AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025420427
PERSPECTIVE ARTICLE

AI-enhanced magnetically controlled 4D printing: Reshaping the future of medical robotics

Jinrun Liu1,2† Qi Wang2† Ke Xu3,4* Zhenkun Li5,6* Juan Liu2*
Show Less
1 The Institute of Translational Medicine, Jiangxi Province Key Laboratory of Precision Cell Therapy, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
2 Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
3 Department of Hand Microsurgery and Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China
4 Ningbo Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Ningbo, Zhejiang, China
5 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, China
6 Rheobot Laboratory, Beijing Jiaotong University, Beijing, China
†These authors contributed equally to this work.
Received: 17 October 2025 | Accepted: 6 November 2025 | Published online: 6 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

As a frontier interdisciplinary breakthrough, magnetically controlled 4D printing integrates smart materials, additive manufacturing, and magnetic actuation, and is contributing considerably to healthcare practices. By introducing time as the fourth dimension, magnetic 4D-printed devices can dynamically transform their structure and function in response to physiological or external magnetic stimuli, enabling minimally invasive interventions with enhanced adaptability and precision. Integrating artificial intelligence (AI) into magnetically controlled 4D printing accelerates material discovery, optimizes design and manufacturing, and enables intelligent navigation and control in complex in vivo environments. Recent advances highlight promising applications in interventional therapy, targeted drug delivery, and tissue repair, yet challenges remain in achieving biocompatible multifunctional materials, scalable fabrication, and safe clinical translation. Looking ahead, synergistic integration of AI with multimodal actuation, digital twins, and biomimetic systems may unlock unprecedented opportunities for personalized, adaptive, and intelligent medical robots. This perspective outlines current progress, key challenges, and future directions of AI-enhanced magnetically controlled 4D printing, underscoring its transformative potential in redefining next-generation medical robotics.  

Graphical abstract
Keywords
AI-enhanced 4D printing
Magnetic actuation
Medical robotics
Funding
This work was partially supported by grants from the following sources: Beijing Natural Science Foundation (No.7254466), the National Natural Science Foundation of China (No. 32371477, 82572451), the Ningbo Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation (2024L004), the Fundamental Research Funds for the Central Universities (No. 2024JBMC011), the Aeronautical Science Foundation of China (No. 2024Z0560M5001), the Natural Science Projects funded by Hebei Province (No. E2024105049), the National Natural Science Foundation of China (No. 92359301), the Ningbo Top Medical and Health Research Program (No. 2022020506), and Jiangxi Province Key Laboratory of Precision Cell Therapy (2024SSY06241).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Tibbits S. 4D printing: multi-material shape change. Archit Des. 2014;84(1):116-121. doi: 10.1002/ad.1710
  2. Chen S, Li J, Zheng L, Huang J, Wang M. Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration. Exploration. 2024;4(5): 20230141. doi: 10.1002/EXP.20230141
  3. Su L, Jin D, Wang Y, et al. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. Sci Adv. 2023;9(50):eadj0883. doi: 10.1126/sciadv.adj0883
  4. Iacovacci V, Diller E, Ahmed D, Menciassi A. Medical microrobots. Annu Rev Biomed Eng. 2024;26(1):561-591. doi: 10.1146/annurev-bioeng-081523-033131
  5. Pugliese R, Regondi S. Artificial intelligence-empowered 3D and 4D printing technologies toward smarter biomedical materials and approaches. Polymers. 2022;14(14):2794. doi: 10.3390/POLYM14142794
  6. Zhang L, Huang X, Cole T, et al. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat Commun. 2023;14(1):7815. doi: 10.1038/s41467-023-43667-4
  7. Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett. 2013;103(13):131901. doi: 10.1063/1.4819837
  8. Bai Y, Zhu S, Liang J, Xing R, Kong J. 4D printing of magnetically responsive materials and their applications. Research. 2025;8:0847. doi: 10.34133/research.0847
  9. Bao X, Wang F, Zhang J, et al. Real-time in situ magnetization reprogramming for soft robotics. Nature. 2025;645(8080):375-384. doi: 10.1038/s41586-025-09459-0
  10. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677-689. doi: 10.1016/j.cell.2006.06.044
  11. Smith AN, Ulsh JB, Gupta R, et al. Characterization of degradation kinetics of additively manufactured PLGA under variable mechanical loading paradigms. J Mech Behav Biomed Mater. 2024;153:106457. doi: 10.1016/j.jmbbm.2024.106457
  12. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  13. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546-554. doi: 10.1016/j.tibtech.2012.07.005
  14. Gao Y, Liu W, Zhu S. Thermoplastic polyolefin elastomer blends for multiple and reversible shape memory polymers. Ind Eng Chem Res. 2019;58(42):19495-19502. doi: 10.1021/acs.iecr.9b03979
  15. Xia Y, He Y, Zhang F, Liu Y, Leng J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv Mater. 2021;33(6): 2000713. doi: 10.1002/adma.202000713
  16. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018;558(7709):274-279. doi: 10.1038/s41586-018-0185-0
  17. Deng C, Qu J, Dong J, et al. 4D printing of magnetic smart structures based on light-cured magnetic hydrogel. Chem Eng J. 2024;494:152992. doi: 10.1016/j.cej.2024.152992
  18. Espíndola-Pérez ER, Campo J, Sánchez-Somolinos C. Multimodal and multistimuli 4D-printed magnetic composite liquid crystal elastomer actuators. ACS Appl Mater Interfaces. 2024;16(2):2704-2715. doi: 10.1021/acsami.3c14607
  19. Zhao R, Kim Y, Chester SA, Sharma P, Zhao X. Mechanics of hard-magnetic soft materials. J Mech Phys Solids. 2019;124:244-263. doi: 10.1016/j.jmps.2018.10.008
  20. Silveyra JM, Ferrara E, Huber DL, Monson TC. Soft magnetic materials for a sustainable and electrified world. Science. 2018;362(6413):eaao0195. doi: 10.1126/science.aao0195
  21. Liu J, Yu S, Xu B, et al. Magnetically propelled soft microrobot navigating through constricted microchannels. Appl Mater Today. 2021;25:101237. doi: 10.1016/j.apmt.2021.101237
  22. Lin C, Liu L, Liu Y, Leng J. 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study. ACS Appl Mater Interfaces. 2021;13(11):12668-12678. doi: 10.1021/acsami.0c17192
  23. Wang H, Yue M, Sun X, Zhao X. Cooperative formation control strategy for multi-robot system based on APF algorithm and sliding mode estimator. Robot Auton Syst. 2025;193:105075. doi: 10.1016/j.robot.2025.105075
  24. Wei T, Hu Y, Yang M, Shi C, Hu C. A magnetic patch robot with photothermal-activated multi-modality for targeted anti-postoperative adhesion. Int J Extreme Manuf. 2025;7(5):055502. doi: 10.1088/2631-7990/add2de
  25. Sun X, Yue L, Yu L, et al. Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat Commun. 2024;15(1):5509. doi: 10.1038/s41467-024-49775-z
  26. Salehi A, Hosseinpour S, Tabatabaei N, Soltani Firouz M, Yu T. Intelligent navigation of a magnetic microrobot with model-free deep reinforcement learning in a real-world environment. Micromachines. 2024;15(1):112. doi: 10.3390/mi15010112
  27. Meng X, Li S, Shen X, Tian C, Mao L, Xie H. Programmable spatial magnetization stereolithographic printing of biomimetic soft machines with thin-walled structures. Nat Commun. 2024;15(1):10442. doi: 10.1038/s41467-024-54773-2
  28. Huang X, Wong YX, Goh GL, Gao X, Lee JM, Yeong WY. Machine learning-driven prediction of gel fraction in conductive gelatin methacryloyl hydrogels. Int J AI Mater Des. 2024;1(2):61-75. doi: 10.36922/ijamd.3807
  29. Abbasi SA, Ahmed A, Noh S, et al. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat Mach Intell. 2024;6(1):92-105.

doi: 10.1038/s42256-023-00779-2

  1. Yang Y, Bevan MA, Li B. Efficient navigation of colloidal robots in an unknown environment via deep reinforcement learning. Adv Intell Syst. 2020;2(1):1900106. doi: 10.1002/aisy.201900106
  2. Heuthe V-L, Panizon E, Gu H, Bechinger C. Counterfactual rewards promote collective transport using individually controlled swarm microrobots. Sci Robot. 2024;9(97):eado5888. doi: 10.1126/scirobotics.ado5888
  3. Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022;28(9):1773-1784. doi: 10.1038/s41591-022-01981-2
  4. Katsoulakis E, Wang Q, Wu H, et al. Digital twins for health: a scoping review. NPJ Digit Med. 2024;7(1):77. doi: 10.1038/s41746-024-01073-0
  5. Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues. Bioact Mater. 2024;37:348-377. doi: 10.1016/j.bioactmat.2024.03.033
  6. Zhu Y-X, Jia H-R, Jiang Y-W, et al. A red blood cell-derived bionic microrobot capable of hierarchically adapting to five critical stages in systemic drug delivery. Exploration. 2024;4(2):20230105. doi: 10.1002/EXP.20230105

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing