AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.3294
REVIEW

The role of amino acid metabolism in neurodegenerative diseases

Christina Bitsina1 Paschalis Theotokis1 Evangelia Kesidou1 Iliana Michailidou1 Ofira Einstein2 Marina Boziki1 Christos Bakirtzis1* Nikolaos Grigoriadis1*
Show Less
1 2nd Department of Neurology, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
2 Department of Physical Therapy, Faculty of Health Sciences, Ariel University, West Bank, Israel
Submitted: 27 March 2024 | Accepted: 19 June 2024 | Published: 13 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The exact etiologies of most neurodegenerative disorders remain poorly understood, therefore hampering the identification of molecular targets with clinical therapeutic potential. Recent clinical and experimental evidence supports the notion that amino acid metabolism could be implicated in the pathophysiology and disease progression of neurodegenerative diseases. This review aims to present the most common neurological diseases that lead to axonal degeneration and to examine the potential role of amino acid metabolism, with a particular focus on multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. The primary objective of this study is to identify potential amino acid biomarkers through metabolomics research and to propose therapeutic approaches by modulating amino acid-sensing signaling pathways to effectively monitor disease progression in neurodegenerative disorders. In this context, two distinct cellular signaling pathways are examined: the mechanistic target of rapamycin signaling pathway and the general control non-derepressible protein-integrated stress response pathway. These signaling cascades are analyzed in relation to each of the aforementioned neurological disorders to identify their potential regulatory roles in disease progression and pathophysiology. The review concludes by considering emerging amino acid biomarkers with potential clinical and diagnostic value, exploring signaling cascades for therapeutic manipulation to improve clinical outcomes in neurodegeneration, and providing insights for future research in the biomedical field.

Keywords
Neurodegenerative disorders
Amino acid metabolism
Mechanistic target of rapamycin signaling pathway
General control non-derepressible protein signaling pathway
Metabolomics studies
Amino acid biomarkers
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342(3):619-630. doi: 10.1124/jpet.112.192138

 

  1. Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol. 2021;47(8):897-909. doi: 10.1111/nan.12757

 

  1. Yuan L, Guo Y, Wen S, Deng H. Editorial: Genetic and epigenetic basis of neurodegenerative diseases. Front Aging Neurosci. 2022;14:958847. doi: 10.3389/fnagi.2022.958847

 

  1. Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10): 565-581. doi: 10.1038/s41582-019-0244-7

 

  1. Azam S, Haque ME, Balakrishnan R, Kim IS, Choi DK. The ageing brain: Molecular and cellular basis of neurodegeneration. Front Cell Dev Biol. 2021;9:683459. doi: 10.3389/fcell.2021.683459

 

  1. Madabhushi R, Pan L, Tsai LH. DNA damage and its links to neurodegeneration. Neuron. 2014;83(2):266-282. doi: 10.1016/j.neuron.2014.06.034

 

  1. Soto C, Estrada LD. Protein misfolding and neurodegeneration. Arch Neurol. 2008;65(2):184-189. doi: 10.1001/archneurol.2007.56

 

  1. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009;335:1-32. doi: 10.1007/978-3-642-00302-8

 

  1. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983-997. doi: 10.1038/nm.3232

 

  1. Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24-49. doi: 10.1016/j.pneurobio.2013.10.004

 

  1. Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445-449. doi: 10.1038/ng.2562

 

  1. Martínez-Cué C, Rueda N. Cellular senescence in neurodegenerative diseases. Front Cell Neurosci. 2020;14:16. doi: 10.3389/fncel.2020.00016

 

  1. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10): 1359-1369. doi: 10.1038/s41593-018-0242-x

 

  1. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8(1):359. doi: 10.1038/s41392-023-01588-0

 

  1. Traxler L, Lagerwall J, Eichhorner S, et al. Metabolism navigates neural cell fate in development, aging and neurodegeneration. Dis Model Mech. 2021;14(3):dmm048993. doi: 10.1242/dmm.048993

 

  1. Tatapudy S, Aloisio F, Barber D, Nystul T. Cell fate decisions: Emerging roles for metabolic signals and cell morphology. EMBO Rep. 2017;18(12):2105-2118. doi: 10.15252/embr.201744816

 

  1. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-754. doi: 10.1038/s41556-018-0124-1

 

  1. Johnson MA, Vidoni S, Durigon R, et al. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis. PLoS One. 2014;9(4):e0093597. doi: 10.1371/journal.pone.0093597

 

  1. Grzegorski T, Losy J. Multiple sclerosis - the remarkable story of a baffling disease. Rev Neurosci. 2019;30(5):511-526. doi: 10.1515/revneuro-2018-0074

 

  1. Jamebozorgi K, Rostami D, Pormasoumi H, Taghizadeh E, Barreto GE, Sahebkar A. Epigenetic aspects of multiple sclerosis and future therapeutic options. Int J Neurosci. 2021;131(1):56-64. doi: 10.1080/00207454.2020.1732974

 

  1. Kumar G, Axtell RC. Dual role of b cells in multiple sclerosis. Int J Mol Sci. 2023;24(3):2336. doi: 10.3390/ijms24032336

 

  1. Wingerchuk DM, Carter JL. Multiple sclerosis: Current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc. 2014;89(2):225-240. doi: 10.1016/j.mayocp.2013.11.002

 

  1. Vargas DL, Tyor WR. Update on disease-modifying therapies for multiple sclerosis. J Investig Med. 2017;65(5):883-891. doi: 10.1136/jim-2016-000339

 

  1. Gouras GK, Olsson TT, Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):3-11. doi: 10.1007/s13311-014-0313-y

 

  1. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun. 2014;2:135. doi: 10.1186/s40478-014-0135-5

 

  1. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27-42. doi: 10.1111/ene.14108

 

  1. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-273. doi: 10.1016/j.neuron.2014.12.007

 

  1. Delamarre A, Meissner WG. Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med. 2017;46(2):175-181. doi: 10.1016/j.lpm.2017.01.001

 

  1. Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1-12. doi: 10.1016/j.cger.2019.08.002

 

  1. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13

 

  1. Evans SJW, Douglas I, Rawlins MD, Wexler NS, Tabrizi SJ, Smeeth L. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J Neurol Neurosurg Psychiatry. 2013;84(10):1156-1160. doi: 10.1136/jnnp-2012-304636

 

  1. Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10(4):204-216. doi: 10.1038/nrneurol.2014.24

 

  1. Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16(9): 529-546. doi: 10.1038/s41582-020-0389-4

 

  1. Weskamp K, Barmada SJ. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res. 2018;1693:67-74. doi: 10.1016/j.brainres.2018.01.015

 

  1. Chou CC, Zhang Y, Umoh ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci. 2018;21(2):228-239. doi: 10.1038/s41593-017-0047-3

 

  1. Steyaert J, Scheveneels W, Vanneste J, et al. FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins. Hum Mol Genet. 2018;27(23):4103-4116. doi: 10.1093/hmg/ddy303

 

  1. Salameh JS, Brown RH, Berry JD. Amyotrophic lateral sclerosis: Review. Semin Neurol. 2015;35(5):469-476. doi: 10.1055/s-0035-1558984

 

  1. Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial cell metabolism. Physiol Rev. 2018;98(1):3-58.doi: 10.1152/physrev.00001.2017

 

  1. Pålsson-McDermott EM, O’Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020;30(4):300-314. doi: 10.1038/s41422-020-0291-z

 

  1. Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184(7): 4062-4068. doi: 10.4049/jimmunol.0903002

 

  1. Kelly B, Pearce EL. Amino assets: How amino acids support immunity. Cell Metab. 2020;32(2):154-175. doi: 10.1016/j.cmet.2020.06.010

 

  1. Dato S, Hoxha E, Crocco P, Iannone F, Passarino G, Rose G. Amino acids and amino acid sensing: Implication for aging and diseases. Biogerontology. 2019;20(1):17-31. doi: 10.1007/s10522-018-9770-8

 

  1. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183-203. doi: 10.1038/s41580-019-0199-y

 

  1. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta. 2014;1843(9): 1948-1968. doi: 10.1016/j.bbamcr.2014.04.006

 

  1. Lee DY. Roles of mTOR signaling in brain development. Exp Neurobiol. 2015;24(3):177-185. doi: 10.5607/en.2015.24.3.177

 

  1. Lei G, Zhuang L, Gan B. mTORC1 and ferroptosis: Regulatory mechanisms and therapeutic potential. Bioessays. 2021;43(6):e2100093. doi: 10.1002/bies.202100093

 

  1. Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014;7:28. doi: 10.3389/fnmol.2014.00028

 

  1. Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis. 2015;84:39-49. doi: 10.1016/j.nbd.2015.03.014

 

  1. Ryskalin L, Lazzeri G, Flaibani M, et al. mTOR-dependent cell proliferation in the brain. Biomed Res Int. 2017;2017:7082696. doi: 10.1155/2017/7082696

 

  1. Masson GR. Towards a model of GCN2 activation. Biochem Soc Trans. 2019;47(5):1481-1488. doi: 10.1042/BST20190331

 

  1. Costa-Mattioli M, Gobert D, Harding H, et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature. 2005;436(7054): 1166-1173. doi: 10.1038/nature03897

 

  1. Krukowski K, Nolan A, Frias ES, et al. Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife. 2020;9:62048. doi: 10.7554/eLife.62048

 

  1. Castellano F, Molinier-Frenkel V. Control of T-cell activation and signaling by amino-acid catabolizing enzymes. Front Cell Dev Biol. 2020;8:613416. doi: 10.3389/fcell.2020.613416

 

  1. Correale J. Immunosuppressive amino-acid catabolizing enzymes in multiple sclerosis. Front Immunol. 2020;11:600428. doi: 10.3389/fimmu.2020.600428

 

  1. Orsini H, Araujo LP, Maricato JT, et al. GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice. Brain Behav Immun. 2014;37:177-186. doi: 10.1016/j.bbi.2013.12.012

 

  1. Sundrud MS, Koralov SB, Feuerer M, et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science. 2009;324(5924): 1334-1338. doi: 10.1126/science.1172638

 

  1. Dello Russo C, Lisi L, Feinstein DL, Navarra P. mTOR kinase, a key player in the regulation of glial functions: Relevance for the therapy of multiple sclerosis. Glia. 2013;61(3): 301-311. doi: 10.1002/glia.22433

 

  1. Fitzgerald KC, Smith MD, Kim S, et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep Med. 2021;2(5):100424. doi: 10.1016/j.xcrm.2021.100424

 

  1. Rzepiński Ł, Kośliński P, Gackowski M, Koba M, Maciejek Z. Amino acid levels as potential biomarkers of multiple sclerosis in elderly patients: Preliminary report. J Clin Neurol. 2022;18(5):529-534. doi: 10.3988/jcn.2022.18.5.529

 

  1. Tang Z, Liu L, Li Y, et al. Urinary metabolomics reveals alterations of aromatic amino acid metabolism of Alzheimer’s disease in the transgenic CRND8 mice. Curr Alzheimer Res. 2016;13(7):764-776. doi: 10.2174/1567205013666160129095340

 

  1. Salek RM, Xia J, Innes A, et al. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int. 2010;56:937-947. doi: 10.1016/j.neuint.2010.04.001

 

  1. Li H, Ye D, Xie W, et al. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling. Biosci Rep. 2018;38:BSR20180127. doi: 10.1042/BSR20180127

 

  1. Horgusluoglu E, Neff R, Song WM, et al. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement. 2022;18:1260-1278. doi: 10.1002/alz.12468

 

  1. Bockaert J, Marin P. mTOR in brain physiology and pathologies. Physiol Rev. 2015;95:1157-1187. doi: 10.1152/physrev.00038.2014

 

  1. Baik SH, Kang S, Lee W, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 2019;30:493-507.e6. doi: 10.1016/j.cmet.2019.06.005

 

  1. Devi L, Ohno M. Deletion of the eIF2α Kinase GCN2 fails to rescue the memory decline associated with Alzheimer’s disease. PLoS One. 2013;8:e77335. doi: 10.1371/journal.pone.0077335

 

  1. Grallert B, Boye E. GCN2, an old dog with new tricks. Biochem Soc Trans. 2013;41:1687-1691. doi: 10.1042/BST20130210

 

  1. Han W, Sapkota S, Camicioli R, Dixon RA, Li L. Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Mov Disord. 2017;32: 1720-1728. doi: 10.1002/mds.27173

 

  1. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14:35. doi: 10.1186/s13024-019-0332-6

 

  1. Shao Y, Li T, Liu Z, et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener. 2021;16:4. doi: 10.1186/s13024-021-00425-8

 

  1. Figura M, Kuśmierska K, Bucior E, et al. Serum amino acid profile in patients with Parkinson’s disease. PLoS One. 2018;13:e0191670. doi: 10.1371/journal.pone.0191670

 

  1. Zhu Z, Yang C, Iyaswamy A, et al. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int J Mol Sci. 2019;20:728. doi: 10.3390/ijms20030728

 

  1. McCarty MF, Lerner A. Perspective: Low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of parkin. Adv Nutr. 2021;12:355-362. doi: 10.1093/advances/nmaa112

 

  1. Sbodio JI, Snyder SH, Paul BD. Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease. Proc Natl Acad Sci U S A. 2016;113:8843-8848. doi: 10.1073/pnas.1608264113

 

  1. Gruber B, Kłaczkow G, Jaworska M, et al. Huntington’s disease--imbalance of amino acid levels in plasma of patients and mutation carriers. Ann Agric Environ Med. 2013;20:779-783.

 

  1. McGarry A, Gaughan J, Hackmyer C, et al. Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington’s disease for participants of varying functional disability: A pilot study. Sci Rep. 2020;10:20490. doi: 10.1038/s41598-020-77526-9

 

  1. Andersen JV, Skotte NH, Aldana BI, Nørremølle A, Waagepetersen HS. Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington’s disease. Cell Mol Life Sci. 2019;76:2449-2461. doi: 10.1007/s00018-019-03051-2

 

  1. Paul BD. Cysteine metabolism and hydrogen sulfide signaling in Huntington’s disease. Free Radic Biol Med. 2022;186:93-98. doi: 10.1016/j.freeradbiomed.2022.05.005

 

  1. Pryor WM, Biagioli M, Shahani N, et al. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal. 2014;7:ra103. doi: 10.1126/scisignal.2005633

 

  1. Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585-595. doi: 10.1038/ng1362

 

  1. Bailus BJ, Scheeler SM, Simons J, et al. Modulating FKBP5/ FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy. 2021;17(12):4119-4140. doi: 10.1080/15548627.2021.1904489

 

  1. Patin F, Corcia P, Vourc’h P, et al. Omics to explore amyotrophic lateral sclerosis evolution: The central role of arginine and proline metabolism. Mol Neurobiol. 2017;54:5361-5374. doi: 10.1007/s12035-016-0078-x

 

  1. Ikenaka K, Atsuta N, Maeda Y, et al. Increase of arginine dimethylation correlates with the progression and prognosis of ALS. Neurology. 2019;92:e1868-e1877. doi: 10.1212/WNL.0000000000007311

 

  1. Lee J, Ryu H, Kowall NW. Motor neuronal protection by L-arginine prolongs survival of mutant Sod1 (G93A) ALS mice. Biochem Biophys Res Commun. 2009;384:524-529. doi: 10.1016/j.bbrc.2009.05.015

 

  1. Kh C, Cn L, Cm C, et al. Altered metabolic profiles of the plasma of patients with amyotrophic lateral sclerosis. Biomedicines. 2021;9(12):1944. doi: 10.3390/biomedicines9121944

 

  1. Lanznaster D, de Assis DR, Corcia P, Pradat PF, Blasco H. Metabolomics biomarkers: A strategy toward therapeutics improvement in ALS. Front Neurol. 2018;9:1126. doi: 10.3389/fneur.2018.01126

 

  1. Niebroj-Dobosz I, Jamrozik Z, Janik P, Hausmanowa-Petrusewicz I, Kwieciński H. Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients. Acta Neurol Scand. 1999;100: 238-243. doi: 10.1111/j.1600-0404.1999.tb0038.x

 

  1. Fiszman ML, Ricart KC, Latini A, Rodríguez G, Sica REP. In vitro neurotoxic properties and excitatory amino acids concentration in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Relationship with the degree of certainty of disease diagnoses. Acta Neurol Scand. 2010;121:120-126. doi: 10.1111/j.1600-0404.2009.01200.x

 

  1. Granatiero V, Sayles NM, Savino AM, et al. Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1G93A astrocytes. Autophagy. 2021;17:4029-4042. doi: 10.1080/15548627.2021.1899682
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing