AccScience Publishing / MI / Online First / DOI: 10.36922/mi.5728
COMMUNICATION

Establishment of a highly sensitive and specific anti-EphB2 monoclonal antibody (Eb2Mab-12) for flow cytometry

Rena Ubukata1 Hiroyuki Suzuki1 Miu Hirose1 Hiroyuki Satofuka1 Tomohiro Tanaka1 Mika K. Kaneko1 Yukinari Kato1*
Show Less
1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
Submitted: 30 October 2024 | Revised: 21 December 2024 | Accepted: 3 January 2025 | Published: 16 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Ephrin type-B receptor 2 (EphB2) is a member of the Eph family tyrosine kinase receptors. EphB2 binds to ephrin-B1, ephrin-B2, and ephrin-B3, which are critical regulators of vascular and neural development, influencing cell migration and axon guidance. EphB2 is overexpressed in several tumors, including glioma, breast cancer, hepatocellular carcinoma, and malignant mesothelioma, where it functions as a tumor promoter. Therefore, the development of monoclonal antibodies (mAbs) targeting EphB2 is essential for the diagnosis and treatment of EphB2-positive tumors. In this study, we developed novel mAbs for human EphB2 using the Cell-Based Immunization and Screening method. Among the established anti-EphB2 mAbs, Eb2Mab-12 (mouse IgG1, kappa) showed reactivity toward EphB2-overexpressed Chinese hamster ovary-K1 cells (CHO/EphB2) and an endogenously EphB2-expressing cancer cell line (LS174T), as confirmed by flow cytometry. The dissociation constant (KD) values of Eb2Mab-12 for CHO/EphB2 and LS174T were determined to be 1.7 × 10−9 M and 4.4 × 10−10 M, respectively, using flow cytometry. Furthermore, Eb2Mab-12 exhibited no cross-reactivity with other members of the EphA and EphB receptors. These results indicate that Eb2Mab-12 possesses high affinity and specificity in detecting EphB2, suggesting its potential application in tumor therapy.

Keywords
EphB2
Monoclonal antibody
Cell-Based Immunization and Screening
Flow cytometry
Funding
This research was supported partially by the Japan Agency for Medical Research and Development (AMED) under grant numbers: JP24am0521010 (to Y.K.), JP24ama121008 (to Y.K.), JP24ama221339 (to Y.K.), JP23am0401013 (to Y.K.), JP24ama221339 (to Y.K.), JP24bm1123027 (to Y.K.), and JP24ck0106730 (to Y.K.), and by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) grant numbers: 24K11652 (to H.Satofuka), 22K06995 (to H.Suzuki), 21K20789 (to T.T.), 21K07168 (to M.K.K.), and 22K07224 (to Y.K).
Conflict of interest
The authors have no conflicts of interest.
References
  1. Zhu Y, Su SA, Shen J, et al. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience. 2024;27(8):110556. doi: 10.1016/j.isci.2024.110556

 

  1. Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci. 2024;49(12):1079-1096. doi: 10.1016/j.tibs.2024.10.002

 

  1. Pasquale EB. Eph receptors and ephrins in cancer progression. Nat Rev Cancer. 2024;24(1):5-27. doi: 10.1038/s41568-023-00634-x

 

  1. Anderton M, Van der Meulen E, Blumenthal MJ, Schäfer G. The Role of the eph receptor family in tumorigenesis. Cancers (Basel). 2021;13(2):206. doi: 10.3390/cancers13020206

 

  1. Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: From catalytic to non-catalytic functions. Oncogene. 2019;38(39):6567-6584. doi: 10.1038/s41388-019-0931-2

 

  1. Pasquale EB. Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat Rev Cancer. 2010;10(3):165-180. doi: 10.1038/nrc2806

 

  1. Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005;6(6):462-475. doi: 10.1038/nrm1662

 

  1. Arora S, Scott AM, Janes PW. Eph receptors in cancer. Biomedicines. 2023;11(2):315. doi: 10.3390/biomedicines11020315

 

  1. Lau A, Le N, Nguyen C, Kandpal RP. Signals transduced by Eph receptors and ephrin ligands converge on MAP kinase and AKT pathways in human cancers. Cell Signal. 2023;104:110579. doi: 10.1016/j.cellsig.2022.110579

 

  1. Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in cancer: molecular complexity and therapeutic opportunities. Int J Mol Sci. 2024;25(22):12191. doi: 10.3390/ijms252212191

 

  1. Scarini JF, Gonçalves MWA, De Lima-Souza RA, et al. Potential role of the Eph/ephrin system in colorectal cancer: Emerging druggable molecular targets. Front Oncol. 2024;14:1275330. doi: 10.3389/fonc.2024.1275330

 

  1. Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: Complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal. 2024;22(1):299. doi: 10.1186/s12964-024-01580-3

 

  1. Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin signaling in normal hematopoiesis and hematologic malignancies: Deciphering their intricate role and unraveling possible new therapeutic targets. Cancers (Basel). 2023;15(15):3963. doi: 10.3390/cancers15153963

 

  1. Papadakos SP, Dedes N, Gkolemi N, Machairas N, Theocharis S. The EPH/Ephrin system in pancreatic ductal adenocarcinoma (PDAC): From pathogenesis to treatment. Int J Mol Sci. 2023;24(3):3015. doi: 10.3390/ijms24033015

 

  1. Psilopatis I, Souferi-Chronopoulou E, Vrettou K, Troungos C, Theocharis S. EPH/Ephrin-targeting treatment in breast cancer: A new chapter in breast cancer therapy. Int J Mol Sci. 2022;23(23):15275. doi: 10.3390/ijms232315275

 

  1. Psilopatis I, Pergaris A, Vrettou K, Tsourouflis G, Theocharis S. The EPH/Ephrin system in gynecological cancers: Focusing on the roots of carcinogenesis for better patient management. Int J Mol Sci. 2022;23(6):3249. doi: 10.3390/ijms23063249

 

  1. Psilopatis I, Karniadakis I, Danos KS, et al. May EPH/ephrin targeting revolutionize lung cancer treatment? Int J Mol Sci. 2022;24(1):93. doi: 10.3390/ijms24010093

 

  1. Papadakos SP, Petrogiannopoulos L, Pergaris A, Theocharis S. The EPH/ephrin system in colorectal cancer. Int J Mol Sci. 2022;23(5):2761. doi: 10.3390/ijms23052761

 

  1. Liu W, Yu C, Li J, Fang J. The roles of EphB2 in cancer. Front Cell Dev Biol. 2022;10:788587. doi: 10.3389/fcell.2022.788587

 

  1. Chen X, Yu D, Zhou H, et al. The role of EphA7 in different tumors. Clin Transl Oncol. 2022;24(7):1274-1289. doi: 10.1007/s12094-022-02783-1

 

  1. Goparaju C, Donington JS, Hsu T, Harrington R, Hirsch N, Pass HI. Overexpression of EPH receptor B2 in malignant mesothelioma correlates with oncogenic behavior. J Thorac Oncol. Sep 2013;8(9):1203-1211. doi: 10.1097/JTO.0b013e31829ceb6a

 

  1. Cha JH, Chan LC, Wang YN, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298(4):101817. doi: 10.1016/j.jbc.2022.101817

 

  1. Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol. 2020;13(1):114. doi: 10.1186/s13045-020-00944-9

 

  1. Tang FHF, Davis D, Arap W, Pasqualini R, Staquicini FI. Eph receptors as cancer targets for antibody-based therapy. Adv Cancer Res. 2020;147:303-317. doi: 10.1016/bs.acr.2020.04.007

 

  1. London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep. 2020;47(7):5523-5533. doi: 10.1007/s11033-020-05571-8

 

  1. Janes PW, Vail ME, Gan HK, Scott AM. Antibody targeting of eph receptors in cancer. Pharmaceuticals (Basel). 2020;13(5):88. doi: 10.3390/ph13050088

 

  1. Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: Novel approaches in cancer treatment. Expert Opin Investig Drugs. 2020;29(6):567-582. doi: 10.1080/13543784.2020.1762566

 

  1. Saha N, Robev D, Mason EO, Himanen JP, Nikolov DB. Therapeutic potential of targeting the Eph/ephrin signaling complex. Int J Biochem Cell Biol. 2018;105:123-133. doi: 10.1016/j.biocel.2018.10.006

 

  1. Taki S, Kamada H, Inoue M, et al. A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy. PLoS One. 2015;10(12):e0144712. doi: 10.1371/journal.pone.0144712

 

  1. Zhou F, Wang B, Wang H, et al. circMELK promotes glioblastoma multiforme cell tumorigenesis through the miR-593/EphB2 axis. Mol Ther Nucleic Acids. 2021;25:25-36. doi: 10.1016/j.omtn.2021.05.002

 

  1. Lam S, Wiercinska E, Teunisse AF, Lodder K, Ten Dijke P, Jochemsen AG. Wild-type p53 inhibits pro-invasive properties of TGF-β3 in breast cancer, in part through regulation of EPHB2, a new TGF-β target gene. Breast Cancer Res Treat. 2014;148(1):7-18. doi: 10.1007/s10549-014-3147-8

 

  1. Leung HW, Leung CON, Lau EY, et al. EPHB2 Activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res. 2021;81(12):3229-3240. doi: 10.1158/0008-5472.Can-21-0184

 

  1. Nakada M, Niska JA, Miyamori H, et al. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res. 2004;64(9):3179-3185. doi: 10.1158/0008-5472.can-03-3667

 

  1. Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME. EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol. 2005;167(2):565-576. doi: 10.1016/s0002-9440(10)62998-7

 

  1. Xi HQ, Wu XS, Wei B, Chen L. Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med. 2012;16:2894-2909. doi: 10.1111/j.1582-4934.2012.01612.x

 

  1. Holmberg J, Genander M, Halford MM, et al. EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell. 2006;125(6):1151-1163. doi: 10.1016/j.cell.2006.04.030

 

  1. Batlle E, Henderson JT, Beghtel H, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251-263. doi: 10.1016/s0092-8674(02)01015-2

 

  1. Cortina C, Palomo-Ponce S, Iglesias M, et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet. 2007;39(11):1376-1383. doi: 10.1038/ng.2007.11

 

  1. Jubb AM, Zhong F, Bheddah S, et al. EphB2 is a prognostic factor in colorectal cancer. Clin Cancer Res. 2005;11(14):5181-5187. doi: 10.1158/1078-0432.Ccr-05-0143

 

  1. Takei J, Kaneko MK, Ohishi T, Kawada M, Harada H, Kato Y. A novel anti-EGFR monoclonal antibody (EMab-17) exerts antitumor activity against oral squamous cell carcinomas via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Oncol Lett. 2020;19(4):2809-2816. doi: 10.3892/ol.2020.11384

 

  1. Kato Y, Ohishi T, Sano M, et al. H(2)Mab-19 anti-human epidermal growth factor receptor 2 monoclonal antibody therapy exerts antitumor activity in pancreatic cancer xenograft models. Monoclon Antib Immunodiagn Immunother. 2020;39(3):61-65. doi: 10.1089/mab.2020.0011

 

  1. Asano T, Ohishi T, Takei J, et al. AntiHER3 monoclonal antibody exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Rep. 2021;46(2):173. doi: 10.3892/or.2021.8124

 

  1. Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 monoclonal antibody for multiple applications against breast cancers. Monoclon Antib Immunodiagn Immunother. 2023;42(5):166-177. doi: 10.1089/mab.2023.0015

 

  1. Qiu W, Song S, Chen W, Zhang J, Yang H, Chen Y. Hypoxia-induced EPHB2 promotes invasive potential of glioblastoma. Int J Clin Exp Pathol. 2019;12(2):539-548.

 

  1. Genander M, Halford MM, Xu NJ, et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell. 2009;139(4):679-692. doi: 10.1016/j.cell.2009.08.048

 

  1. Mao W, Luis E, Ross S, et al. EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 2004;64(3):781-788. doi: 10.1158/0008-5472.can-03-1047

 

  1. Sano M, Kaneko MK, Aasano T, Kato Y. Epitope mapping of an antihuman EGFR monoclonal antibody (EMab-134) using the REMAP method. Monoclon Antib Immunodiagn Immunother. 2021;40(4):191-195. doi: 10.1089/mab.2021.0014

 

  1. Asano T, Kaneko MK, Takei J, Tateyama N, Kato Y. Epitope mapping of the Anti-CD44 monoclonal antibody (C(44) Mab-46) using the REMAP method. Monoclon Antib Immunodiagn Immunother. 2021;40(4):156-161. doi: 10.1089/mab.2021.0012

 

  1. Okada Y, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Epitope mapping of an Anti-Mouse CD39 monoclonal antibody using PA scanning and RIEDL scanning. Monoclon Antib Immunodiagn Immunother. 2024;43(2):44-52. doi: 10.1089/mab.2023.0029

 

  1. Sharkey RM, Govindan SV, Cardillo TM, et al. Selective and concentrated accretion of SN-38 with a CEACAM5-targeting antibody-drug conjugate (ADC), labetuzumab govitecan (IMMU-130). Mol Cancer Ther. 2018;17(1):196-203. doi: 10.1158/1535-7163.Mct-17-0442

 

  1. Li G, Suzuki H, Ohishi T, et al. Antitumor activities of a defucosylated antiEpCAM monoclonal antibody in colorectal carcinoma xenograft models. Int J Mol Med. 2023;51(2):18. doi: 10.3892/ijmm.2023.5221

 

  1. Kaneko MK, Suzuki H, Kato Y. Establishment of a novel cancer-specific Anti-HER2 monoclonal antibody H(2) Mab-250/H(2)Casmab-2 for breast cancers. Monoclon Antib Immunodiagn Immunother. 2024;43(2):35-43. doi: 10.1089/mab.2023.0033

 

  1. Suzuki H, Ohishi T, Tanaka T, Kaneko MK, Kato Y. A cancer-specific monoclonal antibody against podocalyxin exerted antitumor activities in pancreatic cancer xenografts. Int J Mol Sci. 2023;25(1):161. doi: 10.3390/ijms25010161

 

  1. Kato Y, Kaneko MK. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep. 2014;4:5924. doi: 10.1038/srep05924

 

  1. Hosking M, Shirinbak S, Omilusik K, et al. 268 Development of FT825/ONO-8250: An off-the-shelf CAR-T cell with preferential HER2 targeting and engineered to enable multi-antigen targeting, improve trafficking, and overcome immunosuppression. J Immunother Cancer. 2023;11(Suppl 1):A307. doi: 10.1136/jitc-2023-SITC2023.0268
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing