doi: 10.1158/1078-0432.CCR-13-1547

 

  1. Huo Q, Chen S, Zhuang J, Quan C, Wang Y, Xie N. SIRT7 downregulation promotes breast cancer metastasis via LAP2α-induced chromosomal instability. Int J Biol Sci. 2023;19(5):1528-1542. doi: 10.7150/ijbs.75340

 

  1. Wang HL, Lu RQ, Xie SH, et al. SIRT7 exhibits oncogenic potential in human ovarian cancer cells. Asian Pac J Cancer Prev. 2015;16(8):3573-3537. doi: 10.7314/apjcp.2015.16.8.3573

 

  1. Liu X, Li C, Li Q, Chang HC, Tang YC. SIRT7 facilitates CENP-A nucleosome assembly and suppresses intestinal tumorigenesis. iScience. 2020;23(9):101461. doi: 10.1016/j.isci.2020.101461

 

  1. Yu H, Ye W, Wu J, et al. Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin Cancer Res. 2014;20(13):3434-3445. doi: 10.1158/1078-0432.CCR-13-2952

 

  1. Tang M, Lu X, Zhang C, et al. Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics. 2017;7(5):1346-1359. doi: 10.7150/thno.18804

 

  1. Zhao Q, Zhou J, Li F, et al. The role and therapeutic perspectives of sirtuin 3 in cancer metabolism reprogramming, metastasis, and chemoresistance. Front Oncol. 2022;12:910963. doi: 10.3389/fonc.2022.910963

 

  1. Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7: A novel molecular target for personalized cancer treatment? Oncogene. 2024;43(14):993-1006. doi: 10.1038/s41388-024-02976-8

 

  1. Chen PT, Yeong KY. New sirtuin modulators: Their uncovering, pharmacophore, and implications in drug discovery. Med Chem Res. 2024;33:1064-1078. doi: 10.1007/s00044-024-03249-5

 

  1. Deus CM, Serafim TL, Magalhães-Novais S, et al. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Arch Toxicol. 2017;91(3):1261-1278. doi: 10.1007/s00204-016-1784-x

 

  1. Li L, Fu S, Wang J, et al. SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux. Biochem Pharmacol. 2024;222:116111. doi: 10.1016/j.bcp.2024.116111

 

  1. Tan P, Wang M, Zhong A, et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene. 2021;40(42):6081-6092. doi: 10.1038/s41388-021-01999-9

 

  1. Fatehi D, Soltani A, Ghatrehsamani M. SRT1720, a potential sensitizer for radiotherapy and cytotoxicity effects of NVB-BEZ235 in metastatic breast cancer cells. Pathol Res Pract. 2018;214(6):889-895. doi: 10.1016/j.prp.2018.04.001

 

  1. Han L, Long Q, Li S, et al. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer Res. 2020;80(16):3383-3398. doi: 10.1158/0008-5472.CAN-20-0506

 

  1. Chowdhury S, Sripathy S, Webster A, et al. Discovery of selective SIRT2 inhibitors as therapeutic agents in B-cell lymphoma and other malignancies. Molecules. 2020;25(3):455. doi: 10.3390/molecules25030455

 

  1. Hirai S, Endo S, Saito R, et al. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation. PLoS One. 2014;9(7):e102831. doi: 10.1371/journal.pone.0102831

 

  1. Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol Ther. 2018;188:140-154. doi: 10.1016/j.pharmthera.2018.03.004
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing