AccScience Publishing / MI / Online First / DOI: 10.36922/mi.4994
ORIGINAL RESEARCH ARTICLE

In vitro evaluation of Hyphaene thebaica honey as a multitarget therapeutic product

Basheer Abu-Farich1 Mahmud Masalha2 Hadeel Hamarshi2 Asmae El Ghouizi1 Abderrazak Aboulghazi1 Mohammed El Ouassete3 Doha Weldali2 Badiaa Lyoussi1* Bashar Saad2*
Show Less
1 Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Life Quality, Department of Biology, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
2 Qasemi Research Center and Department of Biochemistry, Faculty of Medicine, Arab American University, Jenin, Palestine
3 Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Submitted: 29 September 2024 | Revised: 23 November 2024 | Accepted: 13 December 2024 | Published: 6 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hyphaene thebaica honey, commonly known as doum honey (DH), is widely utilized in the Mediterranean region due to its putative health benefits. However, the precise mechanisms underpinning these benefits remain obscure. This study sought to assess the anti-infective, anti-inflammatory, and anticancer properties of DH, and analyze its polyphenolic composition. The antibacterial effects of DH were tested against a range of multidrug-resistant Gram-positive and Gram-negative bacterial strains. In addition, we investigated the anti-inflammatory, antioxidant, and anticancer activities of DH in the MDA-MB-231 human breast cancer cell line. The phenolic compounds in DH were evaluated using quantitative high-performance liquid chromatography (HPLC). The model used to assess the anti-inflammatory properties was lipopolysaccharide (LPS)-activated macrophages. HPLC analysis revealed nine phenolic compounds in DH: Gallic acid, caffeic acid, carvacrol, p-coumaric acid, ellagic acid, kaempferol, pinobanksin, pinocembrin, and galangin. The minimum inhibitory concentration (MIC) values for DH varied between 0.19% and 0.78% w/w for the three Gram-positive strains tested and between 0.024% and 0.39% w/w for the four Gram-negative strains tested. Among all the bacterial strains tested, Escherichia coli was found to be the most susceptible, with an MIC of 0.024% w/w. Upon treating LPS-activated THP-1-derived macrophages with DH, the levels of nitric oxide were significantly diminished. Moreover, DH displayed a modest but significant cytostatic effect on the MDA-MB-231 cells. The most noticeable cytostatic impacts were observed at concentrations of 4 mg/mL and 2 mg/mL, resulting in a decrease in cell viability by 25% and 20%, respectively, compared to untreated control cells. A significant decline in the migration rate of MDA-MB-231 cells was observed following DH treatment compared to control cells (P < 0.05). Our findings not only corroborate the well-established antibacterial properties of DH but also imply that its recognized anticancer advantages may be partially attributed to its antioxidant, anti-inflammatory, cytostatic, and antimigration effects.

Keywords
Hyphaene thebaica
Antibacterial
Antioxidant
Anticancer
Cytostatic
Anti-inflammatory
Antimigration
Funding
This work was financially supported by the Al-Qasemi Research Foundation and the Arab American University- Palestine (AAUP) Research Foundation.
Conflict of interest
Bashar Saad is the Editorial Board Member of this journal and the Guest Editor of this special issue but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Saad B. Exploring natural products: Novel insights and therapeutic potential of plant-based compounds. Microbes Immunity. 2024;1:1-2. doi: 10.36922/mi.4453

 

  1. Tang KW, Millar BC, Moore JE. Antimicrobial resistance (AMR). Br J Biomed Sci. 2023;80:11387. doi: 10.3389/bjbs.2023.11387

 

  1. Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics. 2019;8:138. doi: 10.3390/antibiotics8030138

 

  1. Harman RM, Yang S, He MK, Van de Walle GR. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther. 2017;8:157.doi: 10.1186/s13287-017-0610-6

 

  1. Hobson C, Chan AN, Wright GD. The antibiotic resistome: A guide for the discovery of natural products as antimicrobial agents. Chem Rev. 2021;121(6):3464-3494. doi: 10.1021/acs.chemrev.0c01214

 

  1. Qanash H, Yahya R, Bakri MM, et al. Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyalis caffra) fruit. Sci Rep. 2022;12:5914.

 

  1. Abdelghany TM, Yahya R, Bakri MM, Ganash M, Amin BH, Qanash H. Effect of Thevetia peruviana seeds extract for microbial pathogens and cancer control. Int J Pharmacol. 2021;17:643-655. doi: 10.3923/ijp.2021.643.655

 

  1. Maicelo-Quintana JL, Reyna-Gonzales K, Balcázar- Zumaeta CR, Auquiñivin-Silva EA, Castro-Alayo EM, Medina-Mendoza M, et al. Potential application of bee products in food industry: An exploratory review. Heliyon. 2024;10:e24056 doi: 10.1016/j.heliyon.2024.e24056

 

  1. Saeed F, Afzaal M, Tufail T, Ahmad A. Use of natural antimicrobial agents: A safe preservation approach. In: Active Antimicrobial Food Packaging. London, UK: IntechOpen; 2019.

 

  1. Ye G, Wu H, Huang J, et al. LAMP2: A major update of the database linking antimicrobial peptides. Database. 2020;2020:baaa061. doi: 10.1093/database/baaa061

 

  1. Dixon B. Bacteria can’t resist honey. Lancet Infect Dis. 2003;3:116. doi: 10.1016/s1473-3099(03)00524-3

 

  1. Snijders RA, Brom L, Theunissen M, van den Beuken-van Everdingen MH. Update on prevalence of pain in patients with cancer 2022: A systematic literature review and meta-analysis. Cancers. 2023;15(3):591. doi: 10.3390/cancers15030591

 

  1. Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14:67-77. doi: 10.18433/j30c7d

 

  1. Mendel J. Evidenced based medicine. Benefits, limitations and issues for complementary and alternative medicine. Aust J Holist Nurs. 2004;11:21-29.

 

  1. Waheed M, Hussain MB, Javed A, et al. Honey and cancer: A mechanistic review. Clini Nutr. 2019;38(6):2499-2503. doi: 10.1016/j.clnu.2018.12.019

 

  1. Ben-Arye E, Cassileth B, Heusser P, Afifi F, Saad B, Senthamil RS. Complementary and integrative oncology in the cross-cultural region of the Middle East and South Asia. Evid Based Complement Altern Med. 2012;2012:940961. doi: 10.1155/2012/940961

 

  1. Ben-Arye E, Massalha E, Bar-Sela G, et al. Stepping from traditional to integrative medicine: Perspectives of Israeli- Arab patients on complementary medicine’s role in cancer care. Ann Oncol. 2014;2014:476-80. doi: 10.1093/annonc/mdt554

 

  1. Ben-Arye E, Dagash J, Silbermann M, et al. Modelling integrative oncology care program for Arab patients in North Israel: Towards quality of life improvement during chemotherapy. Harefuah. 2015;154:25-30.

 

  1. Ben-Arye E, Schiff E, Mutafoglu K, et al. Integration of complementary medicine in supportive cancer care: Survey of health care providers’ perspectives from 16 countries in the Middle East. Support Care Cancer. 2015;23:2605-2612. doi: 10.1007/s00520-015-2619-7

 

  1. Candiracci M, Piatti E, Dominguez-Barragan M, et al. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J Agric Food Chem. 2012;60:12304-12311. doi: 10.1021/jf302468h

 

  1. Xie F, Su M, Qiu W, et al. Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int J Mol Sci. 2013;14:21215-21226. doi: 10.3390/ijms141121215

 

  1. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822-1832. doi: 10.1038/s41591-019-0675-0

 

  1. Vonkeman HE, van de Laar MA. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin Arthritis Rheum. 2010;39:294-312. doi: 10.1016/j.semarthrit.2008.08.001

 

  1. Whitehouse MW. Anti-inflammatory glucocorticoid drugs: Reflections after 60 years. Inflammopharmacology. 2010;19:1-19. doi: 10.1007/s10787-010-0056-2

 

  1. Saad B. Prevention and treatment of obesity-related inflammatory diseases by edible and medicinal plants and their active compounds. Immuno. 2022;2(4):609-629. doi: 10.3390/immuno2040038

 

  1. Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012:936486. doi: 10.1155/2012/936486

 

  1. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. 2022;383:132531.

 

  1. Young GW, Blundell R. A review on the phytochemical composition and health applications of honey. Heliyon. 2023;9(2):e12507. doi: 10.1016/j.heliyon.2022.e12507

 

  1. Islam F, Saeed F, Afzaal M, et al. Nutritional and functional properties of Hyphaene thebaica L. flour: A critical treatise and review. Int J Food Proper. 2022;25(1):1234-1245. doi: 10.1080/10942912.2022.2078836

 

  1. Seleem HA. Effect of blending doum (Hyphaene thebaica) powder with wheat flour on the nutritional value and quality of cake. Food Nutr. Sci. 2015;6(7):622-632. doi: 10.4236/fns.2015.67066

 

  1. Abu-Farich B, Hamarshi H, Masalha M, et al. Polyphenol contents, antibacterial and antioxidant effects of four palestinian honey samples, and their anticancer effects on human breast cancer cells. J Pure Appl Microbiol. 2024;18(2):1372-1385. doi: 10.22207/JPAM.18.2.60

 

  1. Abu-Farich B, Masalha M, Egbaria E, et al. Physicochemical properties, chemical composition, antioxidant properties, and antibacterial effects of four palestinian honey varieties. J Pure Appl Microbiol. 2024;2024:2315-2327. doi: 10.22207/JPAM.18.4.03

 

  1. Vargas-Maya NI, Padilla-Vaca F, Romero-González OE, et al. Refinement of the Griess method for measuring nitrite in biological samples. J Microbiol Methods. 2021;187:106260. doi: 10.1016/j.mimet.2021.106260

 

  1. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdinum complex: Specific application to the determination of Vitamin E. Analyt Bioch. 1999;269: 337-341. doi: 10.1006/abio.1999.4019

 

  1. Santos P, Genisheva Z, Pereira R, Teixeira J, Rocha C. Moderate electric fields as a potential tool for sustainable recovery of phenolic compounds from Pinus pinaster bark. ACS Sustain Chem Eng. 2019;7:8816-26. doi: 10.1021/acssuschemeng.9b00780

 

  1. Kong KW, Mat-Junit S, Aminudin N, Ismail A, Abdul- Aziz A. Antioxidant activities and polyphenolics from the shoots of Barringtonia racemosa (L.) Spreng in a polar to apolar medium system. Food Chem. 2012;134:324-332. doi: 10.1016/j.foodchem.2012.02.150

 

  1. O’Neill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. London, UK: The Review on Antimicrobial Resistance; 2014.

 

  1. Bazaid AS, Aldarhami A, Gattan H, Aljuhani B. Saudi honey: A promising therapeutic agent for treating wound infections. Cureus. 2021;13:e18882. doi: 10.7759/cureus.18882

 

  1. Bazaid AS, Aldarhami A, Patel M, et al. The antimicrobial effects of Saudi Sumra honey against drug resistant pathogens: Phytochemical analysis, antibiofilm, anti-quorum sensing, and antioxidant activities. Pharmaceuticals. 2022;15(10):1212. doi: 10.3390/ph15101212

 

  1. Samarghandian S, Farkhondeh T, Samini F. Honey and health: A review of recent clinical research. Pharmacogn Res. 2017;9:121-127. doi: 10.4103/0974-8490.204647

 

  1. Obey JK, Ngeiywa MM, Lehesvaara M, et al. Antimicrobial activity of commercial organic honeys against clinical isolates of human pathogenic bacteria. Org Agric. 2022;12:267-277. doi: 10.1007/s13165-022-00389-z

 

  1. Garcia M, Lipskiy N, Tyson J, Watkins R, Esser ES, Kinley T. Centers for Disease Control and Prevention 2019 novel coronavirus disease (COVID-19) information management: Addressing national health-care and public health needs for standardized data definitions and codified vocabulary for data exchange. J Am Med Inf Assoc. 2020;27:1476-1487. doi: 10.1093/jamia/ocaa141

 

  1. Maddocks SE, Jenkins RE. Honey: A sweet solution to the growing problem of antimicrobial resistance? Fut Microbiol. 2013;8:1419-1429. doi: 10.2217/fmb.13.105

 

  1. Cooper RA, Jenkins L, Henriques AF, Duggan RS, Burton NF. Absence of bacterial resistance to medical-grade Manuka honey. Eur J Clin Microbiol Infect Dis. 2010;29:1237-1241. doi: 10.1007/s10096-010-0992-1

 

  1. Faraz A, Fernando WB, Williams M, Jayasena V. Effects of different processing methods on the antioxidant and antimicrobial properties of honey: A review. Int J Food Sci Technol. 2023;58:3489-3501. doi: 10.1111/ijfs.16460

 

  1. Obey JK, Ngeiywa MM, Lehesvaara M, Kauhanen J, von Wright A, Tikkanen-Kaukanen C. Antimicrobial activity of commercial organic honeys against clinical isolates of human pathogenic bacteria. Organic Agriculture. 2022;12:267-77.

 

  1. Imtara H, Elamine Y, Lyoussi B. Physicochemical characterization and antioxidant activity of Palestinian honey samples. Food Sci Nutr. 2018;6(8):2056-2065. doi: 10.1002/fsn3.754

 

  1. Mandal S, DebMandal M, Pal NK, Saha K. Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar Typhi. Asian Pac J Trop Med. 2010;3(12):961-964.doi: 10.1016/S1995-7645(11)60009-6

 

  1. Boukraa L. Additive activity of royal jelly and honey against Pseudomonas aeruginosa. Altern Med Rev. 2008;13(4): 330-333.

 

  1. Montenegro G, Mejías E. Biological applications of honeys produced by Apis mellifera. Biol Res. 2013;46(4):341-345. doi: 10.4067/S0716-97602013000400005

 

  1. Adeleke OE, Olaitan JO, Okpekpe EL. Comparative antibacterial activity of honey and gentamicin against Escherichia coli and Pseudomonas aeruginosa. Ann Burns Fire Disasters. 2006;19(4):201-204.

 

  1. Alzahrani HA, Alsabehi R, Boukraâ L, Abde-llah F, Bellik Y, Bakhotmah BA. Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules. 2012;17(9):10540-10549. doi: 10.3390/molecules170910540

 

  1. Stawiarz E, Wróblewska A. Melissopalynological analysis of multifloral honeys from the sandomierska upland area of Poland. J Apicult Sci. 2010;54(1):65-75.

 

  1. Nishio EK, Ribeiro JM, Oliveira AG, et al. Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S. postica Latreille, 1807. Sci Rep. 2016;6(1):21641. doi: 10.1038/srep21641

 

  1. Lusby PE, Coombes AL, Wilkinson JM. Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res. 2005;36(5):464-467. doi: 10.1016/j.arcmed.2005.03.038

 

  1. Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185(16):2853-2878. doi: 10.1016/j.cell.2022.06.010

 

  1. Biluca FC, da Silva B, Caon T, et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int. 2020;129:108756. doi: 10.1016/j.foodres.2019.108756

 

  1. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R. The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi J Biol Sci. 2021;28(5): 2987-2994. doi: 10.1016/j.sjbs.2021.02.039

 

  1. Boutoub O, El-Guendouz S, Manhita A, et al. Comparative study of the antioxidant and enzyme inhibitory activities of two types of Moroccan Euphorbia entire honey and their phenolic extracts. Foods. 2021;10(8):1909. doi: 10.3390/foods10081909

 

  1. Owoyele BV, Adenekan OT, Soladoye AO. Effects of honey on inflammation and nitric oxide production in Wistar rats. J Chinese Integr Med. 2011;9(4):447-452. doi: 10.3736/jcim20110415

 

  1. Swellam T, Miyanaga N, Onozawa M, et al. Antineoplastic activity of honey in an experimental bladder cancer implantation model: In vivo and in vitro studies. Int. J. Urol. 2003;10:213-219. doi: 10.1046/j.0919-8172.2003.00602.x

 

  1. Pichichero E, Cicconi R, Mattei M, Muzi MG, Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. Int J Oncol. 2010;37:973-981. doi: 10.3892/ijo_00000748

 

  1. Laura MP, Claire S, Mridula C. Honey and cancer: Current status and future directions. Diseases. 2016;4(4):30. doi: 10.3390/diseases4040030

 

  1. Jaganathan KS, Balaji A, Vellayappan M, et al. A review on antiproliferative and apoptotic activities of natural honey. Anticancer Agents Med Chem. 2015;15:48-56. doi: 10.2174/187152061466614072208474726

 

  1. Mumtaz PT, Bashir SM, Rather MA, Dar KB, Taban Q. Antiproliferative and apoptotic activities of natural honey. In: Rehman MU, Majid S, editors. Therapeutic Applications of Honey and Its Phytochemicals. Singapore: Springer; 2020. p. 345-360.

 

  1. Imtara H, Kmail A, Touzani S, et al. Chemical analysis and cytotoxic and cytostatic effects of twelve honey samples collected from different regions in Morocco and Palestine. Evid Based Complement Alternat Med. 2019;2019:8768210. doi: 10.1155/2019/876821028

 

  1. Afrin S, Forbes-Hernandez TY, Gasparrini M, et al. Strawberry-tree honey induces growth inhibition of human colon cancer cells and increases ROS generation: A comparison with Manuka honey. Int J Mol Sci. 2017;18:613. doi: 10.3390/ijms1803061329

 

  1. Afrin S, Giampieri F, Cianciosi D, et al. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J Funct Foods. 2019;57:439-452. doi: 10.1016/j.jff.2019.04.03530

 

  1. Cheng N, Zhao H, Chen S, He Q, Cao W. Jujube honey induces apoptosis in human hepatocellular carcinoma HepG2 cell via DNA damage, p53 expression, and caspase activation. J Food Biochem. 2019;43:e12998. doi: 10.1111/jfbc.12998

 

  1. Jurič A, Karačonji IB, Kopjar N. Homogentisic acid, a main phenolic constituent of strawberry tree honey, protects human peripheral blood lymphocytes against irinotecan-induced cytogenetic damage in vitro. Chem Biol Interact. 2021;349:109672. doi: 10.1016/j.cbi.2021.109672

 

  1. Thomas HR, Hu B, Boyraz B, et al. Metaplastic breast cancer: A review. Crit Rev Oncol Hematol. 2023;182:103924. doi: 10.1016/j.critrevonc.2023.103924

 

  1. López EP, García FG, Jornet PL. Combination of 5-Florouracil and polyphenol EGCG exerts suppressive effects on oral cancer cells exposed to radiation. Arch Oral Biol. 2019;101:8-12. doi: 10.1016/j.archoralbio.2019.02.018

 

  1. Chung SS, Dutta P, Austin D, Wang P, Awad A, Vadgama JV. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget. 2018;9:32943. doi: 10.18632/oncotarget.25993

 

  1. Riahi-Chebbi I, Souid S, Othman H, et al. The phenolic compound kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep. 2019;9:195. doi: 10.1038/s41598-018-36808-z

 

  1. Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG. Cancer Invasion and metastasis: Molecular and cellular perspective. In: Madam Curie Biosciences Database. Austin, TX, USA: Landes Bioscience; 2000.

 

  1. Price JT, Thompson EW. Mechanisms of tumour invasion and metastasis: Emerging targets for therapy. Expert Opin Ther Targets. 2002;6:217-233. doi: 10.1517/14728222.6.2.217

 

  1. Oršoli´c N, Baši´c I. Antimetastatic effect of honey. Mellifera. 2004;4:38-43.

 

  1. Reddy RA, Kumar RS. Matrix metalloproteinase-2 (MMP- 2): As an essential factor in cancer progression. Recent Pat Anticancer Drug Discov. 2023; 20:26-44. doi: 10.2174/0115748928251754230922095544

 

  1. Ho HH, Chang CS, Ho WC, Liao SY, Wu CH, Wang CJ. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol. 2010;48:2508-2516. doi: 10.1016/j.fct.2010.06.024

 

  1. Batumalaie K, Zaman SS, Mohd YK, Shah II, Devi SS, Qvist R. Effect of gelam honey on the oxidative stress-induced signaling pathways in pancreatic hamster cells. Int J Endocrinol. 2013;2013:367312. doi: 10.1155/2013/367312

 

  1. Hussein SZ, Mohd YK, Makpol S, Mohd YA. Gelam honey attenuates carrageenan-induced rat paw inflammation via NF-kappaB pathway. PLOS One. 2013;8:e72365. doi: 10.1371/journal.pone.0072365

 

  1. Moskwa J, Borawska MH, Markiewicz-Zukowska R, et al. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line. PLOS One. 2014;9:e90533. doi: 10.1371/journal.pone.0090533

 

  1. Majtan J, Bohova J, Garcia-Villalba R, et al. Fir honeydew honey flavonoids inhibit TNF- α-induced MMP-9 expression in human keratinocytes: A new action of honey in wound healing. Arch Dermatol Res. 2013;305(7):619-627. doi: 10.1007/s00403-013-1385-y

 

  1. Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006;287:109-116. doi: 10.1007/s11010-005-9085-3

 

  1. Jaganathan SK, Mandal M. Honey Constituents and their apoptotic effect in colon cancer cells. J Apiprod Apimed Sci. 2009;1:29-36. doi: 10.3896/IBRA.4.01.2.02

 

  1. Aazza S, Lyoussi B, Antunes D, Miguel MG. Physicochemical characterization and antioxidant activity of 17 commercial Moroccan honeys. Int J Food Sci Nutr. 2014;65(4):449-457. doi: 10.3109/0 9637486.2013.873888

 

  1. Khalil MI, Moniruzzaman M, Boukraâ L, et al. Physicochemical and antioxidant properties of Algerian honey. Molecules. 2012;17(9):11199-11215. doi: 10.3390/molecules170911199

 

  1. Bertoncelj J, Doberšek U, Jamnik M, Golob T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007;105(2):822-828. doi: 10.1016/j.foodchem.2007.01.060

 

  1. Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants (Basel). 2023;12(6):1217. doi: 10.3390/plants12061217

 

  1. Dong R, Zheng Y, Xu B. Phenolic profiles and antioxidant capacities of Chinese unifloral honeys from different botanical and geographical sources. Food Bioproc Tech. 2013;6:762-770. doi: 10.1007/s11947-011-0726-0

 

  1. Beretta G, Granata P, Ferrero M, Orioli M, Facino RM. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta. 2005;533(2):185-191. doi: 10.1016/j.aca.2004.11.010

 

  1. Yim SH, Kim HJ, Park SH, et al. Cytotoxic caffeic acid derivatives from the rhizomes of Cimicifuga heracleifolia. Arch Pharm Res. 2012;35(9):1559-1565. doi: 10.1007/s12272-012-0906-0

 

  1. Rajendra Prasad N, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem. 2011;349(1-2):11-19. doi: 10.1007/s11010-010-0655-7

 

  1. Alam M, Ahmed S, Elasbali AM, et al. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol. 2022;12:860508. doi: 10.3389/fonc.2022.860508

 

  1. Tehami W, Nani A, Khan NA, Hichami A. New insights into the anticancer effects of p-coumaric acid: Focus on colorectal cancer. Dose Response. 2023;21(1):15593258221150704. doi: 10.1177/15593258221150704

 

  1. Singha K, Banerjee A, Jana A, et al. Molecular exposition of broad-spectrum antibacterial efficacy by p-coumaric acid from an edible mushroom Termitomyces heimii: In vitro and in silico approach. SMAB. 2023;3(4):750-764. doi: 10.1007/s43393-022-00146-z

 

  1. Jiang L, Yang Y, Feng H, Zhou Q, Liu Y. Pinocembrin inhibits the proliferation, migration, invasiveness, and epithelial-mesenchymal transition of colorectal cancer cells by regulating LACTB. Cancer Biother Radiopharm. 2022;37(7):527-536. doi: 10.1089/cbr.2020.4052

 

  1. Cruz-Martins N. Advances in plants-derived bioactives for cancer treatment. Cells. 2023;12(8):1112. doi: 10.3390/cells12081112
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing