AccScience Publishing / MI / Online First / DOI: 10.36922/mi.4742
REVIEW ARTICLE

The roles and potential clinical implications of gut microbiome in sepsis

Na Qin1,2,3 Hongyan Chen1,2,3 Hao Su1,2,3,4 Xiaoting Zhang1,2,3,4 Haiyun Shang1,2,3,4 Zihe Xu1,2,3,4 Zhenhua Zeng5 Huarong Chen1,2,3,4*
Show Less
1 Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
2 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
3 CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
4 State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
5 Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
Submitted: 2 September 2024 | Revised: 16 October 2024 | Accepted: 11 November 2024 | Published: 2 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Pronounced dysbiosis in the gut microbiome is common among sepsis patients, resulting in aggravation of the disease. This disturbance not only impacts gut integrity but also initiates localized immune responses that may progress to systemic inflammation. This review explores recent discoveries regarding the dysregulation of the gut microbiome, alterations in gut permeability, and disruptions in intestinal immune responses that occur during sepsis. In addition, we discuss innovative therapeutic strategies, encompassing the impacts of metabolites derived from microbes, the selection of beneficial probiotics, and the utilization of fecal microbiota transplantation in the management of sepsis. Understanding the complexities of the gut microbiome holds the promise of revealing novel strategies that may transform the treatment of sepsis, providing a ray of hope for improved outcomes in critically ill patients.

Keywords
Sepsis
Gut microbiota
Metabolite
Dysbiosis
Immune response
Funding
This project was supported by the Heath and Medical Research Fund (HMRF) (22210032); RGC-GRF Hong Kong (14101922); and CUHK Direct Grant for Research (2024.010).
Conflict of interest
Huarong Chen is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Singer M, Deutschman CS, Christopher, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810. doi: 10.1001/jama.2016.0287

 

  1. Cavaillon JM, Singer M, Skirecki T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med. 2020;12:e10128. doi: 10.15252/emmm.201810128

 

  1. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392(10141):75-87. doi: 10.1016/S0140-6736(18)30696-2

 

  1. Paoli CJ, Reynolds MA, Sinha M, Gitlin M, Crouser E. Epidemiology and costs of sepsis in the United States-an analysis based on timing of diagnosis and severity level. Crit Care Med. 2018;46(12):1889-1897. doi: 10.1097/CCM.0000000000003342

 

  1. Rhee C, Jones TM, Hamad Y, et al. Prevalence, underlying causes, and preventability of sepsis-associated mortality in US acute care hospitals. JAMA Netw Open. 2019;2(2):e187571. doi: 10.1001/jamanetworkopen.2018.7571

 

  1. Arefian H, Heublein S, Scherag A, et al. Hospital-related cost of sepsis: A systematic review. J Infect. 2017;74(2):107-117. doi: 10.1016/j.jinf.2016.11.006

 

  1. Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body. Protein Cell. 2010;1:718-725. doi: 10.1007/s13238-010-0093-z

 

  1. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148(6):1258-1270. doi: 10.1016/j.cell.2012.01.035

 

  1. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821

 

  1. Gilbert JA, Quinn RA, Debelius J, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535(7610):94-103. doi: 10.1038/nature18850

 

  1. Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28(S4):9-17. doi: 10.1111/jgh.12294

 

  1. Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014;20(4):214-223. doi: 10.1016/j.molmed.2013.08.004

 

  1. Ojima M, Motooka D, Shimizu K, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci. 2016;61(6):1628-1634. doi: 10.1007/s10620-015-4011-3

 

  1. Sun L, Zhang S, Yang Z, et al. Clinical application and influencing factor analysis of metagenomic next-generation sequencing (mNGS) in ICU patients with sepsis. Front Cell Infect Microbiol. 2022;12:905132. doi: 10.3389/fcimb.2022.905132

 

  1. Ingels C, Vanhorebeek I, Van Den Berghe G. Glucose homeostasis, nutrition and infections during critical illness. Clin Microbiol Infect. 2018;24(1):10-15. doi: 10.1016/j.cmi.2016.12.033

 

  1. Van Gassel RJJ, Bels JLM, Van De Poll MCG. Nutritional strategies during gastrointestinal dysfunction. Curr Opin Crit Care. 2023;29(4):354-359. doi: 10.1097/MCC.0000000000001052

 

  1. Yang XJ, Liu D, Ren HY, Zhang XY, Zhang J, Yang XJ. Effects of sepsis and its treatment measures on intestinal flora structure in critical care patients. World J Gastroenterol. 2021;27(19):2376-2393. doi: 10.3748/wjg.v27.i19.2376

 

  1. Lankelma JM, van Vught LA, Belzer C, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: A pilot study. Intensive Care Med. 2017;43(1):59-68. doi: 10.1007/s00134-016-4613-z

 

  1. Agudelo-Ochoa GM, Valdés-Duque BE, Giraldo- Giraldo NA, et al. Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis. Gut Microbes. 2020;12(1):1707610. doi: 10.1080/19490976.2019.1707610

 

  1. Feng Z, Long W, Hao B, et al. A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice. Gut Pathog. 2017;9:59. doi: 10.1186/s13099-017-0208-7

 

  1. Kverka M, Zakostelska Z, Klimesova K, et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011;163(2):250-259. doi: 10.1111/j.1365-2249.2010.04286.x

 

  1. Baggs J, Jernigan JA, Halpin AL, Epstein L, Hatfield KM, McDonald LC. Risk of subsequent sepsis within 90 days after a hospital stay by type of antibiotic exposure. Clin Infect Dis. 2018;66(7):1004-1012. doi: 10.1093/cid/cix947

 

  1. DiNubile MJ, Chow JW, Satishchandran V, et al. Acquisition of resistant bowel flora during a double-blind randomized clinical trial of ertapenem versus piperacillin-tazobactam therapy for intraabdominal infections. Antimicrob Agents Chemother. 2005;49(8):3217-3221. doi: 10.1128/AAC.49.8.3217-3221.2005

 

  1. Laurence AL, Cécile A, François B, et al. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother. 2013;57(3):1488-1495. doi: 10.1128/AAC.01823-12

 

  1. Charlie GB, Irene J, Michele E, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80(1):62-73. doi: 10.1128/IAI.05496-11

 

  1. Mu S, Xiang H, Wang Y, et al. The pathogens of secondary infection in septic patients share a similar genotype to those that predominate in the gut. Crit Care. 2022;26(1):68. doi: 10.1186/s13054-022-03943-z

 

  1. Meng J, Banerjee S, Li D, et al. Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization. Sci Rep. 2015;5:10918. doi: 10.1038/srep10918

 

  1. Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148(6):1107-1119. doi: 10.1053/j.gastro.2014.12.036

 

  1. Morowitz MJ, Di Caro V, Pang D, et al. Dietary supplementation with nonfermentable fiber alters the gut microbiota and confers protection in murine models of sepsis. Crit Care Med. 2017;45(5):e516-e523. doi: 10.1097/CCM.0000000000002291

 

  1. Kaplan JM, Nowell M, Lahni P, O’Connor MP, Hake PW, Zingarelli B. Short-term high fat feeding increases organ injury and mortality after polymicrobial sepsis. Obesity (Silver Spring). 2012;20(10):1995-2002. doi: 10.1038/oby.2012.40

 

  1. Gutiérrez OM, Judd SE, Voeks JH, et al. Diet patterns and risk of sepsis in community-dwelling adults: A cohort study. BMC Infect Dis. 2015;15(1):231. doi: 10.1186/s12879-015-0981-1

 

  1. Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: Guidelines on the management of critically Ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;46:854-887. doi: 10.1007/s00134-020-06022-5

 

  1. Reignier J, Boisramé-Helms J, Brisard L, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391(10116):133-143. doi: 10.1016/S0140-6736(17)32146-3

 

  1. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut. 2020;69(12):2232-2243. doi: 10.1136/gutjnl-2020-322260

 

  1. Wu M, Zheng W, Song X, et al. Gut complement induced by the microbiota combats pathogens and spares commensals. Cell. 2024;187(4):897-913.e18. doi: 10.1016/j.cell.2023.12.036

 

  1. Wilmore JR, Gaudette BT, Gomez Atria D, et al. Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe. 2018;23(3):302-311.e3.doi: 10.1016/j.chom.2018.01.005

 

  1. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-1353.e21. doi: 10.1016/j.cell.2016.10.043

 

  1. Kumar M, Leon Coria A, Cornick S, et al. Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling. Nat Commun. 2020;11(1):483. doi: 10.1038/s41467-019-14182-2

 

  1. Darkwah S, Nago N, Appiah MG, et al. Differential roles of dendritic cells in expanding CD4 T cells in sepsis. Biomedicines. 2019;7(3):52. doi: 10.3390/BIOMEDICINES7030052

 

  1. Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 2018;11(1):3-20. doi: 10.1038/mi.2017.73

 

  1. Camilleri M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516-1526. doi: 10.1136/gutjnl-2019-318427

 

  1. Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(7):417-432. doi: 10.1038/s41575-023-00766-3

 

  1. Oami T, Abtahi S, Shimazui T, et al. Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis. Proc Natl Acad Sci U S A. 2024;121(10):e2217877121. doi: 10.1073/pnas.2217877121

 

  1. Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: A microbiota-driven hub of B cell immunity. Trends Immunol. 2024;45(3):211-223. doi: 10.1016/j.it.2024.01.006

 

  1. Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol. 2012;33(6):289-296. doi: 10.1016/j.it.2012.04.004

 

  1. Czepielewski RS, Erlich EC, Onufer EJ, et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity. 2021;54(12):2795-2811.e9. doi: 10.1016/j.immuni.2021.10.003

 

  1. Rubio I, Osuchowski MF, Shankar-Hari M, et al. Current gaps in sepsis immunology: New opportunities for translational research. Lancet Infect Dis. 2019;19(12):e422-e436. doi: 10.1016/S1473-3099(19)30567-5

 

  1. O’Boyle CJ, MacFie J, Mitchell CJ, Johnstone D, Sagar PM, Sedman PC. Microbiology of bacterial translocation in humans. Gut. 1998;42(1):29-35. doi: 10.1136/gut.42.1.29

 

  1. Abo-Shaban T, Sharna SS, Hosie S, et al. Issues for patchy tissues: Defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J Neural Transm (Vienna). 2023;130(3):269-280. doi: 10.1007/s00702-022-02561-x

 

  1. Torow N, Li R, Hitch TCA, et al. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer’s patch. Immunity. 2023;56(6):1220- 1238.e7. doi: 10.1016/j.immuni.2023.04.002

 

  1. De Schepper S, Verheijden S, Aguilera-Lizarraga J, et al. Self-maintaining Gut macrophages are essential for intestinal homeostasis. Cell. 2018;175(2):400-415.e13. doi: 10.1016/j.cell.2018.07.048

 

  1. Martínez-López M, Iborra S, Conde-Garrosa R, et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity. 2019;50(2):446- 461.e9. doi: 10.1016/j.immuni.2018.12.020

 

  1. Schulz O, Ugur M, Friedrichsen M, et al. Hypertrophy of infected Peyer’s patches arises from global, interferon-receptor, and CD69-independent shutdown of lymphocyte egress. Mucosal Immunol. 2014;7(4):892-904. doi: 10.1038/mi.2013.105

 

  1. Fan J, Wu J, Wu LD, et al. Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and Peyer’s patch apoptosis in severely burned rats. Nutrition. 2018;47:97-103. doi: 10.1016/j.nut.2017.10.005

 

  1. Ota N, Wong K, Valdez PA, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12(10):941-948. doi: 10.1038/ni.2089

 

  1. Eberl G, Lochner M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2009;2(6):478-485. doi: 10.1038/mi.2009.114

 

  1. Buettner M, Lochner M. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front Immunol. 2016;7:342.doi: 10.3389/fimmu.2016.00342

 

  1. Wu C, Li H, Zhang P, et al. Lymphatic flow: A potential target in sepsis-associated acute lung injury. JIR. 2020;13:961-968. doi: 10.2147/JIR.S284090

 

  1. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166(11):6952-6963. doi: 10.4049/jimmunol.166.11.6952

 

  1. Peng S, Sun T, Yang D, et al. Dipsacoside B ameliorates cognitive impairment in sepsis-associated encephalopathy by reducing Th17 cell infiltration and neuroinflammation. Biochem Pharmacol. 2024;227:116428. doi: 10.1016/j.bcp.2024.116428

 

  1. Xie B, Wang M, Zhang X, et al. Gut-derived memory γδ T17 cells exacerbate sepsis-induced acute lung injury in mice. Nat Commun. 2024;15(1):6737. doi: 10.1038/s41467-024-51209-9

 

  1. Van Rossum T, Haiß A, Knoll RL, et al. Bifidobacterium and Lactobacillus probiotics and gut dysbiosis in preterm infants: The PRIMAL randomized clinical trial. JAMA Pediatr. 2024;178:985-995. doi: 10.1001/jamapediatrics.2024.2626

 

  1. Angurana SK, Bansal A, Singhi S, et al. Evaluation of effect of probiotics on cytokine levels in critically Ill children with severe sepsis: A double-blind, placebo-controlled trial. Crit Care Med. 2018;46(10):1656-1664. doi: 10.1097/CCM.0000000000003279

 

  1. Xie S, Li J, Lyu F, et al. Novel tripeptide RKH derived from Akkermansia muciniphila protects against lethal sepsis. Gut. 2023;73:78-91. doi: 10.1136/gutjnl-2023-329996

 

  1. Gu P, Liu R, Yang Q, et al. A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis. Cell Mol Immunol. 2023;20(10):1156-1170. doi: 10.1038/s41423-023-01070-5

 

  1. Chen X, Wu R, Li L, et al. Pregnancy-induced changes to the gut microbiota drive macrophage pyroptosis and exacerbate septic inflammation. Immunity. 2023;56(2):336-352.e9. doi: 10.1016/j.immuni.2023.01.015

 

  1. Quigley EMM. Prebiotics and probiotics in digestive health. Clin Gastroenterol Hepatol. 2019;17(2):333-344. doi: 10.1016/j.cgh.2018.09.028

 

  1. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605-616. doi: 10.1038/s41575-019-0173-3

 

  1. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. doi: 10.1038/nrgastro.2017.75

 

  1. Valcheva R, Koleva P, Martínez I, Walter J, Gänzle MG, Dieleman LA. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes. 2019;10(3):334-357. doi: 10.1080/19490976.2018.1526583

 

  1. Wei W, Wong CC, Jia Z, et al. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. Nat Microbiol. 2023;8(8):1534-1548. doi: 10.1038/s41564-023-01418-7

 

  1. Dilli D, Aydin B, Fettah ND, et al. The propre-save study: Effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. J Pediatr. 2015;166(3):545-551.e1. doi: 10.1016/j.jpeds.2014.12.004

 

  1. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. Int J Food Sci Nutr. 2014;65(1):117-123. doi: 10.3109/09637486.2013.836738

 

  1. Hecht AL, Harling LC, Friedman ES, et al. Dietary carbohydrates regulate intestinal colonization and dissemination of Klebsiella pneumoniae. J Clin Invest. 2024;134(9):e174726. doi: 10.1172/JCI174726

 

  1. Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6(1):6734. doi: 10.1038/ncomms7734

 

  1. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217(2):133-139. doi: 10.1111/j.1574-6968.2002.tb11467.x

 

  1. Liu S, Hong L, Zhang S, et al. Sporisorium reilianum polysaccharides improve DSS-induced ulcerative colitis by regulating intestinal barrier function and metabolites. Int J Biol Macromol. 2024;265:130863. doi: 10.1016/j.ijbiomac.2024.130863

 

  1. Tajik N, Frech M, Schulz O, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 2020;11(1):1995.doi: 10.1038/s41467-020-15831-7

 

  1. Erny D, Dokalis N, Mezö C, et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021;33(11):2260-2276.e7. doi: 10.1016/j.cmet.2021.10.010

 

  1. Scott NA, Andrusaite A, Andersen P, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med. 2018;10(464):eaao4755. doi: 10.1126/scitranslmed.aao4755

 

  1. Huang D, Li H, Lin Y, et al. Antibiotic-induced depletion of Clostridium species increases the risk of secondary fungal infections in preterm infants. Front Cell Infect Microbiol. 2022;12:981823. doi: 10.3389/fcimb.2022.981823

 

  1. Zhu J, Zhang M, Han T, et al. Exploring the biomarkers of Sepsis-Associated Encephalopathy (SAE): Metabolomics evidence from gas chromatography-mass spectrometry. Biomed Res Int. 2019;2019:2612849. doi: 10.1155/2019/2612849

 

  1. Zhang H, Xu J, Wu Q, et al. Gut microbiota mediates the susceptibility of mice to sepsis-associated encephalopathy by butyric acid. J Inflamm Res. 2022;15:2103-2119. doi: 10.2147/JIR.S350566

 

  1. Ahn S, Lee SH, Chung KS, et al. Development and validation of a novel sepsis biomarker based on amino acid profiling. Clin Nutr. 2021;40(6):3668-3676. doi: 10.1016/j.clnu.2021.05.008

 

  1. Ternes D, Tsenkova M, Pozdeev VI, et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 2022;4(4):458-475. doi: 10.1038/s42255-022-00558-0

 

  1. Wu D, Su S, Zha X, et al. Glutamine promotes O-GlcNAcylation of G6PD and inhibits AGR2 S-glutathionylation to maintain the intestinal mucus barrier in burned septic mice. Redox Biol. 2023;59:102581. doi: 10.1016/j.redox.2022.102581

 

  1. Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes. 2023;15(1):2222961. doi: 10.1080/19490976.2023.2222961

 

  1. Wang D, Cai J, Pei Q, et al. Gut microbial alterations in arginine metabolism determine bone mechanical adaptation. Cell Metab. 2024;36:1252-1268.e8. doi: 10.1016/j.cmet.2024.04.004

 

  1. Yang H, Wu X, Li X, et al. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response. Nat Commun. 2024;15(1):2842. doi: 10.1038/s41467-024-47075-0

 

  1. Yeh CL, Tanuseputero SA, Wu JM, et al. Intravenous arginine administration benefits CD4+ T-cell homeostasis and attenuates liver inflammation in mice with polymicrobial sepsis. Nutrients. 2020;12(4):1047. doi: 10.3390/nu12041047

 

  1. Luiking YC, Poeze M, Deutz NE. A randomized-controlled trial of arginine infusion in severe sepsis on microcirculation and metabolism. Clin Nutr. 2020;39(6):1764-1773. doi: 10.1016/j.clnu.2019.08.013

 

  1. Otto GP, Neugebauer S, Claus RA, Sossdorf M. Arginine metabolism is markedly impaired in polymicrobial infected mice. Crit Care. 2012;16(2):412. doi: 10.1186/cc11205

 

  1. Kruszewski M, Merchelski M, Kruszewski A, Tabęcki R, Aksenov MO, Pągowski Ł. Effects of multi-ingredient pre-workout supplement and caffeine on bench press performance: A single-blind cross-over study. Nutrients. 2022;14(9):1750. doi: 10.3390/nu14091750

 

  1. Cabre HE, Greenwalt CE, Gould LM, Smith-Ryan AE. The effects of L-Citrulline and glutathione on endurance performance in young adult trained males. J Int Soc Sports Nutr. 2023;20(1):2206386. doi: 10.1080/15502783.2023.2206386

 

  1. Yu W, Li X, Lu J, Xie G. Citrulline production by lactic acid bacteria in Chinese rice wine. J Inst Brew. 2018;124(1):85-90. doi: 10.1002/jib.475

 

  1. Piton G, Capellier G. Biomarkers of gut barrier failure in the ICU. Curr Opin Crit Care. 2016;22:152-160. doi: 10.1097/MCC.0000000000000283

 

  1. Asgeirsson T, Zhang S, Nunoo R, et al. Citrulline: A potential immunomodulator in sepsis. Surgery. 2011;150(4):744-751. doi: 10.1016/j.surg.2011.08.024

 

  1. Reizine F, Grégoire M, Lesouhaitier M, et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2022;119(8):e2115139119. doi: 10.1073/pnas.2115139119

 

  1. Zhong J, Johansen SH, Bæk O, Nguyen DN. Citrulline supplementation exacerbates sepsis severity in infected preterm piglets via early induced immunosuppression. J Nutr Biochem. 2024;131:109674. doi: 10.1016/j.jnutbio.2024.109674

 

  1. Ware LB, Magarik JA, Wickersham N, et al. Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit Care. 2013;17(1):R10. doi: 10.1186/cc11934

 

  1. Shen LJ, Guan YY, Wu XP, et al. Serum citrulline as a diagnostic marker of sepsis-induced intestinal dysfunction. Clin Res Hepatol Gastroenterol. 2015;39(2):230-236. doi: 10.1016/j.clinre.2014.10.002

 

  1. Jaiswal VK, Kabaciński P, Nogueira De Faria BE, et al. Environment-driven coherent population transfer governs the ultrafast photophysics of tryptophan. J Am Chem Soc. 2022;144(28):12884-12892. doi: 10.1021/jacs.2c04565

 

  1. Xia L, Hantrakun V, Teparrukkul P, et al. Plasma metabolomics reveals distinct biological and diagnostic signatures for melioidosis. Am J Respir Crit Care Med. 2024;209(3):288-298. doi: 10.1164/rccm.202207-1349OC

 

  1. Fang H, Fang M, Wang Y, et al. Indole-3-propionic acid as a potential therapeutic agent for sepsis-induced gut microbiota disturbance. Microbiol Spectr. 2022;10(3):e0012522. doi: 10.1128/spectrum.00125-22

 

  1. Fong W, Li Q, Ji F, et al. Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/ Kyn/AHR axis. Gut. 2023;72(12):2272-2285. doi: 10.1136/gutjnl-2023-329543

 

  1. Li D, Wei R, Zhang X, et al. Gut commensal metabolite rhamnose promotes macrophages phagocytosis by activating SLC12A4 and protects against sepsis in mice. Acta Pharm Sin B. 2024;14(7):3068-3085. doi: 10.1016/j.apsb.2024.03.025

 

  1. Chen Y, Sun K, Qi Y, Tang J, Zhu H, Wang Z. L-valine derived from the gut microbiota protects sepsis-induced intestinal injury and negatively correlates with the severity of sepsis. Front Immunol. 2024;15:1424332. doi: 10.3389/fimmu.2024.1424332

 

  1. Li J, Chen Y, Li R, et al. Gut microbial metabolite hyodeoxycholic acid targets the TLR4/MD2 complex to attenuate inflammation and protect against sepsis. Mol Ther. 2023;31(4):1017-1032. doi: 10.1016/j.ymthe.2023.01.018

 

  1. Kim SM, DeFazio JR, Hyoju SK, et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat Commun. 2020;11(1):2354. doi: 10.1038/s41467-020-15545-w

 

  1. DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043-2050. doi: 10.1056/NEJMoa1910437
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing