AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.3260
Cite this article
32
Download
434
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Zinc finger protein 521 (ZNF521/Zfp521): Insights into its structure, function, regulation, and significance to cell differentiation

Jiali Li1,2† Yanbing Pan1,2† Mengjie Tu1,2 Jiayang Han1,2 Binbin Zhao1,2 Jialin Wu1,2 Guangchao Liu1,2 Kaifeng Zhang1,2 Man Yue1,2 Mengwen Hou1,2 Tiantian Sun1,2 Xu Han1,2 Kangxu Chen1,2 Yang An1,2*
Show Less
1 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
2 Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
Submitted: 25 March 2024 | Accepted: 8 May 2024 | Published: 2 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The zinc finger protein 521 (ZNF521) gene is located on human chromosome 18, specifically in the 18q11.2 region. As a zinc finger DNA-binding protein, ZNF521/Zfp521 acts as a transcription cofactor involved in the regulation of cell differentiation across various cell types, including hematopoietic, neural, and mesenchyme stem cells, B progenitor cells, preadipocytes, and osteoblasts. Its interactions with key proteins such as RUNX2, EBF1, SIAH2, or BMP2 further modulate these processes. In this review, we briefly summarize the current understanding of ZNF521/Zfp521, encompassing its structural, functional, post-translational modification, and cellular signaling pathways, especially its roles in cell differentiation and related diseases. In addition, we explore the process and effects of the interaction between Zfp521 and other proteins and discuss the molecular mechanisms of its roles in adipogenic, osteogenic, chondrogenic, and neural differentiation.

Keywords
ZNF521
Zfp521
Cell differentiation
Post-translational modification
Funding
This work was supported by the Program for Science and Technology Development in Henan Province (No. 242102311227) and the Innovation Project for College Students of Henan University (No. 20237003002, 20237003003, and 202310475091).
Conflict of interest
The authors declare that they have no conflicts of interest.
References
  1. Bond HM, Mesuraca M, Amodio N, et al. Early hematopoietic zinc finger protein-zinc finger protein 521: A candidate regulator of diverse immature cells. Int J Biochem Cell Biol. 2008;40(5):848-854. doi: 10.1016/j.biocel.2007.04.006

 

  1. Hesse E, Kiviranta R, Wu M, et al. Zinc finger protein 521, a new player in bone formation. Ann N Y Acad Sci. 2010;1192:32-37. doi: 10.1111/j.1749-6632.2009.05347.x

 

  1. Chiarella E, Aloisio A, Scicchitano S, Bond HM, Mesuraca M. Regulatory role of microRNAs targeting the transcription co-factor ZNF521 in normal tissues and cancers. Int J Mol Sci. 2021;22(16):8461. doi: 10.3390/ijms22168461

 

  1. Hiratsuka T, Takei Y, Ohmori R, et al. ZFP521 contributes to pre-B-cell lymphomagenesis through modulation of the pre-B-cell receptor signaling pathway. Oncogene. 2016;35(25):3227-3238. doi: 10.1038/onc.2015.385

 

  1. Mesuraca M, Chiarella E, Scicchitano S, et al. ZNF423 and ZNF521: EBF1 antagonists of potential relevance in B-lymphoid malignancies. Biomed Res Int. 2015;2015:165238. doi: 10.1155/2015/165238

 

  1. Ohkubo N, Matsubara E, Yamanouchi J, et al. Abnormal behaviors and developmental disorder of hippocampus in zinc finger protein 521 (ZFP521) mutant mice. PLoS One. 2014;9(3):e92848. doi: 10.1371/journal.pone.0092848

 

  1. Kiviranta R, Yamana K, Saito H, et al. Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages. J Exp Med. 2013;210(5):969-985. doi: 10.1084/jem.20121187

 

  1. Spina R, Filocamo G, Iaccino E, et al. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget. 2013;4(8):1280-1292. doi: 10.18632/oncotarget.1176

 

  1. Mesuraca M, Galasso O, Guido L, et al. Expression profiling and functional implications of a set of zinc finger proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in primary osteoarthritic articular chondrocytes. Mediators Inflamm. 2014;2014:318793. doi: 10.1155/2014/318793

 

  1. Yang N, Wang L, Chen T, Liu R, Liu Z, Zhang L. ZNF521 which is downregulated by miR-802 suppresses malignant progression of Hepatocellular Carcinoma through regulating Runx2 expression. J Cancer. 2020;11(19):5831-5839. doi: 10.7150/jca.45190

 

  1. Germano G, Morello G, Aveic S, et al. ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia. Oncotarget. 2017;8(16):26129-26141. doi: 10.18632/oncotarget.15387

 

  1. Fleenor CJ, Arends T, Lei H, et al. Zinc finger protein 521 regulates early hematopoiesis through Cell-extrinsic mechanisms in the bone marrow microenvironment. Mol Cell Biol. 2018;38(17):e00603-17. doi: 10.1128/MCB.00603-17

 

  1. Mega T, Lupia M, Amodio N, et al. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors. Cell Cycle. 2014;10(13):2129-2139. doi: 10.4161/cc.10.13.16045

 

  1. Scicchitano S, Giordano M, Lucchino V, et al. The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the Sonic hedgehog pathway. Cell Death Dis. 2019;10(10):715. doi: 10.1038/s41419-019-1946-x

 

  1. Shen S, Pu J, Lang B, McCaig CD. A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther. 2011;2(2):20. doi: 10.1186/scrt61

 

  1. Shahbazi E, Moradi S, Nemati S, et al. Conversion of human fibroblasts to stably self-renewing neural stem cells with a single zinc-finger transcription factor. Stem Cell Reports. 2016;6(4):539-551. doi: 10.1016/j.stemcr.2016.02.013

 

  1. Zarei-Kheirabadi M, Hesaraki M, Shojaei A, Kiani S, Baharvand H. Generation of neural stem cells from adult astrocytes by using a single reprogramming factor. J Cell Physiol. 2019;234(10):18697-18706. doi: 10.1002/jcp.28510

 

  1. Ohkubo N, Aoto M, Kon K, Mitsuda N. Lack of zinc finger protein 521 upregulates dopamine β-hydroxylase expression in the mouse brain, leading to abnormal behavior. Life Sci. 2019;231:116559. doi: 10.1016/j.lfs.2019.116559

 

  1. Correa D, Hesse E, Seriwatanachai D, et al. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell. 2010;19(4):533-546. doi: 10.1016/j.devcel.2010.09.008

 

  1. Behrouznezhad F, Ejeian F, Emadi-Baygi M, Nikpour P, Nasr- Esfahani MH. Hypothesis: A challenge of overexpression Zfp521 in neural tendency of derived dental pulp stem cells. Cell J. 2019;21(1):99-102. doi: 10.22074/cellj.2019.5600

 

  1. Kamiya D, Banno S, Sasai N, et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature. 2011;470(7335):503-509. doi: 10.1038/nature09726

 

  1. Hashemi M-S, Esfahani AK, Peymani M, et al. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells. J Biosci. 2016;41(1):69-76. doi: 10.1007/s12038-015-9578-5

 

  1. Matsubara E, Sakai I, Yamanouchi J, et al. The role of zinc finger protein 521/Early hematopoietic zinc finger protein in erythroid cell differentiation. J Biol Chem. 2009;284(6):3480-3487. doi: 10.1074/jbc.M805874200

 

  1. Hesse E, Saito H, Kiviranta R, et al. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. J Cell Biol. 2010;191(7):1271-1283. doi: 10.1083/jcb.201009107

 

  1. Kiviranta R, Baron R. Braking with 30 fingers: ZNF521 holds on Ebf1-dependent B-cell development. Cell Cycle. 2011;10(18):3054. doi: 10.4161/cc.10.18.16999

 

  1. Huan C, Xiaoxu C, Xifang R. Zinc finger protein 521, negatively regulated by MicroRNA-204-5p, promotes proliferation, motility and invasion of gastric cancer cells. Technol Cancer Res Treat. 2019;18:1533033819874783. doi: 10.1177/1533033819874783

 

  1. Salerno L, Cosentino C, Morrone G, Amato F. Computational modeling of a transcriptional switch underlying B-Lymphocyte lineage commitment of hematopoietic multipotent cells. PLoS One. 2015;10(7):e0132208. doi: 10.1371/journal.pone.0132208

 

  1. Feng Y, Jiang Y, Wen T, Meng F, Shu X. Identifying potential prognostic markers for muscle-invasive bladder urothelial carcinoma by weighted gene co-expression network analysis. Pathol Oncol Res. 2020;26(2):1063-1072. doi: 10.1007/s12253-019-00657-6

 

  1. Zhang Y, Xu S, Chen Z, et al. Zfp521 SUMOylation facilities erythroid hematopoietic reconstitution under stress. Biosci Biotechnol Biochem. 2020;84(5):943-953. doi: 10.1080/09168451.2019.1703639

 

  1. Chiarella E, Aloisio A, Scicchitano S, et al. ZNF521 represses osteoblastic differentiation in human adipose-derived stem cells. Int J Mol Sci. 2018;19(12):4095. doi: 10.3390/ijms19124095

 

  1. Bond HM, Mesuraca M, Carbone E, et al. Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood. 2004;103(6):2062-2070. doi: 10.1182/blood-2003-07-2388

 

  1. Wang R, Wang Q. Identification and external validation of a transcription factor-related prognostic signature in pediatric neuroblastoma. J Oncol. 2021;2021:1370451. doi: 10.1155/2021/1370451

 

  1. Chiarella E, Aloisio A, Codispoti B, et al. ZNF521 has an inhibitory effect on the adipogenic differentiation of human adipose-derived mesenchymal stem cells. Stem Cell Rev Rep. 2018;14(6):901-914. doi: 10.1007/s12015-018-9830-0

 

  1. Saenz-de-Juano MD, Ivanova E, Billooye K, et al. Genome-wide assessment of DNA methylation in mouse oocytes reveals effects associated with in vitro growth, superovulation, and sexual maturity. Clin Epigenetics. 2019;11(1):197. doi: 10.1186/s13148-019-0794-y

 

  1. Chen YC, Hsiao CJ, Jung CC, et al. Performance metrics for selecting single nucleotide polymorphisms in late-onset Alzheimer’s disease. Sci Rep. 2016;6:36155. doi: 10.1038/srep36155

 

  1. Garrison BS, Rybak AP, Beerman I, et al. ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells. Blood. 2017;130(5):619-624. doi: 10.1182/blood-2016-09-738591

 

  1. Li Z, Fu X, Wu W, et al. Zfp521 is essential for the quiescence and maintenance of adult hematopoietic stem cells under stress. iScience. 2021;24(2):102039. doi: 10.1016/j.isci.2021.102039

 

  1. Sera Y, Yamasaki N, Oda H, et al. Identification of cooperative genes for E2A-PBX1 to develop acute lymphoblastic leukemia. Cancer Sci. 2016;107(7):890-898. doi: 10.1111/cas.12945

 

  1. Al Dallal S, Wolton K, Hentges KE. Zfp521 promotes B-cell viability and cyclin D1 gene expression in a B cell culture system. Leuk Res. 2016;46:10-17. doi: 10.1016/j.leukres.2016.03.013

 

  1. Boller S, Grosschedl R. The regulatory network of B-cell differentiation: A focused view of early B-cell factor 1 function. Immunol Rev. 2014;261(1):102-115. doi: 10.1111/imr.12206

 

  1. Takai H, van Wijnen AJ, Ogata Y. Induction of chondrogenic or mesenchymal stem cells from human periodontal ligament cells through inhibition of Twist2 or Klf12. J Oral Sci. 2019;61(2):313-320. doi: 10.2334/josnusd.18-0224

 

  1. Hesslein DG, Fretz JA, Xi Y, et al. Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone. 2009;44(4):537-546. doi: 10.1016/j.bone.2008.11.021

 

  1. Rosen ED, Spiegelman BM. PPARgamma: A nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276(41):37731-37734. doi: 10.1074/jbc.R100034200

 

  1. Tseng KY, Lin S. Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells. Oncotarget. 2015;6(17):14874-14884. doi: 10.18632/oncotarget.3900

 

  1. Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018;52:1081-1094. doi: 10.3892/ijo.2018.4280

 

  1. Yamasaki N, Miyazaki K, Nagamachi A, et al. Identification of Zfp521/ZNF521 as a cooperative gene for E2A-HLF to develop acute B-lineage leukemia. Oncogene. 2010;29(13):1963-1975. doi: 10.1038/onc.2009.475

 

  1. Kang S, Akerblad P, Kiviranta R, et al. Regulation of early adipose commitment by Zfp521. PLoS Biol. 2012;10(11):e1001433. doi: 10.1371/journal.pbio.1001433

 

  1. Ganuza M, McKinney-Freeman S. Hematopoietic stem cells under pressure. Curr Opin Hematol. 2017;24(4):314-321. doi: 10.1097/MOH.0000000000000347

 

  1. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncol. 2003;4(9):529-536. doi: 10.1016/s1470-2045(03)01191-4

 

  1. Dang TN, Taylor JL, Kilroy G, Yu Y, Burk DH, Floyd ZE. SIAH2 is expressed in adipocyte precursor cells and interacts with EBF1 and ZFP521 to promote adipogenesis. Obesity (Silver Spring). 2020;29(1):98-107. doi: 10.1002/oby.23013

 

  1. Addison WN, Fu MM, Yang HX, et al. Direct transcriptional repression of Zfp423 by Zfp521 mediates a bone morphogenic protein-dependent osteoblast versus adipocyte lineage commitment switch. Mol Cell Biol. 2014;34(16):3076-3085. doi: 10.1128/MCB.00185-14

 

  1. Wei PC, Chao A, Peng HH, et al. SOX9 as a predictor for neurogenesis potentiality of amniotic fluid stem cells. Stem Cells Transl Med. 2014;3(10):1138-1147. doi: 10.5966/sctm.2014-0019

 

  1. Kilroy G, Kirk-Ballard H, Carter LE, Floyd ZE. The ubiquitin ligase Siah2 regulates PPARγ activity in adipocytes. Endocrinology. 2012;153(3):1206-1218. doi: 10.1210/en.2011-1725

 

  1. Kilroy G, Burk DH, Floyd ZE. Siah2 protein mediates early events in commitment to an adipogenic pathway. J Biol Chem. 2016;291(53):27289-27297. doi: 10.1074/jbc.M116.744672

 

  1. Wu M, Hesse E, Morvan F, et al. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone. 2009;44(4):528-536. doi: 10.1016/j.bone.2008.11.011

 

  1. Seriwatanachai D, Densmore MJ, Sato T, et al. Deletion of Zfp521 rescues the growth plate phenotype in a mouse model of Jansen metaphyseal chondrodysplasia. FASEB J. 2011;25(9):3057-3067. doi: 10.1096/fj.11-183277

 

  1. Park SY, Kim JE. Differential gene expression by Osterix knockdown in mouse chondrogenic ATDC5 cells. Gene. 2013;518(2):368-375. doi: 10.1016/j.gene.2012.12.102

 

  1. Zhang W, Chen J, Zhang S, Ouyang HW. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: The implication for articular cartilage repair. Arthritis Res Ther. 2012;14(4):221. doi: 10.1186/ar4025

 

  1. Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev. 2013;19(3):254-263. doi: 10.1089/ten.TEB.2012.0527

 

  1. Xie C, Chen Q. Adipokines: New therapeutic target for osteoarthritis? Curr Rheumatol Rep. 2019;21(12):71. doi: 10.1007/s11926-019-0868-z

 

  1. Huang L, Li P, Guo L, et al. Zinc finger protein 521 attenuates osteoarthritis via the histone deacetylases 4 in the nucleus. Bioengineered. 2022;13(6):14489-14502. doi: 10.1080/21655979.2022.2090203

 

  1. Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):269-285. doi: 10.1177/1759720X12448454

 

  1. Sun C, Berry WL, Olson LE. PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development. 2017;144(1):83-94. doi: 10.1242/dev.135962

 

  1. Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M. Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol. 2002;22(22):8015-8025. doi: 10.1128/MCB.22.22.8015-8025.2002

 

  1. Jimenez MA, Akerblad P, Sigvardsson M, Rosen ED. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol. 2007;27(2):743-757. doi: 10.1128/MCB.01557-06

 

  1. Gupta RK, Arany Z, Seale P, et al. Transcriptional control of preadipocyte determination by Zfp423. Nature. 2010;464(7288):619-623. doi: 10.1038/nature08816

 

  1. Gupta RK, Mepani RJ, Kleiner S, et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 2012;15(2):230-239. doi: 10.1016/j.cmet.2012.01.010

 

  1. Gustafson B, Nerstedt A, Smith U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat Commun. 2019;10(1):2757. doi: 10.1038/s41467-019-10688-x

 

  1. Griffin MJ, Zhou Y, Kang S, Zhang X, Mikkelsen TS, Rosen ED. Early B-cell factor-1 (EBF1) is a key regulator of metabolic and inflammatory signaling pathways in mature adipocytes. J Biol Chem. 2013;288(50):35925-35939. doi: 10.1074/jbc.M113.491936

 

  1. Bond HM, Scicchitano S, Chiarella E, et al. ZNF423: A new player in estrogen receptor-positive breast cancer. Front Endocrinol (Lausanne). 2018;9:255. doi: 10.3389/fendo.2018.00255

 

  1. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092(1):385-396. doi: 10.1196/annals.1365.035

 

  1. Tang K, Peng G, Qiao Y, Song L, Jing N. Intrinsic regulations in neural fate commitment. Dev Growth Differ. 2015;57(2):109-120. doi: 10.1111/dgd.12204

 

  1. Zarei-Kheirabadi M, Hesaraki M, Kiani S, Baharvand H. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor. Stem Cell Res Ther. 2019;10(1):380. doi: 10.1186/s13287-019-1448-x

 

  1. Hentges KE, Weiser KC, Schountz T, Woodward LS, Morse HC, Justice MJ. Evi3, a zinc-finger protein related to EBFAZ, regulates EBF activity in B-cell leukemia. Oncogene. 2005;24(7):1220-1230. doi: 10.1038/sj.onc.1208243

 

  1. Warming S, Liu P, Suzuki T, et al. Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Kruppel-like zinc finger protein. Blood. 2003;101(5):1934-1940. doi: 10.1182/blood-2002-08-2652

 

  1. Yu M, Al-Dallal S, Al-Haj L, et al. Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU.1) and HOXC13. Genesis. 2016;54(10):519-533. doi: 10.1002/dvg.22963

 

  1. Zhao F, Yu YQ. The prognostic roles of mRNAs of the exosomes derived from bone marrow stromal cells in common malignancies: A bioinformatic study. Onco Targets Ther. 2018;11:7979-7986. doi: 10.2147/OTT.S172414

 

  1. Scicchitano S, Faniello MC, Mesuraca M. Zinc finger 521 modulates the Nrf2-notch signaling pathway in human ovarian carcinoma. Int J Mol Sci. 2023;24(19):14755. doi: 10.3390/ijms241914755

 

  1. Li D, Hong X, Zhao F, Ci X, Zhang S. Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int. 2021;21(1):116. doi: 10.1186/s12935-021-01822-1

 

  1. Liao H, Zhou Q, Zhang Z, et al. NRF2 is overexpressed in ovarian epithelial carcinoma and is regulated by gonadotrophin and sex-steroid hormones. Oncol Rep. 2012;27(6):1918-1924. doi: 10.3892/or.2012.1700
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing