AccScience Publishing / MI / Online First / DOI: 10.36922/mi.4783
REVIEW ARTICLE

Microbial involvement in myalgic encephalomyelitis/chronic fatigue syndrome pathophysiology

Alejandro Borrego-Ruiz1* Juan J. Borrego2
Show Less
1 Department of Social and Organizational Psychology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
2 Department of Microbiology, Faculty of Sciences, University of Malaga, Malaga, Spain
Submitted: 6 September 2024 | Accepted: 14 November 2024 | Published: 2 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and disabling disease related to persistent fatigue, exercise intolerance, post-exertional malaise, cognitive dysfunction, and musculoskeletal/joint pain. Gastrointestinal comorbidities, including irritable bowel syndrome, have been reported in affected individuals, indicating a potential role of gut microbiota in disease progression. In this paper, bacterial and metabolomic dysbiosis in subjects with ME/CFS are reviewed, and phenotypic, microbial, and metabolic biomarkers specific to individual cohorts are also identified. Furthermore, microbiome fluctuations or metabolic endotoxemia are proposed as possible disorder biomarkers. Based on the fact that gut microbiota dysbiosis reverts to a state of eubiosis in long-term patients with this condition, it may be hypothesized that disease progression begins with the loss of beneficial gut microorganisms, particularly short-chain fatty acid producers, leading to more widespread gastrointestinal phenotypes that are subsequently reflected in plasma metabolite levels. These alterations, specific of each individual, thereby result in metabolic and phenotypic shifts and in ME/CFS.

Keywords
Myalgic encephalomyelitis/chronic fatigue syndrome
Post-exertional malaise
Gut microbiota
Metabolic biomarkers
Pathophysiological phenotypes
Funding
None.
Conflict of interest
The authors declare that they do not have competing interests.
References
  1. Nacul L, Authier FJ, Scheibenbogen C, et al. European network on myalgic encephalomyelitis/chronic fatigue syndrome (EUROMENE): Expert consensus on the diagnosis, service provision, and care of people with ME/ CFS in Europe. Medicina (Kaunas). 2021;57(5):510. doi: 10.3390/medicina57050510

 

  1. Vyas J, Muirhead N, Singh R, Ephgrave R, Finlay AY. Impact of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) on the quality of life of people with ME/CFS and their partners and family members: An online cross-sectional survey. BMJ Open. 2022;12(5):e058128. doi: 10.1136/bmjopen-2021-058128

 

  1. Cortes Rivera M, Mastronardi C, Silva-Aldana CT, Arcos- Burgos M, Lidbury BA. Myalgic encephalomyelitis/chronic fatigue syndrome: A comprehensive review. Diagnostics (Basel). 2019;9(3):91. doi: 10.3390/diagnostics9030091

 

  1. Deumer US, Varesi A, Floris V, et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An overview. J Clin Med. 2021;10(20):4786. doi: 10.3390/jcm10204786

 

  1. Lupo GFD, Rocchetti G, Lucini L, et al. Potential role of microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Sci Rep. 2021;11(1):7043. doi: 10.1038/s41598-021-86425-6

 

  1. Stallmach A, Quickert S, Puta C, Reuken PA. The gastrointestinal microbiota in the development of ME/CFS: A critical view and potential perspectives. Front Immunol. 2024;15:1352744. doi: 10.3389/fimmu.2024.1352744

 

  1. König RS, Albrich WC, Kahlert CR, et al. The gut microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front Immunol. 2022;12:628741. doi: 10.3389/fimmu.2021.628741

 

  1. Nagy-Szakal D, Williams BL, Mishra N, et al. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2017;5(1):44. doi: 10.1186/s40168-017-0261-y

 

  1. Vaes AW, Van Herck M, Deng Q, Delbressine JM, Jason LA, Spruit MA. Symptom-based clusters in people with ME/ CFS: An illustration of clinical variety in a cross-sectional cohort. J Transl Med. 2023;21(1):112. doi: 10.1186/s12967-023-03946-6

 

  1. Wang JH, Choi Y, Lee JS, Hwang SJ, Gu J, Son CG. Clinical evidence of the link between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: A retrospective review. Eur J Med Res. 2024;29(1):148. doi: 10.1186/s40001-024-01747-1

 

  1. Lim EJ, Ahn YC, Jang ES, Lee SW, Lee SH, Son CG. Systematic review and meta-analysis of the prevalence of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). J Transl Med. 2020;18(1):100. doi: 10.1186/s12967-020-02269-0

 

  1. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi: 10.3390/microorganisms7010014

 

  1. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi: 10.1186/s13073-016-0307-y

 

  1. Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2024;128:110861. doi: 10.1016/j.pnpbp.2023.110861

 

  1. Mohammadzadeh R, Mahnert A, Duller S, Moissl-Eichinger C. Archaeal key-residents within the human microbiome: Characteristics, interactions and involvement in health and disease. Curr Opin Microbiol. 2022;67:102146. doi: 10.1016/j.mib.2022.102146

 

  1. Maas E, Penders J, Venema K. Fungal-bacterial interactions in the human gut of healthy individuals. J Fungi (Basel). 2023;9(2):139 doi: 10.3390/jof9020139

 

  1. Aykur M, Malatyalı E, Demirel F, et al. Blastocystis: A mysterious member of the gut microbiome. Microorganisms. 2024;12(3):461. doi: 10.3390/microorganisms12030461

 

  1. Zárate S, Taboada B, Yocupicio-Monroy M, Arias CF. Human virome. Arch Med Res. 2017;48(8):701-716. doi: 10.1016/j.arcmed.2018.01.005

 

  1. Reynoso-García J, Miranda-Santiago AE, Meléndez- Vázquez NM, et al. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. Front Syst Biol. 2022;2:951403. doi: 10.3389/fsysb.2022.951403

 

  1. Gong J, Li L, Zuo X, Li Y. Change of the duodenal mucosa-associated microbiota is related to intestinal metaplasia. BMC Microbiol. 2019;19:275. doi: 10.1186/s12866-019-1666-5

 

  1. James KR, Gomes T, Elmentaite R, et al. Distinct microbial and immune niches of the human colon. Nat Immunol. 2020;21(3):343-353. doi: 10.1038/s41590-020-0602-z

 

  1. Vasapolli R, Schütte K, Schulz C, et al. Analysis of transcriptionally active bacteria throughout the gastrointestinal tract of healthy individuals. Gastroenterology. 2019;157(4):1081-1092.e3. doi: 10.1053/j.gastro.2019.05.068

 

  1. Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. Int Microbiol. 2024. doi: 10.1007/s10123-024-00518-6

 

  1. Iizumi T, Battaglia T, Ruiz V, Perez Perez GI. Gut microbiome and antibiotics. Arch Med Res. 2017;48(8):727-734. doi: 10.1016/j.arcmed.2017.11.004

 

  1. Tanaka M, Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515-522. doi: 10.1016/j.alit.2017.07.010

 

  1. Das B, Nair GB. Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci. 2019;44(5):117. doi: 10.1007/s12038-019-9926-y

 

  1. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14(7):676-684. doi: 10.1038/ni.2640

 

  1. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. doi: 10.1038/s41392-022-00974-4

 

  1. Yin R, Kuo HC, Hudlikar R, et al. Gut microbiota, dietary phytochemicals and benefits to human health. Curr Pharmacol Rep. 2019;5:332-344. doi: 10.1007/s40495-019-00196-3

 

  1. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341-352. doi: 10.1038/nri.2016.42

 

  1. Keszthelyi D. Histamine-producing bacteria: The missing link in irritable bowel syndrome? Gastroenterology. 2023;164(1):160-161. doi: 10.1053/j.gastro.2022.08.053

 

  1. Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration. Dig Dis Sci. 2020;65(3):695-705. doi: 10.1007/s10620-020-06118-4

 

  1. Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586-597. doi: 10.1038/nm.4106

 

  1. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461-478. doi: 10.1038/s41575-019-0157-3

 

  1. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020;11:25. doi: 10.3389/fendo.2020.00025

 

  1. Qian XH, Xie RY, Liu XL, Chen SD, Tang HD. Mechanisms of short-chain fatty acids derived from gut microbiota in Alzheimer’s disease. Aging Dis. 2022;13(4):1252-1266. doi: 10.14336/AD.2021.1215

 

  1. Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-modulated metabolites at the interface of host immunity. J Immunol. 2017;198(2):572-580. doi: 10.4049/jimmunol.1601247

 

  1. Salami M. Interplay of good bacteria and central nervous system: Cognitive aspects and mechanistic considerations. Front Neurosci. 2021;15:613120. doi: 10.3389/fnins.2021.613120

 

  1. Vogl T, Kalka IN, Klompus S, Leviatan S, Weinberger A, Segal E. Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients. Sci Adv. 2022;8(38):eabq2422. doi: 10.1126/sciadv.abq2422

 

  1. Shukla SK, Cook D, Meyer J, et al. Changes in gut and plasma microbiome following exercise challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS One. 2015;10(12):e0145453. doi: 10.1371/journal.pone.0145453

 

  1. Armstrong CW, McGregor NR, Lewis DP, Butt HL, Gooley PR. The association of fecal microbiota and fecal, blood serum and urine metabolites in myalgic encephalomyelitis/chronic fatigue syndrome. Metabolomics. 2017;13(1):8. doi: 10.1007/s11306-016-1145-z

 

  1. Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2016;4(1):30. doi: 10.1186/s40168-016-0171-4

 

  1. Mandarano AH, Giloteaux L, Keller BA, Levine SM, Hanson MR. Eukaryotes in the gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome. PeerJ. 2018;6:e4282. doi: 10.7717/peerj.4282

 

  1. Kitami T, Fukuda S, Kato T, et al. Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci Rep. 2020;10:19933. doi: 10.1038/s41598-020-77105-y

 

  1. Guo C, Che X, Briese T, et al. Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS. Cell Host Microbe. 2023;31(2):288-304.e8. doi: 10.1016/j.chom.2023.01.004

 

  1. He G, Cao Y, Ma H, et al. Causal effects between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: A two-sample Mendelian randomization study. Front Microbiol. 2023;14:1190894. doi: 10.3389/fmicb.2023.1190894

 

  1. Xiong R, Gunter C, Fleming E, et al. Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host Microbe. 2023;31(2):273-287.e5. doi: 10.1016/j.chom.2023.01.001

 

  1. Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of Enterobacteria in Chronic Fatigue Syndrome (CFS): Indication for the involvement of Gram-negative Enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord. 2007;99(1-3):237-240. doi: 10.1016/j.jad.2006.08.021

 

  1. Slyepchenko A, Maes M, Jacka FN, et al. Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom. 2016;86(1):31-46. doi: 10.1159/000448957

 

  1. Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: How could the illness develop? Metab Brain Dis. 2019;34(2):385-415. doi: 10.1007/s11011-019-0388-6

 

  1. Missailidis D, Annesley SJ, Fisher PR. Pathological mechanisms underlying myalgic encephalomyelitis/chronic fatigue syndrome. Diagnostics (Basel). 2019;9(3):80. doi: 10.3390/diagnostics9030080

 

  1. Fukuda S, Nojima J, Motoki Y, et al. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol Psychol. 2016;118:88-93. doi: 10.1016/j.biopsycho.2016.05.005

 

  1. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett. 2009;30(6):715-722.

 

  1. Morris G, Maes M. Oxidative and nitrosative stress and immune-inflammatory pathways in patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol. 2014;12(2):168-185. doi: 10.2174/1570159X11666131120224653

 

  1. Varesi A, Deumer US, Ananth S, Ricevuti G. The emerging role of gut microbiota in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): Current evidence and potential therapeutic applications. J Clin Med. 2021;10(21):5077. doi: 10.3390/jcm10215077

 

  1. Loebel M, Grabowski P, Heidecke H, et al. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav Immun. 2016;52:32-39. doi: 10.1016/j.bbi.2015.09.013

 

  1. Simonato M, Dall’Acqua S, Zilli C, et al. Tryptophan metabolites, cytokines, and fatty acid binding protein 2 in myalgic encephalomyelitis/chronic fatigue syndrome. Biomedicines. 2021;9(11):1724. doi: 10.3390/biomedicines9111724

 

  1. Holzer P, Farzi A, Hassan AM, Zenz G, Jacan A, Reichmann F. Visceral inflammation and immune activation stress the brain. Front Immunol. 2017;8:1613. doi: 10.3389/fimmu.2017.01613

 

  1. Lemke D, Klement RJ, Schweiger F, Schweiger B, Spitz J. Vitamin D resistance as a possible cause of autoimmune diseases: A hypothesis confirmed by a therapeutic high-dose vitamin D protocol. Front Immunol. 2021;12:655739. doi: 10.3389/fimmu.2021.655739

 

  1. Borrego-Ruiz A, Borrego JJ. Psychobiotics: A new perspective on the treatment of stress, anxiety, and depression. Anxiety Stress. 2024;30(2):79-93. doi: 10.5093/anyes2024a11

 

  1. Venturini L, Bacchi S, Capelli E, Lorusso L, Ricevuti G, Cusa C. Modification of immunological parameters, oxidative stress markers, mood symptoms, and well-being status in CFS patients after probiotic intake: Observations from a pilot study. Oxid Med Cell Longev. 2019;2019:1684198. doi: 10.1155/2019/1684198

 

  1. Sullivan Å, Nord CE, Evengård B. Effect of supplement with lactic-acid producing bacteria on fatigue and physical activity in patients with chronic fatigue syndrome. Nutr J. 2009;8:4. doi: 10.1186/1475-2891-8-4

 

  1. Groeger D, O’Mahony L, Murphy EF, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013;4(4):325-339. doi: 10.4161/gmic.25487

 

  1. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-563. doi: 10.1038/nature12820

 

  1. Borrego-Ruiz A, Borrego JJ. Influence of the vegetarian diet on the human intestinal microbiome. Nutr Clin Diet Hosp. 2024;4(3):149-157. doi: 10.12873/443borrego

 

  1. Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276. doi: 10.1038/srep11276

 

  1. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087

 

  1. Merra G, Noce A, Marrone G, et al. Influence of Mediterranean diet on human gut microbiota. Nutrients. 2021;13(1):7. doi: 10.3390/nu13010007

 

  1. Puri BK. Long-chain polyunsaturated fatty acids and the pathophysiology of myalgic encephalomyelitis (chronic fatigue syndrome). J Clin Pathol. 2007;60(2):122-124. doi: 10.1136/jcp.2006.042424

 

  1. Maes M, Leunis JC. Normalization of leaky gut in Chronic Fatigue Syndrome (CFS) is accompanied by a clinical improvement: Effects of age, duration of illness and the translocation of LPS from Gram-negative bacteria. Neuro Endocrinol Lett. 2008;29(6):902-910.

 

  1. Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55-62. doi: 10.1016/j.jad.2012.02.023

 

  1. Borrego-Ruiz A, Borrego JJ. Fecal microbiota transplantation as a tool for therapeutic modulation of neurological and mental disorders SciBase Neurol. 2024;2(2):1018. doi: 10.52768/neurology/1018

 

  1. Borody TJ, Nowak A, Finlayson S. The GI microbiome and its role in chronic fatigue syndrome: A summary of bacteriotherapy. ACNEM J. 2012;31:3-8.

 

  1. Kenyon JN, Coe S, Izadi H. A retrospective outcome study of 42 patients with chronic fatigue syndrome, 30 of whom had irritable bowel syndrome. Half were treated with oral approaches, and half were treated with faecal microbiome transplantation. Hum Microbiome J. 2019;13:100061. doi: 10.1016/j.humic.2019.100061

 

  1. Salonen T, Jokinen E, Satokari R, Lahtinen P. Randomized, double-blinded, placebo-controlled pilot study: Efficacy of faecal microbiota transplantation on chronic fatigue syndrome. J Transl Med. 2023;21(1):513. doi: 10.1186/s12967-023-04227-y

 

  1. Gianchecchi E, Fierabracci A. Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int J Mol Sci. 2019;20(2):283. doi: 10.3390/ijms20020283

 

  1. Frémont M, Coomans D, Massart S, de Meirleir K. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe. 2013;22:50-56. doi: 10.1016/j.anaerobe.2013.06.002

 

  1. Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol. 2024;194:112497. doi: 10.1016/j.exger.2024.112497

 

  1. Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan metabolism: A link between the gut microbiota and brain. Adv Nutr. 2020;11(3):709-723. doi: 10.1093/advances/nmz127

 

  1. Lee JS, Kang JY, Park SY, Hwang SJ, Bae SJ, Son CG. Central 5-HTergic hyperactivity induces Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS)-like pathophysiology. J Transl Med. 2024;22(1):34. doi: 10.1186/s12967-023-04808-x

 

  1. Borrego-Ruiz A. A critical review on the influence of the vegetarian diet on mental health. Rev Esp Nutr Comun. 2024;30(2).

 

  1. Raijmakers RPH, Roerink ME, Jansen AFM, et al. Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome. J Transl Med. 2020;18:448. doi: 10.1186/s12967-020-02585-5

 

  1. Hickie I, Davenport T, Wakefield D, et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ. 2006;333(7568):575. doi: 10.1136/bmj.38933.585764.AE

 

  1. Underhill RA. Myalgic encephalomyelitis, chronic fatigue syndrome: An infectious disease. Med Hypotheses. 2015;85(6):765-773. doi: 10.1016/j.mehy.2015.10.011

 

  1. Borrego-Ruiz A. Aging after Covid-19. Paraninfo Digit. 2024;18(38):e3815c.

 

  1. Ramonfaur D, Ayad N, Liu PHZ, et al. The global clinical studies of long COVID. Int J Infect Dis. 2024;146:107105. doi: 10.1016/j.ijid.2024.107105
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing