AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025380386
RESEARCH ARTICLE

Synergistic bone regeneration by surface-modified 3D-printed PCL/β-TCP scaffolds in various animal defect models

Yulin Jiang1 Guanghui Xi1 Chen Zhou1 Haisong Xu3* Xi Yang1* Dongxu Ke1,2*
Show Less
1 Novaprint Therapeutics Suzhou Co., Ltd., Suzhou, Jiangsu, China
2 Department of Biomedical Engineering, Nanjing University Suzhou Campus, Suzhou, Jiangsu, China
3 Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Received: 17 September 2025 | Accepted: 3 November 2025 | Published online: 3 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The regeneration of large-segmental bone defects remains a significant clinical challenge due to their complex microenvironments. Three-dimensional (3D)-printed polycaprolactone (PCL) scaffolds offer a potential solution but exhibit limited osteoinductive capacity. In this study, 3D-printed PCL/β-tricalcium phosphate (TCP) composite scaffolds were pretreated with NaOH, followed by functionalization with bioactive collagen and β‑TCP. These modifications markedly improved the scaffolds’ hydrophilicity without compromising mechanical integrity. In vitro studies with MC3T3-E1 cells demonstrated that the CS@TCP scaffolds significantly enhanced early osteogenic differentiation compared to C, CS, and CS@COL scaffolds, as indicated by the alkaline phosphatase activity assay. In vivo evaluation using three different rabbit cranial defect models revealed superior new bone formation in the partial-thickness cranial defect (PTD) groups compared to the full-thickness cranial defect (FTD) and intact cranial bone onlay (Onlay) groups, potentially due to the increased vascularization and abundant endogenous stem cells in the PTD groups. Despite reduced new bone formation in the Onlay group, its bone integration advantages may be advantageous for cosmetic surgery applications. This study investigated how β‑TCP surface modification interacts with clinical application-specific microenvironments to maximize the regenerative potential of 3D-printed scaffolds, providing crucial guidance for scaffold design in effective bone defect repair across various clinical scenarios.

 

Graphical abstract
Keywords
3D-printed scaffolds
In vitro proliferation and differentiation
Multiple animal defect models
Surface modification
Funding
The study was funded by the Natural Science Foundation of Jiangsu Province (BK20210117).
Conflict of interest
Yulin Jiang, Guanghui Xi, Chen Zhou, Xi Yang, and Dongxu Ke are employees of Novaprint Therapeutics Suzhou Co., Ltd during this study but had no involvement in activities posing a conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum. 2016;46(3):259-260. doi:10.1016/j.semarthrit.2016.07.013
  2. Ong KL, Mowat FS, Chan N, et al. Economic burden of revision hip and knee arthroplasty in Medicare enrollees. Clin Orthop Relat Res. 2006;446:22-28. doi:10.1097/01.blo.0000214439.95268.59
  3. Huang D, Li Z, Li G, et al. Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering. Mater Today Bio. 2025;32:101664. doi:10.1016/j.mtbio.2025.101664
  4. Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In vivo bone tissue engineering strategies: advances and prospects. Polymers (Basel). 2022;14(15):3222. doi:10.3390/polym14153222
  5. Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett. 2024;14(3):451-464. doi:10.1007/s13534-024-00350-x
  6. Wen Y, Xun S, Haoye M, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690-1698. doi:10.1039/c7bm00315c
  7. Meng F, Yin Z, Ren X, Geng Z, Su J. Construction of local drug delivery system on titanium-based implants to improve osseointegration. Pharmaceutics. 2022;14(5):1069. doi:10.3390/pharmaceutics14051069
  8. Sun S, Liu H, Hu Y, et al. Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioact Mater. 2023;20:166-178. doi:10.1016/j.bioactmat.2022.05.016
  9. Wang Q, Ye W, Ma Z, et al. 3D printed PCL/β-TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores. Mater Sci Eng C Mater Biol Appl. 2021;127:112197. doi:10.1016/j.msec.2021.112197
  10. Weingärtner L, Latorre SH, Velten D, et al. The effect of collagen-I coatings of 3D printed PCL scaffolds for bone replacement on three different cell types. Appl Sci. 2021;11(22):11063. doi:10.3390/app112211063
  11. Jiang Y, Zhou C, Yang X, Ke D. 3D printed bioactive coated scaffolds boost osteogenesis and angiogenesis via the regulation of scaffold microstructure. Biofabrication. 2025;17(3):1-18. doi:10.1088/1758-5090/addc9c
  12. Furtado ASA, Cunha MHS, Sousa LMR, et al. 3D-printed PCL-based scaffolds with high nanosized synthetic smectic clay content: fabrication, mechanical properties, and biological evaluation for bone tissue engineering. Int J Nanomedicine. 2025;20:53-69. doi:10.2147/IJN.S497539
  13. Hao S, Wang M, Yin Z, et al. Microenvironment-targeted strategy steers advanced bone regeneration. Materials Today Bio. 2023;22:100741. doi:10.1016/j.mtbio.2023.100741
  14. Zhu G, Zhang T, Chen M, et al. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact Mater. 2021;6(11):4110-4140. doi:10.1016/j.bioactmat.2021.03.043
  15. Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12(9):2202766. doi:10.1002/adhm.202202766
  16. Riau AK, Venkatraman SS, Mehta JS. Biomimetic vs. direct approach to deposit hydroxyapatite on the surface of low melting point polymers for tissue engineering. Nanomaterials. 2020;10(11):2162. doi:10.3390/nano10112162
  17. Shen HY, Xing F, Shang SY, et al. Biomimetic mineralized 3D-printed polycaprolactone scaffold induced by self-adaptive nanotopology to accelerate bone regeneration. ACS Appl Mater Interfaces. 2024;16(15):18658-18670. doi:10.1021/acsami.4c02636
  18. Heo SY, Ko SC, Oh GW, et al. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater. 2019;107(6):1937-1944. doi:10.1002/jbm.b.34286
  19. Tawfick S, De Volder M, Copic D, et al. Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties. Adv Mater. 2012;24(13): 1628-1674. doi:10.1002/adma.201103796
  20. Kocagöz M, Tıhmınlıoğlu F, Aldemir Dikici B. Surface modification via alkali treatment and its effect on the physicochemical and biological properties of emulsion templated scaffolds. Polymer. 2025;330:128475. doi:10.1016/j.polymer.2025.128475
  21. Sherman VR, Yang W, Meyers MA. The materials science of collagen. J Mech Behav Biomed Mater. 2015;52:22-50. doi:10.1016/j.jmbbm.2015.05.023
  22. Gresita A, Raja I, Petcu E, Hadjiargyrou M. Collagen-coated hyperelastic bone promotes osteoblast adhesion and proliferation. Materials (Basel). 2023;16(21):6996. doi:10.3390/ma16216996
  23. Vandrovcová M, Douglas T, Hauk D, et al. Influence of collagen and chondroitin sulfate (CS) coatings on poly- (lactide-co-glycolide) (PLGA) on MG 63 osteoblast-like cells. Physiol Res. 2011;60(5):797-813. doi:10.33549/physiolres.931994
  24. Valdoz JC, Johnson BC, Jacobs DJ, et al. The ECM: to scaffold, or not to scaffold, that is the question. Int J Mol Sci. 2021;22(23):12690. doi:10.3390/ijms222312690
  25. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4. doi:10.1186/s40824-018-0149-3
  26. Boda R, Lázár I, Keczánné-Üveges A, et al. β-Tricalcium phosphate-modified aerogel containing PVA/Chitosan hybrid nanospun scaffolds for bone regeneration. Int J Mol Sci. 2023;24(8):7562. doi:10.3390/ijms24087562
  27. Silva-Barroso AS, Cabral CSD, Ferreira P, Moreira AF, Correia IJ. Lignin-enriched tricalcium phosphate/sodium alginate 3D scaffolds for application in bone tissue regeneration. Int J Biol Macromol. 2023;239:124258. doi:10.1016/j.ijbiomac.2023.124258
  28. Lu Q, Diao J, Wang Y, et al. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioact Mater. 2023;26:413-424. doi:10.1016/j.bioactmat.2023.02.025
  29. Zheng J, Nozaki K, Hashimoto K, Yamashita K, Wakabayashi N. Exploring the biological impact of β-TCP surface polarization on osteoblast and osteoclast activity. Int J Mol Sci. 2024;26(1):141. doi:10.3390/ijms26010141
  30. Lu J, Yu H, Chen C. Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 2018;8(4):2015-2033. doi:10.1039/c7ra11278e
  31. Deng W, Yang X, Yu J, Omari-Siaw E, Xu X. Recent advances of physiochemical cues on surfaces for directing cell fates. Colloids Surf B Biointerfaces. 2025;250:114550. doi:10.1016/j.colsurfb.2025.114550
  32. Gupta D, Singh AK, Kar N, Dravid A, Bellare J. Modelling and optimization of NaOH-etched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength. Mater Sci Eng C. 2019;98:602-611. doi:10.1016/j.msec.2018.12.084
  33. Jiang L, Jin S, Geng S, et al. Maintenance and restoration effect of the surface hydrophilicity of pure titanium by sodium hydroxide treatment and its effect on the bioactivity of osteoblasts. Coatings. 2019;9(4):222. doi:10.3390/coatings9040222
  34. Witek L, Shi Y, Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: an in vitro study. J Adv Ceram. 2017;6(2):157-164. doi:10.1007/s40145-017-0228-2
  35. Luo F, Yang Y, Li D, et al. Low-temperature plasma effect-induced enhancement of osteogenic activity in calcium phosphate ceramics. Acta Biomater. 2025;200:667-685. doi:10.1016/j.actbio.2025.04.048
  36. González Díaz EC, Shih YRV, Nakasaki M, Liu M, Varghese S. Mineralized biomaterials mediated repair of bone defects through endogenous cells. Tissue Eng Part A. 2018;24(13–14):1148-1156. doi:10.1089/ten.tea.2017.0297
  37. Weng Y, Jian Y, Huang W, et al. Alkaline earth metals for osteogenic scaffolds: from mechanisms to applications. J Biomed Mater Res B Appl Biomater. 2023;111(7):1447-1474. doi:10.1002/jbm.b.35246
  38. Wang K, Jiang K, Luo C, et al. An osteoimmunomodulatory Ca2+/Zn2+-doped scaffold promotes M2 macrophage polarization via the src-mediated chemoking signaling pathway to enhance osteoinduction. Compos Part B: Eng. 2024;284:111653. doi:10.1016/j.compositesb.2024.111653
  39. Ghiacci G, Graiani G, Ravanetti F, et al. “Over-inlay” block graft and differential morphometry: a novel block graft model to study bone regeneration and host-to-graft interfaces in rats. J Periodontal Implant Sci. 2016;46(4):220-233. doi:10.5051/jpis.2016.46.4.220
  40. Selvaraj V, Sekaran S, Dhanasekaran A, Warrier S. Type 1 collagen: synthesis, structure and key functions in bone mineralization. Differentiation. 2024;136:100757. doi:10.1016/j.diff.2024.100757
  41. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;7(208):108-113.
  42. Sosakul T, Tuchpramuk P, Suvannapruk W, et al. Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible. J Periodontal Implant Sci. 2020;50(2):106-120. doi:10.5051/jpis.2020.50.2.106
  43. Canto FRT, Garcia SB, Issa JPM, et al. Influence of decortication of the recipient graft bed on graft integration and tissue neoformation in the graft-recipient bed interface. Eur Spine J. 2008;17(5):706-714. doi:10.1007/s00586-008-0642-9
  44. Wu S, Luo S, Cen Z, et al. All-in-one porous membrane enables full protection in guided bone regeneration. Nat Commun. 2024;15(1):119. doi:10.1038/s41467-023-43476-9
  45. Ku JK, Lee KG, Ghim MS, et al. Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel. Biomed Mater. 2021;16(5):055004. doi:10.1088/1748-605X/ac0f47

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing