Generative design of patient-specific bone plates for Schatzker type VI tibial plateau fractures
Schatzker type VI fractures are complex tibial plateau injuries characterized by multiple fracture lines and complete separation between the plateau and the shaft. These features reduce the effectiveness of standard commercial fixation plates, which often fail to conform to the irregular anatomy. Patient-specific plates, tailored to individual bone geometry, offer improved anatomical fit and fixation. This study aims to compare two patient-specific designs, based on 3D reconstruction (3DP) and generative design (GDP), with a conventional commercial plate (CP). To enable rapid and costeffective evaluation, all designs were first prototyped in poly(lactic acid) using fused deposition modeling. In bending tests, both 3DP and GDP were significantly stiffer than CP, with stiffness increases of 23.8% and 10.0%, respectively. In biomechanical compression tests, both patient-specific designs exhibited approximately 15% lower displacement than CP under a 750 N load. Based on these results, the GDP design was selected for metal additive manufacturing using laser powder bed fusion. The metal printed GDP was tested under a compressive load of 750 N and showed a mean displacement of 2.11 ± 0.01 mm, remaining below the commonly accepted clinical threshold of 3 mm. This work highlights the potential of combining PLA-based prototyping with targeted metal validation to support surgical decision-making and streamline implant development.

- Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res. 1979;(138):94-104.
- Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium—2018. J Orthop Trauma. 2018;32:S1. doi: 10.1097/BOT.0000000000001063
- Wennergren D, Bergdahl C, Ekelund J, Juto H, Sundfeldt M, Möller M. Epidemiology and incidence of tibia fractures in the Swedish Fracture Register. Injury. 2018;49(11):2068-2074. doi: 10.1016/j.injury.2018.09.008
- Tarazona D, Karadsheh M. Tibial Plateau Fractures - Trauma - Orthobullets. May 2024. https://www.orthobullets.com/trauma/1044/tibial-plateau-fractures?hideLeftMenu=true. Accessed October 22, 2024.
- Reátiga Aguilar J, Rios X, González Edery E, De La Rosa A, Arzuza Ortega L. Epidemiological characterization of tibial plateau fractures. J Orthop Surg Res. 2022;17(1):106. doi: 10.1186/s13018-022-02988-8
- Bormann M, Neidlein C, Gassner C, et al. Changing patterns in the epidemiology of tibial plateau fractures: a 10-year review at a level-I trauma center. Eur J Trauma Emerg Surg. 2023;49(1):401-409. doi: 10.1007/s00068-022-02076-w
- Lowe J. Tibia (Shinbone) Shaft Fractures - OrthoInfo - AAOS. 2018. https://www.orthoinfo.org/en/diseases--conditions/tibia-shinbone-shaft-fractures/. Accessed November 5, 2023.
- Kommuru D, Singh S, Shetty S, Kale S, Srivastava A. Treatment of proximal tibia fractures with locking compression plate: a prospective study. Int J Res Orthop. 2022;9(1):47-52. doi: 10.18203/issn.2455-4510.IntJResOrthop20223438
- Egol KA, Tejwani NC, Capla EL, Wolinsky PL, Koval KJ. Staged management of high-energy proximal tibia fractures (OTA Types 41): the results of a prospective, standardized protocol. J Orthop Trauma. 2005;19(7):448. doi: 10.1097/01.bot.0000171881.11205.80
- Wheeless CR. Type IV (Medial) Tibial Plateau Fractures. Wheeless’ Textbook of Orthopaedics. July 22, 2020. https://www.wheelessonline.com/bones/type-iv-medial-tibial-plateau-fractures/. Accessed June 20, 2024
- Hansen M, Pesántez R. Treatment of Complete Articular Fracture, Simple Articular, Simple Metaphyseal. 2024. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/proximal-tibia/complete-articular-fracture-simple-articular-simple-metaphyseal. Accessed November 21, 2024.
- Hansen M, Pesántez R. ORIF - Plates Without Angular Stability for Complete Articular Fracture, Simple Articular, Simple Metaphyseal. 2024. https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/proximal-tibia/complete-articular-fracture-simple-articular-simple-metaphyseal/orif-plates-without-angular-stability. Accessed June 20, 2024.
- Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38:S3-S6. doi: 10.1016/S0020-1383(08)70003-2
- Brouwer de Koning SG, de Winter N, Moosabeiki V, et al. Design considerations for patient-specific bone fixation plates: a literature review. Med Biol Eng Comput. 2023;61(12):3233-3252. doi: 10.1007/s11517-023-02900-4
- Dobbe JGG, Peymani A, Roos HAL, Beerens M, Streekstra GJ, Strackee SD. Patient-specific plate for navigation and fixation of the distal radius: a case series. Int J CARS. 2021;16(3):515-524. doi: 10.1007/s11548-021-02320-5
- Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;(274):124-134.
- Al-Tamimi AA. Topology optimization of patient-specific custom-fit distal tibia plate: a spiral distal tibia bone fracture. Appl Sci. 2022;12(20):10569. doi: 10.3390/app122010569
- Xu W, Nassehi A, Liu F. Metal additive manufacturing of orthopedic bone plates: an overview. MSAM. 2023;2(4):2113. doi: 10.36922/msam.2113
- Javaid M, Haleem A. Current status and challenges of additive manufacturing in orthopaedics: an overview. J Clin Orthop Trauma. 2019;10(2):380-386. doi: 10.1016/j.jcot.2018.05.008
- Teo AQA, Ng DQK, Lee P, O’Neill GK. Point-of-care 3D printing: a feasibility study of using 3D printing for orthopaedic trauma. Injury. 2021;52(11):3286-3292. doi: 10.1016/j.injury.2021.02.041
- Tilton M, Lewis GS, Bok Wee H, Armstrong A, Hast MW, Manogharan G. Additive manufacturing of fracture fixation implants: design, material characterization, biomechanical modeling and experimentation. Addit Manuf. 2020;33:101137. doi: 10.1016/j.addma.2020.101137
- Jo WL, Chung YG, Shin SH, Lim J hak, Kim MS, Yoon DK. Structural analysis of customized 3D printed plate for pelvic bone by comparison with conventional plate based on bending process. Sci Rep. 2023;13(1):10542. doi: 10.1038/s41598-023-37433-1
- Wang C, Chen Y, Wang L, et al. Three-dimensional printing of patient-specific plates for the treatment of acetabular fractures involving quadrilateral plate disruption. BMC Musculoskelet Disord. 2020;21(1):451. doi: 10.1186/s12891-020-03370-7
- Briard T, Segonds F, Zamariola N. G-DfAM: a methodological proposal of generative design for additive manufacturing in the automotive industry. Int J Interact Des Manuf. 2020;14(3):875-886. doi: 10.1007/s12008-020-00669-6
- Baumgartner D, Schramel JP, Kau S, et al. 3D printed plates based on generative design biomechanically outperform manual digital fitting and conventional systems printed in photopolymers in bridging mandibular bone defects of critical size in dogs. Front Vet Sci. 2023;10:1165689. https://www. f ront i e rs i n . org/ar t i cl e s / 1 0 . 3 3 8 9 / fvets.2023.1165689. Accessed November 30, 2023
- Kanagalingam S, Dalton C, Champneys P, et al. Detailed design for additive manufacturing and post processing of generatively designed high tibial osteotomy fixation plates. Prog Addit Manuf. 2023;8(3):409-426. doi: 10.1007/s40964-022-00342-2
- Cheng M, Nayak A, Leung YY. A semi-automated design workflow for patient-specific implants in orthognathic surgery using generative design. Int J Oral Maxillofac Surg. 2025;54(12):1195-1200. doi: 10.1016/j.ijom.2025.03.011
- Dewey MJ, Chang RSH, Nosatov AV, et al. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. Acta Biomater. 2023;172:249-259. doi: 10.1016/j.actbio.2023.10.005
- Alvarado-Moreno C, Beltrán-Fernández JA, González Rebattú M, Hermida Ochoa JC. Generative design for a case of tumoral resection, reconstruction of the mandibular continuity. In: Öchsner A, Altenbach H, eds. Engineering Design Applications VII. Switzerland: Springer Nature; 2025:235-241. doi: 10.1007/978-3-031-84346-4_17
- Keast M, Bonacci J, Fox A. Geometric variation of the human tibia-fibula: a public dataset of tibia-fibula surface meshes and statistical shape model. PeerJ. 2023;11:e14708. doi: 10.7717/peerj.14708
- Kote V, Pant A, Templin T, Frazer L, Eliason T, Nicolella DP. Personalized tibial strain prediction: feasibility of a novel approach using markerless motion capture and statistical shape models. J Biomech Eng. 2025;147(12):121005. doi: 10.1115/1.4069774
- Cai X, Wu Y, Huang J, Wang L, Xu Y, Lu S. Application of statistical shape models in orthopedics: a narrative review. Intell Med. 2024;4(4):249-255. doi: 10.1016/j.imed.2024.05.001
- van Veldhuizen WA, van der Wel H, Kuipers HY, et al. Development of a statistical shape model and assessment of anatomical shape variations in the hemipelvis. J Clin Med. 2023;12(11):3767. doi: 10.3390/jcm12113767
- Thiart M, Ikram A, Lamberts RP. How well can step-off and gap distances be reduced when treating intra-articular distal radius fractures with fragment specific fixation when using fluoroscopy. Orthop Traumatol Surg Res. 2016;102(8):1001-1004. doi: 10.1016/j.otsr.2016.09.005
- Albayrak K, Misir A, Alpay Y, Buyuk AF, Akpinar E, Gursu SS. Effect of fracture level on the residual fracture gap during tibial intramedullary nailing for tibial shaft fractures. SICOT J. 2023;9:26. doi: 10.1051/sicotj/2023023
- Meeson R, Moazen M, Sanghani-Kerai A, Osagie-Clouard L, Coathup M, Blunn G. The influence of gap size on the development of fracture union with a micro external fixator. J Mech Behav Biomed Mater. 2019;99:161-168. doi: 10.1016/j.jmbbm.2019.07.015
- Kim TH, Heo YM, Kim KK, et al. Fracture gap and working length are important actionable factors affecting bone union after minimally invasive plate osteosynthesis for the treatment of simple diaphyseal or distal metaphyseal tibia fractures. Orthop Traumatol Surg Res. 2024;110(2):103770. doi: 10.1016/j.otsr.2023.103770
- Liao B, Sun J, Xu C, et al. A mechanical study of personalised Ti6Al4V tibial fracture fixation plates with grooved surface by finite element analysis. Biosurf Biotribol. 2021;7(3): 142-153. doi: 10.1049/bsb2.12019
- DePuy Synthes. LCPTM Proximal Tibia Plate (3.5 and 4.5 mm) | DePuy Synthes. J&J MedTech. 2025. https://www.jnjmedtech.com/en-US/product/lcp-proximal-tibia-plate. Accessed March 12, 2025.
- Assink N, Oldhoff MGE, Ten Duis K, et al. Development of patient-specific osteosynthesis including 3D-printed drilling guides for medial tibial plateau fracture surgery. Eur J Trauma Emerg Surg. 2024;50(1):11-19. doi: 10.1007/s00068-023-02313-w
- Steffen C, Sellenschloh K, Willsch M, et al. Patient-specific miniplates versus patient-specific reconstruction plate: a biomechanical comparison with 3D-printed plates in mandibular reconstruction. J Mech Behav Biomed Mater. 2023;140:105742. doi: 10.1016/j.jmbbm.2023.105742
- Ren W, Zhang W, Jiang S, et al. The study of biomechanics and clinical anatomy on a novel plate designed for posterolateral tibial plateau fractures via anterolateral approach. Front Bioeng Biotechnol. 2022;10. doi: 10.3389/fbioe.2022.818610
- Le Quang H, Schmoelz W, Lindtner RA, Schwendinger P, Blauth M, Krappinger D. Biomechanical comparison of fixation techniques for transverse acetabular fractures – single-leg stance vs. sit-to-stand loading. Injury. 2020;51(10):2158-2164. doi: 10.1016/j.injury.2020.07.008
- ASTM International. ASTM F382-17. Standard specification and test method for metallic bone plates. West Conshohocken, PA: ASTM International; 2017 doi: 10.1520/F0382-17
- Feng W, Fu L, Liu J, Qi X, Li D, Yang C. Biomechanical evaluation of various fixation methods for proximal extra-articular tibial fractures. J Surg Res. 2012;178(2):722-727. doi: 10.1016/j.jss.2012.04.014
- Teo AQA, Ng DQK, Ramruttun AK, O’Neill GK. Standard versus customised locking plates for fixation of Schatzker II tibial plateau fractures. Injury. 2022;53(2):676-682. doi: 10.1016/j.injury.2021.11.051
- Samsami S, Pätzold R, Neuy T, et al. Biomechanical comparison of 2 double plating methods in a coronal fracture model of bicondylar tibial plateau fractures. J Orthop Trauma. 2022;36(4):e129. doi: 10.1097/BOT.0000000000002257
- Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
- Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: a review. Mater Des. 2019;164:107552. doi: 10.1016/j.matdes.2018.107552
- Vancleef S, Wesseling M, Duflou JR, Nijs S, Jonkers I, Vander Sloten J. Thin patient-specific clavicle fracture fixation plates can mechanically outperform commercial plates: an in silico approach. J Orthop Res. 2022;40(7):1695-1706. doi: 10.1002/jor.25178
- Barbieri L, Muzzupappa M. Performance-driven engineering design approaches based on generative design and topology optimization tools: a comparative study. Appl Sci. 2022;12(4):2106. doi: 10.3390/app12042106
- Frazer J. Creative design and the generative evolutionary paradigm. In: Bentley PJ, Corne DW, eds. Creative Evolutionary Systems. San Francisco, CA: Morgan Kaufmann; 2002:253-274 doi: 10.1016/B978-155860673-9/50047-1
- Tel A, Kornfellner E, Moscato F, et al. Optimizing efficiency in the creation of patient-specific plates through field-driven generative design in maxillofacial surgery. Sci Rep. 2023;13(1):12082. doi: 10.1038/s41598-023-39327-8
- Krish S. A practical generative design method. Comput Aided Des. 2011;43(1):88-100. doi: 10.1016/j.cad.2010.09.009
- Watson M, Leary M, Brandt M. Generative design of truss systems by the integration of topology and shape optimisation. Int J Adv Manuf Technol. 2022;118(3):1165-1182. doi: 10.1007/s00170-021-07943-1
- Wang Z, Zhang Y, Bernard A. A constructive solid geometry-based generative design method for additive manufacturing. Addit Manuf. 2021;41:101952. doi: 10.1016/j.addma.2021.101952
- Mehboob A, Barsoum I, Mehboob H, Abu Al-Rub RK, Ouldyerou A. Topology optimization and biomechanical evaluation of bone plates for tibial bone fractures considering bone healing. Virtual Phys Prototyp. 2024;19(1):e2391475. doi: 10.1080/17452759.2024.2391475
- Tits A, Ruffoni D. Joining soft tissues to bone: insights from modeling and simulations. Bone Rep. 2020;14:100742. doi: 10.1016/j.bonr.2020.100742
- Roland M, Diebels S, Wickert K, Pohlemann T, Ganse B. Finite element simulations of smart fracture plates capable of cyclic shortening and lengthening: which stroke for which fracture? Front Bioeng Biotechnol. 2024;12:1420047. doi: 10.3389/fbioe.2024.1420047
- Xu S, Ding X, Xiong M, Duan P, Zhang H, Li Z. The optimal design of 3D-printed lattice bone plate by considering fracture healing mechanism. Int J Numer Methods Biomed Eng. 2023;39(3):e3682. doi: 10.1002/cnm.3682
- Moosabeiki V, de Winter N, Cruz Saldivar M, et al. 3D printed patient-specific fixation plates for the treatment of slipped capital femoral epiphysis: topology optimization vs. conventional design. J Mech Behav Biomed Mater. 2023;148:106173. doi: 10.1016/j.jmbbm.2023.106173
- Zong H, Lou B, Yuan H, et al. Integrating kinematic and dynamic factors with generative design for high-performance additive manufacturing structures. Virtual Phys Prototyp. 2025;20(1):e2501383. doi: 10.1080/17452759.2025.2501383
- Attar H, Ehtemam-Haghighi S, Kent D, Dargusch MS. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf. 2018;133:85-102. doi: 10.1016/j.ijmachtools.2018.06.003
