AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025400410
RESEARCH ARTICLE

Generative design of patient-specific bone plates for Schatzker type VI tibial plateau fractures

Weiting Xu1 Xiaoqiang Zheng2 Yan Xu1 Rixiang Quan1 Yi Huang1 Weiqiang Li3 Cian Vyas4 Paulo Bartolo4,5 Di Wang2 Fengyuan Liu1∗
Show Less
1 School of Electrical, Electronic, and Mechanical Engineering, University of Bristol, Bristol, United Kingdom
2 School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, China
3 Shenzhen Jinshi 3D Printing Technology Co., Ltd., Shenzhen, Guangdong, China
4 Singapore Centre for 3D Printing, Nanyang Technological University, Singapore
5 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
Received: 2 October 2025 | Accepted: 4 November 2025 | Published online: 4 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Schatzker type VI fractures are complex tibial plateau injuries characterized by multiple fracture lines and complete separation between the plateau and the shaft. These features reduce the effectiveness of standard commercial fixation plates, which often fail to conform to the irregular anatomy. Patient-specific plates, tailored to individual bone geometry, offer improved anatomical fit and fixation. This study aims to compare two patient-specific designs, based on 3D reconstruction (3DP) and generative design (GDP), with a conventional commercial plate (CP). To enable rapid and costeffective evaluation, all designs were first prototyped in poly(lactic acid) using fused deposition modeling. In bending tests, both 3DP and GDP were significantly stiffer than CP, with stiffness increases of 23.8% and 10.0%, respectively. In biomechanical compression tests, both patient-specific designs exhibited approximately 15% lower displacement than CP under a 750 N load. Based on these results, the GDP design was selected for metal additive manufacturing using laser powder bed fusion. The metal printed GDP was tested under a compressive load of 750 N and showed a mean displacement of 2.11 ± 0.01 mm, remaining below the commonly accepted clinical threshold of 3 mm. This work highlights the potential of combining PLA-based prototyping with targeted metal validation to support surgical decision-making and streamline implant development.

Graphical abstract
Keywords
3D printing
Generative design
Patient-specific bone plate
Schatzker type VI fractures
Funding
This work was supported by the China Scholarship Council (Project No. 202208060391) and by the United Kingdom Research and Innovation Oversea Travel Grant (UKRI2858).
Conflict of interest
Paulo Bartolo and Fengyuan Liu are members of the Editorial Board of this journal but were not involved, directly or indirectly, in the editorial or peer-review process for this article. The other authors declare that they have no competing interests.
References
  1. Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res. 1979;(138):94-104.
  2. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium—2018. J Orthop Trauma. 2018;32:S1. doi: 10.1097/BOT.0000000000001063
  3. Wennergren D, Bergdahl C, Ekelund J, Juto H, Sundfeldt M, Möller M. Epidemiology and incidence of tibia fractures in the Swedish Fracture Register. Injury. 2018;49(11):2068-2074. doi: 10.1016/j.injury.2018.09.008
  4. Tarazona D, Karadsheh M. Tibial Plateau Fractures - Trauma - Orthobullets. May 2024. https://www.orthobullets.com/trauma/1044/tibial-plateau-fractures?hideLeftMenu=true. Accessed October 22, 2024.
  5. Reátiga Aguilar J, Rios X, González Edery E, De La Rosa A, Arzuza Ortega L. Epidemiological characterization of tibial plateau fractures. J Orthop Surg Res. 2022;17(1):106. doi: 10.1186/s13018-022-02988-8
  6. Bormann M, Neidlein C, Gassner C, et al. Changing patterns in the epidemiology of tibial plateau fractures: a 10-year review at a level-I trauma center. Eur J Trauma Emerg Surg. 2023;49(1):401-409. doi: 10.1007/s00068-022-02076-w
  7. Lowe J. Tibia (Shinbone) Shaft Fractures - OrthoInfo - AAOS. 2018. https://www.orthoinfo.org/en/diseases--conditions/tibia-shinbone-shaft-fractures/. Accessed November 5, 2023.
  8. Kommuru D, Singh S, Shetty S, Kale S, Srivastava A. Treatment of proximal tibia fractures with locking compression plate: a prospective study. Int J Res Orthop. 2022;9(1):47-52. doi: 10.18203/issn.2455-4510.IntJResOrthop20223438
  9. Egol KA, Tejwani NC, Capla EL, Wolinsky PL, Koval KJ. Staged management of high-energy proximal tibia fractures (OTA Types 41): the results of a prospective, standardized protocol. J Orthop Trauma. 2005;19(7):448. doi: 10.1097/01.bot.0000171881.11205.80
  10. Wheeless CR. Type IV (Medial) Tibial Plateau Fractures. Wheeless’ Textbook of Orthopaedics. July 22, 2020. https://www.wheelessonline.com/bones/type-iv-medial-tibial-plateau-fractures/. Accessed June 20, 2024
  11. Hansen M, Pesántez R. Treatment of Complete Articular Fracture, Simple Articular, Simple Metaphyseal. 2024. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/proximal-tibia/complete-articular-fracture-simple-articular-simple-metaphyseal. Accessed November 21, 2024.
  12. Hansen M, Pesántez R. ORIF - Plates Without Angular Stability for Complete Articular Fracture, Simple Articular, Simple Metaphyseal. 2024. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/proximal-tibia/complete-articular-fracture-simple-articular-simple-metaphyseal/orif-plates-without-angular-stability. Accessed June 20, 2024.
  13. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38:S3-S6. doi: 10.1016/S0020-1383(08)70003-2
  14. Brouwer de Koning SG, de Winter N, Moosabeiki V, et al. Design considerations for patient-specific bone fixation plates: a literature review. Med Biol Eng Comput. 2023;61(12):3233-3252. doi: 10.1007/s11517-023-02900-4
  15. Dobbe JGG, Peymani A, Roos HAL, Beerens M, Streekstra GJ, Strackee SD. Patient-specific plate for navigation and fixation of the distal radius: a case series. Int J CARS. 2021;16(3):515-524. doi: 10.1007/s11548-021-02320-5
  16. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;(274):124-134.
  17. Al-Tamimi AA. Topology optimization of patient-specific custom-fit distal tibia plate: a spiral distal tibia bone fracture. Appl Sci. 2022;12(20):10569. doi: 10.3390/app122010569
  18. Xu W, Nassehi A, Liu F. Metal additive manufacturing of orthopedic bone plates: an overview. MSAM. 2023;2(4):2113. doi: 10.36922/msam.2113
  19. Javaid M, Haleem A. Current status and challenges of additive manufacturing in orthopaedics: an overview. J Clin Orthop Trauma. 2019;10(2):380-386. doi: 10.1016/j.jcot.2018.05.008
  20. Teo AQA, Ng DQK, Lee P, O’Neill GK. Point-of-care 3D printing: a feasibility study of using 3D printing for orthopaedic trauma. Injury. 2021;52(11):3286-3292. doi: 10.1016/j.injury.2021.02.041
  21. Tilton M, Lewis GS, Bok Wee H, Armstrong A, Hast MW, Manogharan G. Additive manufacturing of fracture fixation implants: design, material characterization, biomechanical modeling and experimentation. Addit Manuf. 2020;33:101137. doi: 10.1016/j.addma.2020.101137
  22. Jo WL, Chung YG, Shin SH, Lim J hak, Kim MS, Yoon DK. Structural analysis of customized 3D printed plate for pelvic bone by comparison with conventional plate based on bending process. Sci Rep. 2023;13(1):10542. doi: 10.1038/s41598-023-37433-1
  23. Wang C, Chen Y, Wang L, et al. Three-dimensional printing of patient-specific plates for the treatment of acetabular fractures involving quadrilateral plate disruption. BMC Musculoskelet Disord. 2020;21(1):451. doi: 10.1186/s12891-020-03370-7
  24. Briard T, Segonds F, Zamariola N. G-DfAM: a methodological proposal of generative design for additive manufacturing in the automotive industry. Int J Interact Des Manuf. 2020;14(3):875-886. doi: 10.1007/s12008-020-00669-6
  25. Baumgartner D, Schramel JP, Kau S, et al. 3D printed plates based on generative design biomechanically outperform manual digital fitting and conventional systems printed in photopolymers in bridging mandibular bone defects of critical size in dogs. Front Vet Sci. 2023;10:1165689. https://www. f ront i e rs i n . org/ar t i cl e s / 1 0 . 3 3 8 9 / fvets.2023.1165689. Accessed November 30, 2023
  26. Kanagalingam S, Dalton C, Champneys P, et al. Detailed design for additive manufacturing and post processing of generatively designed high tibial osteotomy fixation plates. Prog Addit Manuf. 2023;8(3):409-426. doi: 10.1007/s40964-022-00342-2
  27. Cheng M, Nayak A, Leung YY. A semi-automated design workflow for patient-specific implants in orthognathic surgery using generative design. Int J Oral Maxillofac Surg. 2025;54(12):1195-1200. doi: 10.1016/j.ijom.2025.03.011
  28. Dewey MJ, Chang RSH, Nosatov AV, et al. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. Acta Biomater. 2023;172:249-259. doi: 10.1016/j.actbio.2023.10.005
  29. Alvarado-Moreno C, Beltrán-Fernández JA, González Rebattú M, Hermida Ochoa JC. Generative design for a case of tumoral resection, reconstruction of the mandibular continuity. In: Öchsner A, Altenbach H, eds. Engineering Design Applications VII. Switzerland: Springer Nature; 2025:235-241. doi: 10.1007/978-3-031-84346-4_17
  30. Keast M, Bonacci J, Fox A. Geometric variation of the human tibia-fibula: a public dataset of tibia-fibula surface meshes and statistical shape model. PeerJ. 2023;11:e14708. doi: 10.7717/peerj.14708
  31. Kote V, Pant A, Templin T, Frazer L, Eliason T, Nicolella DP. Personalized tibial strain prediction: feasibility of a novel approach using markerless motion capture and statistical shape models. J Biomech Eng. 2025;147(12):121005. doi: 10.1115/1.4069774
  32. Cai X, Wu Y, Huang J, Wang L, Xu Y, Lu S. Application of statistical shape models in orthopedics: a narrative review. Intell Med. 2024;4(4):249-255. doi: 10.1016/j.imed.2024.05.001
  33. van Veldhuizen WA, van der Wel H, Kuipers HY, et al. Development of a statistical shape model and assessment of anatomical shape variations in the hemipelvis. J Clin Med. 2023;12(11):3767. doi: 10.3390/jcm12113767
  34. Thiart M, Ikram A, Lamberts RP. How well can step-off and gap distances be reduced when treating intra-articular distal radius fractures with fragment specific fixation when using fluoroscopy. Orthop Traumatol Surg Res. 2016;102(8):1001-1004. doi: 10.1016/j.otsr.2016.09.005
  35. Albayrak K, Misir A, Alpay Y, Buyuk AF, Akpinar E, Gursu SS. Effect of fracture level on the residual fracture gap during tibial intramedullary nailing for tibial shaft fractures. SICOT J. 2023;9:26. doi: 10.1051/sicotj/2023023
  36. Meeson R, Moazen M, Sanghani-Kerai A, Osagie-Clouard L, Coathup M, Blunn G. The influence of gap size on the development of fracture union with a micro external fixator. J Mech Behav Biomed Mater. 2019;99:161-168. doi: 10.1016/j.jmbbm.2019.07.015
  37. Kim TH, Heo YM, Kim KK, et al. Fracture gap and working length are important actionable factors affecting bone union after minimally invasive plate osteosynthesis for the treatment of simple diaphyseal or distal metaphyseal tibia fractures. Orthop Traumatol Surg Res. 2024;110(2):103770. doi: 10.1016/j.otsr.2023.103770
  38. Liao B, Sun J, Xu C, et al. A mechanical study of personalised Ti6Al4V tibial fracture fixation plates with grooved surface by finite element analysis. Biosurf Biotribol. 2021;7(3): 142-153. doi: 10.1049/bsb2.12019
  39. DePuy Synthes. LCPTM Proximal Tibia Plate (3.5 and 4.5 mm) | DePuy Synthes. J&J MedTech. 2025. https://www.jnjmedtech.com/en-US/product/lcp-proximal-tibia-plate. Accessed March 12, 2025.
  40. Assink N, Oldhoff MGE, Ten Duis K, et al. Development of patient-specific osteosynthesis including 3D-printed drilling guides for medial tibial plateau fracture surgery. Eur J Trauma Emerg Surg. 2024;50(1):11-19. doi: 10.1007/s00068-023-02313-w
  41. Steffen C, Sellenschloh K, Willsch M, et al. Patient-specific miniplates versus patient-specific reconstruction plate: a biomechanical comparison with 3D-printed plates in mandibular reconstruction. J Mech Behav Biomed Mater. 2023;140:105742. doi: 10.1016/j.jmbbm.2023.105742
  42. Ren W, Zhang W, Jiang S, et al. The study of biomechanics and clinical anatomy on a novel plate designed for posterolateral tibial plateau fractures via anterolateral approach. Front Bioeng Biotechnol. 2022;10. doi: 10.3389/fbioe.2022.818610
  43. Le Quang H, Schmoelz W, Lindtner RA, Schwendinger P, Blauth M, Krappinger D. Biomechanical comparison of fixation techniques for transverse acetabular fractures – single-leg stance vs. sit-to-stand loading. Injury. 2020;51(10):2158-2164. doi: 10.1016/j.injury.2020.07.008
  44. ASTM International. ASTM F382-17. Standard specification and test method for metallic bone plates. West Conshohocken, PA: ASTM International; 2017 doi: 10.1520/F0382-17
  45. Feng W, Fu L, Liu J, Qi X, Li D, Yang C. Biomechanical evaluation of various fixation methods for proximal extra-articular tibial fractures. J Surg Res. 2012;178(2):722-727. doi: 10.1016/j.jss.2012.04.014
  46. Teo AQA, Ng DQK, Ramruttun AK, O’Neill GK. Standard versus customised locking plates for fixation of Schatzker II tibial plateau fractures. Injury. 2022;53(2):676-682. doi: 10.1016/j.injury.2021.11.051
  47. Samsami S, Pätzold R, Neuy T, et al. Biomechanical comparison of 2 double plating methods in a coronal fracture model of bicondylar tibial plateau fractures. J Orthop Trauma. 2022;36(4):e129. doi: 10.1097/BOT.0000000000002257
  48. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
  49. Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: a review. Mater Des. 2019;164:107552. doi: 10.1016/j.matdes.2018.107552
  50. Vancleef S, Wesseling M, Duflou JR, Nijs S, Jonkers I, Vander Sloten J. Thin patient-specific clavicle fracture fixation plates can mechanically outperform commercial plates: an in silico approach. J Orthop Res. 2022;40(7):1695-1706. doi: 10.1002/jor.25178
  51. Barbieri L, Muzzupappa M. Performance-driven engineering design approaches based on generative design and topology optimization tools: a comparative study. Appl Sci. 2022;12(4):2106. doi: 10.3390/app12042106
  52. Frazer J. Creative design and the generative evolutionary paradigm. In: Bentley PJ, Corne DW, eds. Creative Evolutionary Systems. San Francisco, CA: Morgan Kaufmann; 2002:253-274 doi: 10.1016/B978-155860673-9/50047-1
  53. Tel A, Kornfellner E, Moscato F, et al. Optimizing efficiency in the creation of patient-specific plates through field-driven generative design in maxillofacial surgery. Sci Rep. 2023;13(1):12082. doi: 10.1038/s41598-023-39327-8
  54. Krish S. A practical generative design method. Comput Aided Des. 2011;43(1):88-100. doi: 10.1016/j.cad.2010.09.009
  55. Watson M, Leary M, Brandt M. Generative design of truss systems by the integration of topology and shape optimisation. Int J Adv Manuf Technol. 2022;118(3):1165-1182. doi: 10.1007/s00170-021-07943-1
  56. Wang Z, Zhang Y, Bernard A. A constructive solid geometry-based generative design method for additive manufacturing. Addit Manuf. 2021;41:101952. doi: 10.1016/j.addma.2021.101952
  57. Mehboob A, Barsoum I, Mehboob H, Abu Al-Rub RK, Ouldyerou A. Topology optimization and biomechanical evaluation of bone plates for tibial bone fractures considering bone healing. Virtual Phys Prototyp. 2024;19(1):e2391475. doi: 10.1080/17452759.2024.2391475
  58. Tits A, Ruffoni D. Joining soft tissues to bone: insights from modeling and simulations. Bone Rep. 2020;14:100742. doi: 10.1016/j.bonr.2020.100742
  59. Roland M, Diebels S, Wickert K, Pohlemann T, Ganse B. Finite element simulations of smart fracture plates capable of cyclic shortening and lengthening: which stroke for which fracture? Front Bioeng Biotechnol. 2024;12:1420047. doi: 10.3389/fbioe.2024.1420047
  60. Xu S, Ding X, Xiong M, Duan P, Zhang H, Li Z. The optimal design of 3D-printed lattice bone plate by considering fracture healing mechanism. Int J Numer Methods Biomed Eng. 2023;39(3):e3682. doi: 10.1002/cnm.3682
  61. Moosabeiki V, de Winter N, Cruz Saldivar M, et al. 3D printed patient-specific fixation plates for the treatment of slipped capital femoral epiphysis: topology optimization vs. conventional design. J Mech Behav Biomed Mater. 2023;148:106173. doi: 10.1016/j.jmbbm.2023.106173
  62. Zong H, Lou B, Yuan H, et al. Integrating kinematic and dynamic factors with generative design for high-performance additive manufacturing structures. Virtual Phys Prototyp. 2025;20(1):e2501383. doi: 10.1080/17452759.2025.2501383
  63. Attar H, Ehtemam-Haghighi S, Kent D, Dargusch MS. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf. 2018;133:85-102. doi: 10.1016/j.ijmachtools.2018.06.003

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing