Tiny messengers, big results: A review of exosome-mediated treatments and considerations in dermatology
Exosomes are small extracellular vesicles that play an important role in intercellular communication by transporting proteins, lipids, and nucleic acids between cells. They have emerged as relevant research areas due to their involvement in regulating various physiological and pathological processes. This review explores the potential applications of exosome-based therapies in dermatology and examines the safety aspects of these treatments. Past research has demonstrated that exosomes may effectively treat conditions such as alopecia and accelerate wound healing by stimulating hair follicle growth and enhancing tissue regeneration. Studies have shown that exosomes can promote the proliferation of dermal papilla cells and hair follicle growth in cases of alopecia. They also accelerate wound healing by modulating processes involved in inflammation, cell migration, and tissue remodeling. However, more research is needed to fully characterize the long-term safety profile of exosomes and establish standardized clinical protocols. Both human-derived and plant-derived exosomes appear to have favorable safety profiles based on current evidence, though plant sources may offer advantages in terms of production and biocompatibility. Continued exploration of exosomes’ mechanisms and potential risks will optimize these innovations and offer safe, effective exosome treatments to patients. While further research is warranted, current findings provide valuable insights into the applications of exosome therapy for dermatological conditions and its emerging role in precision medicine.
- Park SJ, Shin SH, Kim KR, Seok J, Park KY. Exosomes as novel player in dermatologic field. Dermatol Ther. 2022;35(11):e15883. doi: 10.1111/dth.15883
- Kwon HH, Yang SH, Lee J, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: A 12-week prospective, double-blind, randomized, split-face study. Acta Derm Venereol. 2020;100(18):adv00310. doi: 10.2340/00015555-3666
- Zhou L, Wang H, Jing J, Yu L, Wu X, Lu Z. Regulation of hair follicle development by exosomes derived from dermal Papilla cells. Biochem Biophys Res Commun. 2018;500(2):325-332. doi: 10.1016/j.bbrc.2018.04.067
- Ha DH, Kim HK, Lee J, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020;9(5):1157. doi: 10.3390/cells9051157
- Wang T, Gao H, Wang D, et al. Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg Med. 2023;55(2):178-189. doi: 10.1002/lsm.23628
- Al Aboud AM, Zito PM. Alopecia. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024.
- Shimizu Y, Ntege EH, Sunami H, Inoue Y. Regenerative medicine strategies for hair growth and regeneration: A narrative review of literature. Regen Ther. 2022;21:527-539. doi: 10.1016/j.reth.2022.10.005
- Glass GE. Photobiomodulation: The clinical applications of low-level light Therapy. Aesthet Surg J. 2021;41(6):723-738. doi: 10.1093/asj/sjab025
- Wang C, Wang M, Xu T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65-76. doi: 10.7150/thno.29766
- Hu S, Li Z, Cores J, et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano. 2019;13(10):11273-11282. doi: 10.1021/acsnano.9b04384
- Tzng E, Bayardo N, Yang PC. Current challenges surrounding exosome treatments. Extracell Vesicle. 2023;2:100023. doi: 10.1016/j.vesic.2023.100023
- Xiong M, Zhang Q, Hu W, et al. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res. 2021;166:105490. doi: 10.1016/j.phrs.2021.105490
- Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR- 218-5p promote hair regeneration by regulating β-catenin signaling. Sci Adv. 2020;6(30):eaba1685. doi: 10.1126/sciadv.aba1685
- An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021;54(3):e12993. doi: 10.1111/cpr.12993
- Gupta AK, Wang T, Rapaport JA. Systematic review of exosome treatment in hair restoration: Preliminary evidence, safety, and future directions. J Cosmet Dermatol. 2023;22(9):2424-2433. doi: 10.1111/jocd.15869
- Li Y, Wang G, Wang Q, Zhang Y, Cui L, Huang X. Exosomes secreted from adipose-derived stem cells are a potential treatment agent for immune-mediated alopecia. J Immunol Res. 2022;2022:7471246. doi: 10.1155/2022/7471246
- Hicok K, Vangsness T, Dordevic M. Exosome origins: Why the cell source matters. Stem Cell Regen Med. 2020;4:1-4. doi: 10.33425/2639-9512.1040
- De A, Chakraborty D, Agarwal I, Sarda A. Present and future use of exosomes in dermatology. Indian J Dermatol. 2024. doi: 10.4103/ijd.ijd_491_23
- Emer J. Platelet-Rich Plasma (PRP): Current applications in dermatology. Skin Therapy Lett. 2019;24(5):1-6.
- Gupta AK, Renaud HJ, Rapaport JA. Platelet-rich plasma and cell therapy: The new horizon in hair loss treatment. Dermatol Clin. 2021;39(3):429-445. doi: 10.1016/j.det.2021.04.001
- Nestor MS, Ablon G, Gade A, Han H, Fischer DL. Treatment options for androgenetic alopecia: Efficacy, side effects, compliance, financial considerations, and ethics. J Cosmet Dermatol. 2021;20(12):3759-3781. doi: 10.1111/jocd.14537
- Gupta AK, Renaud HJ, Halaas Y, Rapaport JA. Exosomes: A new effective non-surgical therapy for androgenetic alopecia? Skinmed. 2020;18(2):96-100.
- Mondal J, Pillarisetti S, Junnuthula V, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release. 2023;353:1127-1149. doi: 10.1016/j.jconrel.2022.12.027
- Wang C, Wang M, Xu T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65-76. doi: 10.7150/thno.29766
- Zhou C, Zhang B, Yang Y, et al. Stem cell-derived exosomes: Emerging therapeutic opportunities for wound healing. Stem Cell Res Ther. 2023;14(1):107. doi: 10.1186/s13287-023-03345-0
- Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Res Ther. 2022;13(1):24. doi: 10.1186/s13287-021-02697-9
- Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells. 2008;1(1):1-7. doi: 10.15283/ijsc.2008.1.1.1
- Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol. 2014;5:148. doi: 10.3389/fimmu.2014.00148
- Zhao B, Li X, Shi X, et al. Exosomal MicroRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int. 2018;2018:5420463. doi: 10.1155/2018/5420463
- Zhang Y, Han F, Gu L, et al. Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis. J Mol Histol. 2020;51(4):375-383. doi: 10.1007/s10735-020-09887-4
- Ma T, Fu B, Yang X, Xiao Y, Pan M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem. 2019;120(6):10847-10854. doi: 10.1002/jcb.28376
- Chen B, Sun Y, Zhang J, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther. 2019;10(1):142. doi: 10.1186/s13287-019-1253-6
- Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol. 2019;47(1):3793-3803. doi: 10.1080/21691401.2019.1669617
- Sinha M, Sen CK, Singh K, et al. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nat Commun. 2018;9(1):936. doi: 10.1038/s41467-018-03208-w
- Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR- 181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72-82. doi: 10.1016/j.ebiom.2016.04.030
- Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A. Role of exosomes in dermal wound healing: A systematic review. J Invest Dermatol. 2022;142(3 Pt A):662-678.e8. doi: 10.1016/j.jid.2021.07.167
- Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2017;7(1):13321. doi: 10.1038/s41598-017-12919-x
- Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med. 2019;13(4):555-568. doi: 10.1002/term.2799
- Chan BD, Wong WY, Lee MM, et al. Exosomes in inflammation and inflammatory disease. Proteomics. 2019;19(8):e1800149. doi: 10.1002/pmic.201800149
- Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T. Exosomes in angiogenesis and anti-angiogenic therapy in cancers. Int J Mol Sci. 2020;21(16):5840. doi: 10.3390/ijms21165840
- Wang Y, Zhang Y, Li T, et al. Adipose mesenchymal stem cell derived exosomes promote keratinocytes and fibroblasts embedded in collagen/platelet-rich plasma scaffold and accelerate wound healing. Adv Mater. 2023;35(40):e2303642. doi: 10.1002/adma.202303642
- Wu Y, Qiu W, Xu X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. Am J Transl Res. 2018;10(7):2026-2036.
- Nguyen TT, Ding D, Wolter WR, et al. Expression of active matrix metalloproteinase-9 as a likely contributor to the clinical failure of aclerastide in treatment of diabetic foot ulcers. Eur J Pharmacol. 2018;834:77-83. doi: 10.1016/j.ejphar.2018.07.014
- Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys. 2020;681:108259. doi: 10.1016/j.abb.2020.108259
- Heo JS, Kim S, Yang CE, Choi Y, Song SY, Kim HO. Human adipose mesenchymal stem cell-derived exosomes: A key player in wound healing. Tissue Eng Regen Med. 2021;18(4):537-548. doi: 10.1007/s13770-020-00316-x
- Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release. 2023;356:463-480. doi: 10.1016/j.jconrel.2023.03.013
- Han X, Wu P, Li L, et al. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell Cycle. 2021;20(5-6):616-629. doi: 10.1080/15384101.2021.1894813
- Wang Y, Shen X, Song S, et al. Mesenchymal stem cell-derived exosomes and skin photoaging: From basic research to practical application. Photodermatol Photoimmunol Photomed. 2023;39(6):556-566. doi: 10.1111/phpp.12910
- Rippa AL, Kalabusheva EP, Vorotelyak EA. Regeneration of dermis: Scarring and cells involved. Cells. 2019;8(6):607. doi: 10.3390/cells8060607
- Guo JA, Yu PJ, Yang DQ, Chen W. The antisenescence effect of exosomes from human adipose-derived stem cells on skin fibroblasts. Biomed Res Int. 2022;2022:1034316. doi: 10.1155/2022/1034316
- Lu L, Bai W, Wang M, et al. Novel roles of bovine milk-derived exosomes in skin antiaging. J Cosmet Dermatol. 2023;23:1374-1385. doi: 10.1111/jocd.16112
- Zhang Y, Zouboulis CC, Xiao Z. Exosomes from adipose-derived stem cells activate sebocytes through the PI3K/ AKT/SREBP-1 pathway to accelerate wound healing. Cell Tissue Res. 2024;396:329-342. doi: 10.1007/s00441-024-03872-z
- Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, et al. Exosomes: A promising strategy for repair, regeneration and treatment of skin disorders. Cells. 2023;12(12):1625. doi: 10.3390/cells12121625
- Lo Cicero A, Delevoye C, Gilles-Marsens F, et al. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun. 2015;6:7506. doi: 10.1038/ncomms8506
- Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. Int J Mol Sci. 2021;22(2):720. doi: 10.3390/ijms22020720
- Gowda R, Robertson BM, Iyer S, Barry J, Dinavahi SS, Robertson GP. The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev. 2020;85:101975. doi: 10.1016/j.ctrv.2020.101975
- Shi C, Pei S, Ding Y, et al. Exosomes with overexpressed miR 147a suppress angiogenesis and infammatory injury in an experimental model of atopic dermatitis. Sci Rep. 2023;13(1):8904. doi: 10.1038/s41598-023-34418-y
- Zhao Z, Zhang L, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases. Front Immunol. 2023;14:1166536. doi: 10.3389/fimmu.2023.1166536
- Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to exosomes: Exosomes as tools to study epigenetic adaptive mechanisms in high-altitude humans. Int J Environ Res Public Health. 2021;18(16):8280. doi: 10.3390/ijerph18168280
- Al-Masawa ME, Alshawsh MA, Ng CY, et al. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics. 2022;12(15):6455-6508. doi: 10.7150/thno.73436
- Maji S, Yan IK, Parasramka M, Mohankumar S, Matsuda A, Patel T. In vitro toxicology studies of extracellular vesicles. J Appl Toxicol. 2017;37(3):310-318. doi: 10.1002/jat.3362
- Gu Z, Yin Z, Song P, et al. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol. 2022;10:949724. doi: 10.3389/fbioe.2022.949724
- Nazari H, Alborzi F, Heirani-Tabasi A, et al. Evaluating the safety and efficacy of mesenchymal stem cell-derived exosomes for treatment of refractory perianal fistula in IBD patients: Clinical trial phase I. Gastroenterol Rep (Oxf). 2022;10:goac075. doi: 10.1093/gastro/goac075
- Yu M, Liu W, Li J, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther. 2020;11(1):350. doi: 10.1186/s13287-020-01824-2
- Ha DH, Kim SD, Lee J, et al. Toxicological evaluation of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells. Regul Toxicol Pharmacol. 2020;115:104686. doi: 10.1016/j.yrtph.2020.104686
- U.S. Food and Drug Administration. Public safety alert due to marketing of unapproved stem cell and exosome products. In: Public Saftey Notice. United States: U.S. Food and Drug Administration; 2019. p. 1.
- Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun Signal. 2022;20(1):145. doi: 10.1186/s12964-022-00959-4
- Yasuda S, Kusakawa S, Kuroda T, et al. Tumorigenicity-associated characteristics of human iPS cell lines. PLoS One. 2018;13(10):e0205022. doi: 10.1371/journal.pone.0205022
- Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2(3):198-210. doi: 10.1016/j.scr.2009.02.002
- Sato Y, Bando H, Di Piazza M, et al. Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy. 2019;21(11):1095-1111. doi: 10.1016/j.jcyt.2019.10.001
- Zhang K, Cheng K. Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng. 2023;1:1-2. doi: 10.1038/s44222-023-00064-2
- Xu JY, Chen GH, Yang YJ. Exosomes: A rising star in falling hearts. Front Physiol. 2017;8:494. doi: 10.3389/fphys.2017.00494
- Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining hair inductivity in human dermal Papilla cells: A review of effective methods. Skin Pharmacol Physiol. 2020;33(5):280-292. doi: 10.1159/000510152
- Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019;54(Suppl 2):789-792. doi: 10.1038/s41409-019-0616-z
- Hanyu-Deutmeyer A, Buchheit T. Exosomes: The good, the bad, and the ugly. ASRA Pain Med News. 2023;48. doi: 10.52211/asra050123.009
- Song H, Zhao J, Cheng J, et al. Extracellular vesicles in chondrogenesis and cartilage regeneration. J Cell Mol Med. 2021;25(11):4883-4892. doi: 10.1111/jcmm.16290
- Klyushnenkova E, Mosca JD, Zernetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells: Immunogenicity, tolerance, and suppression. J Biomed Sci. 2005;12(1):47-57. doi: 10.1007/s11373-004-8183-7
- Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9(1):17. doi: 10.1038/s41392-023-01704-0
- Raimondo S, Giavaresi G, Lorico A, Alessandro R. Extracellular vesicles as biological shuttles for targeted therapies. Int J Mol Sci. 2019;20(8):1848. doi: 10.3390/ijms20081848
- Akuma P, Okagu OD, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. 2019;3:23. doi: 10.3389/fsufs.2019.00023
- Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. doi: 10.1186/s13578-019-0282-2
- Syromiatnikova V, Prokopeva A, Gomzikova M. Methods of the large-scale production of extracellular vesicles. Int J Mol Sci. 2022;23(18):10522. doi: 10.3390/ijms231810522
- Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing therapeutic exosomes: From bench to industry. Mol Cells. 2022;45(5):284-290. doi: 10.14348/molcells.2022.2033
- Görgens A, Corso G, Hagey DW, et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles. 2022;11(6):e12238. doi: 10.1002/jev2.12238
- Mu N, Li J, Zeng L, et al. Plant-derived exosome-like nanovesicles: Current progress and prospects. Int J Nanomedicine. 2023;18:4987-5009. doi: 10.2147/ijn.S420748
- Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc. 2015;2015(4):319-323. doi: 10.1101/pdb.top074476
- Yi Q, Xu Z, Thakur A, et al. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res. 2023;190:106733. doi: 10.1016/j.phrs.2023.106733
- Perut F, Roncuzzi L, Avnet S, et al. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11(1):87. doi: 10.3390/biom11010087
- Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321-340. doi: 10.1016/j.biomaterials.2016.06.018
- Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. Mar 2014;22(3):522-534. doi: 10.1038/mt.2013.190
- Cao M, Yan H, Han X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer. 2019;7(1):326. doi: 10.1186/s40425-019-0817-4
- Karamanidou T, Tsouknidas A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int J Mol Sci. 2021;23(1):191. doi: 10.3390/ijms23010191
- Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci. 2022;17(1):53-69. doi: 10.1016/j.ajps.2021.05.006
- Ding Y, Wang J, Chun Lai JH, et al. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell. 2014;25(3):412-426. doi: 10.1091/mbc.E13-10-0586
- András IE, Toborek M. Extracellular vesicles of the blood-brain barrier. Tissue Barriers. 2016;4(1):e1131804. doi: 10.1080/21688370.2015.1131804
- Rohde E, Pachler K, Gimona M. Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy. 2019;21(6):581-592. doi: 10.1016/j.jcyt.2018.12.006
- Logozzi M, Di Raimo R, Mizzoni D, Fais S. The potentiality of plant-derived nanovesicles in human health-A comparison with human exosomes and artificial nanoparticles. Int J Mol Sci. 2022;23(9):4919. doi: 10.3390/ijms23094919
- Shafi S, Ansari HR, Bahitham W, Aouabdi S. The impact of natural antioxidants on the regenerative potential of vascular cells. Front Cardiovasc Med. 2019;6:28. doi: 10.3389/fcvm.2019.00028
- Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529(7586):307-315. doi: 10.1038/nature17039
- Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: From anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie. 2020;171-172:103-109. doi: 10.1016/j.biochi.2020.02.011
- Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The antioxidant effect of small extracellular vesicles derived from Aloe vera peels for wound healing. Tissue Eng Regen Med. 2021;18(4):561-571. doi: 10.1007/s13770-021-00367-8
- Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: A new therapeutic approach for the future. Front Bioeng Biotechnol. 2023;11:1215650. doi: 10.3389/fbioe.2023.1215650
- Wang Q, Zhuang X, Mu J, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1867. doi: 10.1038/ncomms2886
- Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars). 2020;15(1):1096-1122. doi: 10.1515/med-2020-0160
- Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv. 2020;27(1):585-598. doi: 10.1080/10717544.2020.1748758
- Chen H, Wang L, Zeng X, et al. Exosomes, a new star for targeted delivery. Front Cell Dev Biol. 2021;9:751079. doi: 10.3389/fcell.2021.751079
- Garaeva L, Kamyshinsky R, Kil Y, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11(1):6489. doi: 10.1038/s41598-021-85833-y
- Wang Y, Wang J, Ma J, Zhou Y, Lu R. Focusing on future applications and current challenges of plant derived extracellular vesicles. Pharmaceuticals (Basel). 2022;15(6):708. doi: 10.3390/ph15060708
- Zhu YG, Shi MM, Monsel A, et al. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: A pilot study. Stem Cell Res Ther. 2022;13(1):220. doi: 10.1186/s13287-022-02900-5
- Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020;29(12):747-754. doi: 10.1089/scd.2020.0080
- Tsao CR, Liao MF, Wang MH, Cheng CM, Chen CH. Mesenchymal stem cell derived exosomes: A new hope for the treatment of cardiovascular disease? Acta Cardiol Sin. 2014;30(5):395-400.
- Zeng QL, Liu DW. Mesenchymal stem cell-derived exosomes: An emerging therapeutic strategy for normal and chronic wound healing. World J Clin Cases. 2021;9(22):6218-6233. doi: 10.12998/wjcc.v9.i22.6218
- Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi: 10.1126/science.aau6977
- Kim M, Park JH. Isolation of Aloe saponaria-derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics. 2022;14(9):1905. doi: 10.3390/pharmaceutics14091905
- Lugini L, Valtieri M, Federici C, et al. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget. 2016;7(31):50086-50098. doi: 10.18632/oncotarget.10574