AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025360364
REVIEW ARTICLE

Skin bioprinting for burn reconstruction: From stem cell integration to smart in situ regenerative systems

Aline Yen Ling Wang1* Ana Elena Aviña1,2 Yen-Yu Liu1 Huang-Kai Kao3,4
Show Less
1 Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
2 College of Medicine, Taipei Medical University, Taipei, Taiwan
3 Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
4 College of Medicine, Chang Gung University, Taoyuan, Taiwan
Received: 3 September 2025 | Accepted: 29 September 2025 | Published online: 29 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bioprinting of smart skin structures is emerging as a versatile platform not only for wound coverage but also for potential sensory regeneration, real-time monitoring of structures, and tissue repair. This review presents a comprehensive roadmap to bridge the gap between biofabrication science and clinical translation. We explore investigations related to piezoelectric scaffolds, conductive polymers, and stimuli-responsive inks in preclinical environments to produce functional features such as thermal and tactile sensing. Early clinical case reports have demonstrated the feasibility of in vitro skin bioprinting strategies, such as skin patches printed for patient-specific applications using minimally manipulated autologous extracellular matrix and umbilical cord mesenchymal stem cell-laden hydrogels for the management of chronic wounds. In parallel, several preclinical in situ bioprinting studies using handheld or microfluidic-assisted devices have shown promising results in full-thickness diabetic and burn wound models in terms of enhanced re-epithelization and neovascularization. We also present inherent differences between in vitro bioprinting of autologous dermo-epithelial substitutions and in situ strategies based on artificial intelligence-guided print path generation and wound topography mapping. Although sensor-equipped bioprinted grafts have shown promising results, they are still in the early stages of development and require validation in large-scale clinical trials. Nevertheless, integration of stem cell technologies, smart biomaterials, and bio-intelligent control systems may eventually be used to support bioprinted skin constructs not only as replacement tissue, but also as potential living, sensing interfaces. This broad multidisciplinary convergence may be beneficial in redefining skin repair by enabling dynamic interactions between engineered skin grafts and host tissue physiology.  

Graphical abstract
Keywords
Bioinks
Burn wound reconstruction
In situ bioprinting
Skin bioprinting
Skin substitutes
Smart skin
Stem cells
Vascularization
Funding
This research was funded by grants from the National Science and Technology Council, Taiwan (NSTC 112-2314-B-182A-045-MY3), and the Chang Gung Medical Foundation, Chang Gung Memorial Hospital, Taiwan (CMRPG3M0283).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Wang Y, Beekman J, Hew J, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018;123:3-17. doi: 10.1016/j.addr.2017.09.018
  2. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):11. doi: 10.1038/s41572-020-0145-5
  3. Goh M, Du M, Peng WR, Saw PE, Chen Z. Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system. Drug Deliv. 2024;31(1):2300945. doi: 10.1080/10717544.2023.2300945
  4. Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19:243. doi: 10.1186/s13054-015-0961-2
  5. Shahin H, Elmasry M, Steinvall I, Soberg F, El-Serafi A. Vascularization is the next challenge for skin tissue engineering as a solution for burn management. Burns Trauma. 2020;8:tkaa022. doi: 10.1093/burnst/tkaa022
  6. Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;388(10052):1427-1436. doi: 10.1016/S0140-6736(16)31406-4
  7. Shpichka A, Butnaru D, Bezrukov EA, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019;10(1):94. doi: 10.1186/s13287-019-1203-3
  8. Luze H, Nischwitz SP, Smolle C, Zrim R, Kamolz LP. The use of acellular fish skin grafts in burn wound management-a systematic review. Medicina (Kaunas). 2022;58(7):912. doi: 10.3390/medicina58070912
  9. Dagher J, Arcand C, Auger FA, Germain L, Moulin VJ. The self-assembled skin substitute history: successes, challenges, and current treatment indications. J Burn Care Res. 2023;44(Suppl_1):S57-S64. doi: 10.1093/jbcr/irac074
  10. Seet WT, Mat Afandi MA, Ishak MF, et al. Quality management overview for the production of a tissue-engineered human skin substitute in Malaysia. Stem Cell Res Ther. 2023;14(1):298. doi: 10.1186/s13287-023-03536-9
  11. Paggiaro AO, Bastianelli R, Carvalho VF, Isaac C, Gemperli R. Is allograft skin, the gold-standard for burn skin substitute? A systematic literature review and meta-analysis. J Plast Reconstr Aesthet Surg. 2019;72(8):1245-1253. doi: 10.1016/j.bjps.2019.04.013
  12. Seth AK, Friedstat JS, Orgill DP, Pribaz JJ, Halvorson EG. Microsurgical burn reconstruction. Clin Plast Surg. 2017;44(4):823-832. doi: 10.1016/j.cps.2017.05.014
  13. Li Y, An S, Deng C, Xiao S. Human acellular amniotic membrane as skin substitute and biological scaffold: a review of its preparation, preclinical research, and clinical application. Pharmaceutics. 2023;15(9):2249. doi: 10.3390/pharmaceutics15092249
  14. Barbachowska A, Korzeniowski T, Surowiecka A, Struzyna J. Alloplastic epidermal skin substitute in the treatment of burns. Life (Basel). 2023;14(1):43. doi: 10.3390/life14010043
  15. Bartkova J, Horalkova E, Barcinova V, Hrusovska R. Summary of the skin substitute revolution - skin coverings in the modern era of healthcare. Rozhl Chir. 2024;103(6):202-207. Revoluce koznich nahrad - kozni kryty v moderni ere zdravotnictvi. doi: 10.33699/PIS.2024.103.6.202-207
  16. Widgerow AD. Bioengineered skin substitute considerations in the diabetic foot ulcer. Ann Plast Surg. 2014;73(2):239-244. doi: 10.1097/SAP.0b013e31826eac22
  17. MacAdam A, Chaudry E, McTiernan CD, Cortes D, Suuronen EJ, Alarcon EI. Development of in situ bioprinting: a mini review. Front Bioeng Biotechnol. 2022;10:940896. doi: 10.3389/fbioe.2022.940896
  18. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - bioprinting from benchside to bedside? Acta Biomater. 2020;101:14-25. doi: 10.1016/j.actbio.2019.08.045
  19. Dong H, Hu B, Zhang W, et al. Robotic-assisted automated in situ bioprinting. Int J Bioprint. 2023;9(1):629. doi: 10.18063/ijb.v9i1.629
  20. Hwangbo H, Koo Y, Nacionales F, Kim J, Chae S, Kim GH. Stimulus-assisted in situ bioprinting: advancing direct bench-to-bedside delivery. Trends Biotechnol. 2025;43(5):1015-1030. doi: 10.1016/j.tibtech.2024.11.001
  21. Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In situ bioprinting: process, bioinks, and applications. ACS Appl Bio Mater. 2024;7(12):7987-8007. doi: 10.1021/acsabm.3c01303
  22. Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9(1):1856. doi: 10.1038/s41598-018-38366-w
  23. Zhao M, Wang J, Zhang J, et al. Functionalizing multi-component bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing. Mater Today Bio. 2022;16:100334. doi: 10.1016/j.mtbio.2022.100334
  24. Li R, Zhao Y, Zheng Z, et al. Bioinks adapted for in situ bioprinting scenarios of defect sites: a review. RSC Adv. 2023;13(11):7153-7167. doi: 10.1039/d2ra07037e
  25. Cheng RY, Eylert G, Gariepy JM, et al. Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns. Biofabrication. 2020;12(2):025002. doi: 10.1088/1758-5090/ab6413
  26. Skardal A, Murphy SV, Crowell K, Mack D, Atala A, Soker S. A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J Biomed Mater Res B Appl Biomater. 2017;105(7):1986-2000. doi: 10.1002/jbm.b.33736
  27. Kim B, Kim J, Lee S. Unleashing the power of undifferentiated induced pluripotent stem cell bioprinting: current progress and future prospects. Int J Stem Cells. 2024;17(1):38-50. doi: 10.15283/ijsc23146
  28. Shukla AK, Gao G, Kim BS. Applications of 3D bioprinting technology in induced pluripotent stem cells-based tissue engineering. Micromachines (Basel). 2022;13(2):155. doi: 10.3390/mi13020155
  29. Derman ID, Rivera T, Garriga Cerda L, et al. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Int J Extrem Manuf. 2025;7(1):012009. doi: 10.1088/2631-7990/ad878c
  30. Santhamoorthy M, Kim SC. A review of the development of biopolymer hydrogel-based scaffold materials for drug delivery and tissue engineering applications. Gels. 2025;11(3):178. doi: 10.3390/gels11030178
  31. Marimuthu T, Kumar P, Choonara YE. Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method: a patent evaluation of US2019202998A1. Expert Opin Ther Pat. 2021;31(5):351-360. doi: 10.1080/13543776.2021.1903433
  32. Euti EM, Wolfel A, Picchio ML, et al. Controlled thermoreversible formation of supramolecular hydrogels based on poly(vinyl alcohol) and natural phenolic compounds. Macromol Rapid Commun. 2019;40(18):e1900217. doi: 10.1002/marc.201900217
  33. Das S, Das D. Rational design of peptide-based smart hydrogels for therapeutic applications. Front Chem. 2021;9:770102. doi: 10.3389/fchem.2021.770102
  34. Ding K, Liao M, Wang Y, Lu JR. Advances in composite stimuli-responsive hydrogels for wound healing: mechanisms and applications. Gels. 2025;11(6):420. doi: 10.3390/gels11060420
  35. Ferroni L, D’Amora U, Gardin C, et al. Stem cell-derived small extracellular vesicles embedded into methacrylated hyaluronic acid wound dressings accelerate wound repair in a pressure model of diabetic ulcer. J Nanobiotechnology. 2023;21(1):469. doi: 10.1186/s12951-023-02202-9
  36. Hao L, Zhao S, Hao S, et al. Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. Int J Biol Macromol. 2023;240:124364. doi: 10.1016/j.ijbiomac.2023.124364
  37. Jorgensen AM, Varkey M, Gorkun A, et al. Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds. Tissue Eng Part A. 2020;26(9-10):512-526. doi: 10.1089/ten.TEA.2019.0319
  38. Ma Y, Wang Y, Chen D, et al. 3D bioprinting of a gradient stiffened gelatin-alginate hydrogel with adipose-derived stem cells for full-thickness skin regeneration. J Mater Chem B. 2023;11(13):2989-3000. doi: 10.1039/d2tb02200a
  39. Cubo N, Garcia M, Del Canizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006. doi: 10.1088/1758-5090/9/1/015006
  40. Fu H, Zhang D, Zeng J, et al. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing. Int J Bioprint. 2023;9(2):674. doi: 10.18063/ijb.v9i2.674
  41. Zhang D, Fu Q, Fu H, Zeng J, Jia L, Chen M. 3D-bioprinted human lipoaspirate-derived cell-laden skin constructs for healing of full-thickness skin defects. Int J Bioprint. 2023;9(4):718. doi: 10.18063/ijb.718
  42. Baltazar T, Jiang B, Moncayo A, et al. 3D bioprinting of an implantable xeno-free vascularized human skin graft. Bioeng Transl Med. 2023;8(1):e10324. doi: 10.1002/btm2.10324
  43. Michael S, Sorg H, Peck CT, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741
  44. Lee S-G, Lee S, Bae H-K, et al. Evaluation of the therapeutic efficacy of human skin equivalents manufactured through droplet-based bioprinting/nebulization technology. Mol Cell Toxicol. 2023;20(1):129-138. doi: 10.1007/s13273-023-00330-9
  45. Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A. 2015;21(1-2):224-233. doi: 10.1089/ten.TEA.2013.0561
  46. Tanadchangsaeng N, Pasanaphong K, Tawonsawatruk T, et al. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Sci Rep. 2024;14(1):23240. doi: 10.1038/s41598-024-73774-1
  47. Yang Y, Xu R, Wang C, Guo Y, Sun W, Ouyang L. Recombinant human collagen-based bioinks for the 3D bioprinting of full-thickness human skin equivalent. Int J Bioprint. 2022;8(4):611. doi: 10.18063/ijb.v8i4.611
  48. Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials. 2020;258:120287. doi: 10.1016/j.biomaterials.2020.120287
  49. Shi Y, Xing TL, Zhang HB, et al. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomed Mater. 2018;13(3):035008. doi: 10.1088/1748-605X/aaa5b6
  50. Azadmanesh F, Pourmadadi M, Zavar Reza J, Yazdian F, Omidi M, Haghirosadat BF. Synthesis of a novel nanocomposite containing chitosan as a three-dimensional printed wound dressing technique: emphasis on gene expression. Biotechnol Prog. 2021;37(4):e3132. doi: 10.1002/btpr.3132
  51. Wang S, Xiong Y, Chen J, et al. Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol. 2019;7:348. doi: 10.3389/fbioe.2019.00348
  52. Yuan X, Duan X, Enhejirigala, et al. Reciprocal interaction between vascular niche and sweat gland promotes sweat gland regeneration. Bioact Mater. 2023;21:340-357. doi: 10.1016/j.bioactmat.2022.08.021
  53. Yao B, Wang R, Wang Y, et al. Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration. Sci Adv. 2020;6(10):eaaz1094. doi: 10.1126/sciadv.aaz1094
  54. Huang S, Yao B, Xie J, Fu X. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater. 2016;32:170-177. doi: 10.1016/j.actbio.2015.12.039
  55. Abaci HE, Coffman A, Doucet Y, et al. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun. 2018;9(1):5301. doi: 10.1038/s41467-018-07579-y
  56. Xu L, Zhang Z, Jorgensen AM, et al. Bioprinting a skin patch with dual-crosslinked gelatin (GelMA) and silk fibroin (SilMA): an approach to accelerating cutaneous wound healing. Mater Today Bio. 2023;18:100550. doi: 10.1016/j.mtbio.2023.100550
  57. Apelgren P, Amoroso M, Saljo K, et al. Skin grafting on 3D bioprinted cartilage constructs in vivo. Plast Reconstr Surg Glob Open. 2018;6(9):e1930. doi: 10.1097/GOX.0000000000001930
  58. Seol YJ, Lee H, Copus JS, et al. 3D bioprinted biomask for facial skin reconstruction. Bioprinting. 2018;10:e00028. doi: 10.1016/j.bprint.2018.e00028
  59. Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A. 2020;26(5-6):227-238. doi: 10.1089/ten.TEA.2019.0201
  60. Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018;199:593-602. doi: 10.1016/j.carbpol.2018.07.057
  61. Hao L, Tao X, leeeng M, et al. Stepwise multi-cross-linking bioink for 3D embedded bioprinting to promote full-thickness wound healing. ACS Appl Mater Interfaces. 2023;15(20):24034-24046. doi: 10.1021/acsami.3c00688
  62. Kesavan R, Sheela Sasikumar C, Narayanamurthy VB, Rajagopalan A, Kim J. Management of diabetic foot ulcer with MA-ECM (minimally manipulated autologous extracellular matrix) using 3D bioprinting technology - an innovative approach. Int J Low Extrem Wounds. 2024;23(1): 161-168. doi: 10.1177/15347346211045625
  63. Zhang M, Li Z, Yang R, et al. Revolutionizing chronic wound treatment: treating bleomycin intralesional injection-related chronic wounds with 3-dimensional bioprinted skin substitutes. J Invest Dermatol. 2025;145(8):2111-2114 e7. doi: 10.1016/j.jid.2024.12.018
  64. Mladenovska T, Choong PF, Wallace GG, O’Connell CD. The regulatory challenge of 3D bioprinting. Regen Med. 2023;18(8):659-674. doi: 10.2217/rme-2022-0194
  65. Gilbert F, O’Connell CD, Mladenovska T, Dodds S. Print Me an Organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics. 2018; 24(1):73-91. doi: 10.1007/s11948-017-9874-6
  66. Ricles LM, Coburn JC, Di Prima M, Oh SS. Regulating 3D-printed medical products. Sci Transl Med. 2018;10(461):eaan6521. doi: 10.1126/scitranslmed.aan6521
  67. Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products, Guidance for Industry. Food and Drug Administration. U.S.; 2015.
  68. Evaluation of Devices Used with Regenerative Medicine Advanced Therapies, Guidance for Industry. U.S.: Food and Drug Administration; 2019.
  69. Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use, Guidance for Industry. U.S.: Food and Drug Administration; 2020.
  70. Same Surgical Procedure Exception under 21 CFR 1271.15(b): Questions and Answers Regarding the Scope of the Exception, Guidance for Industry. U.S.: Food and Drug Administration; 2017.
  71. Bibb R, Nottrodt N, Gillner A. Artificial vascularized scaffolds for 3D-tissue regeneration — a report of the ArtiVasc 3D Project. Int J Bioprint. 2016;2(1):93-102. doi: 10.18063/ijb.2016.01.004
  72. Li P, Faulkner A. 3D bioprinting regulations: a UK/EU perspective. Eur J Risk Regul. 2017;8(2):441-447. doi: 10.1017/err.2017.19
  73. Bicudo E, Brass I, Carmichael P, Farid S. The UK’s emerging regulatory framework for point-of-care manufacture: insights from a workshop on advanced therapies. Cell Gene Ther Insights. 2021;7(9):1005-1015. doi: 10.18609/cgti.2021.133
  74. Guidelines on Good Manufacturing Practice for Advanced Therapy Medicinal Products. European Medicines Agency, European Commission; 2017.
  75. Guidelines on Good Clinical Practice specific to Advanced Therapy Medicinal Products. European Medicines Agency, European Commission; 2019.
  76. Iglesias-Lopez C, Obach M, Vallano A, Agusti A. Comparison of regulatory pathways for the approval of advanced therapies in the European Union and the United States. Cytotherapy. 2021;23(3):261-274. doi: 10.1016/j.jcyt.2020.11.008
  77. Potency Tests for Cellular and Gene Therapy Products, Guidance for Industry. U.S.: Food and Drug Administration; 2011.
  78. Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products, Draft Guidance for Industry. U.S.: Food and Drug Administration; 2023.
  79. International Organization for Standardization. ISO 13485: 2016 Medical Devices — Quality Management Systems – Requirements for Regulatory Purposes; 2016.
  80. International Organization for Standardization. ISO 14155: 2020 Clinical Investigation of Medical Devices for Human Subjects — Good Clinical Practice; 2020.
  81. Nissan AM. Regulating the three-dimensional future: how the FDA should structure a regulatory mechanism for additive manufacturing (3d printing). Bost. Univ. J. Sci. Technol. Law. 2016; 22: 267–97.
  82. O’Connell CD, Onofrillo C, Duchi S, et al. Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl. Biofabrication. 2019;11(3):035003. doi: 10.1088/1758-5090/ab0b7c
  83. Lorson T, Ruopp M, Nadernezhad A, et al. Sterilization methods and their influence on physicochemical properties and bioprinting of alginate as a bioink component. ACS Omega. 2020;5(12):6481-6486. doi: 10.1021/acsomega.9b04096
  84. Rynio P, Galant K, Wojcik L, et al. Effects of sterilization methods on different 3D printable materials for templates of physician-modified aortic stent grafts used in vascular surgery-a preliminary study. Int J Mol Sci. 2022;23(7):3539. doi: 10.3390/ijms23073539
  85. International Organization for Standardization. ISO 17665: 2006 Sterilization of Health Care Products – Moist Heat; 2006.
  86. International Organization for Standardization. ISO 11137: 2017 Sterilization of Health Care Products – Radiation; 2017.
  87. International Organization for Standardization. ISO 11135: 2014: Sterilization of Health-Care Products — Ethylene Oxide — Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices; 2014.
  88. Nielsen J, Kaldor J, Irwin A, Stewart C, Nicol D. Bespoke regulation for bespoke medicine? A comparative analysis of bioprinting regulation in Europe, the USA and Australia. J 3D Print Med. 2021;5(3):155-167. doi: 10.2217/3dp-2021-0011
  89. International Organization for Standardization. ISO 10993- 1:2018 Biological Evaluation of Medical Devices – Part 1: Evaluation and Testing Within a Risk Management Process; 2018.
  90. Guttridge C, Shannon A, O’Sullivan A, O’Sullivan KJ, O’Sullivan LW. Biocompatible 3D printing resins for medical applications: a review of marketed intended use, biocompatibility certification, and post-processing guidance. Ann 3D Printed Med. 2022;5: 100044. doi: 10.1016/j.stlm.2021.100044
  91. Q8(R2) Pharmaceutical Development. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH); 2009.
  92. Q9(R1) Quality Risk Management. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH); 2023.
  93. Q10 Pharmaceutical Quality System. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH); 2009.
  94. Q11 Development and Manufacture of Drug Substances. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH); 2012.
  95. WHO Expert Committee on Biological Standardization: Sixty-Eighth Report (WHO Technical Report Series No. 1011). World Health Organization; 2018.
  96. Yano K, Watanabe N, Tsuyuki K, Ikawa T, Kasanuki H, Yamato M. Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan. Regen Ther. 2015;1:45–56. doi: 10.1016/j.reth.2014.10.001
  97. Detela G, Lodge A. EU regulatory pathways for ATMPs: standard, accelerated and adaptive pathways to marketing authorisation. Mol Ther Methods Clin Dev. 2019;13:205-232. doi: 10.1016/j.omtm.2019.01.010
  98. Cyranoski D, Sipp D, Mallik S, Rasko JEJ. Too little, too soon: Japan’s experiment in regenerative medicine deregulation. Cell Stem Cell. 2023;30(7):913-916. doi: 10.1016/j.stem.2023.06.005
  99. Hakariya H, Ozaki A, Kaneda Y, Tanimoto T. Japan’s conditional/time-limited early approval system in regenerative medicine: a case study of rise and falls of autologous skeletal myoblast sheets. Clin Pharmacol Ther. 2025;117(5):1171-1174. doi: 10.1002/cpt.3562
  100. Horst A, McDonald F. Uncertain but not unregulated: medical product regulation in the light of three-dimensional printed medical products. 3D Print Addit Manuf. 2020;7(5):248-257. doi: 10.1089/3dp.2020.0076
  101. Regulation Impact Statement: Proposed Regulatory Scheme For Personalised Medical Devices, Including 3d-Printed Devices. Therapeutic Goods Administration, Department of Health, Australian; 2019.
  102. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. doi: 10.1126/science.aav9051
  103. Investigating and Reporting Adverse Reactions Related to Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) Regulated Solely under Section 361 of the Public Health Service Act and 21 CFR Part 1271, Guidance for Industry. U.S.: Food and Drug Administration; 2016.
  104. Calhan SD, Eker ED, Sahin NO. Quality by design (QbD) and process analytical technology (PAT) applications in pharmaceutical industry. Eur J Chem. 2017;8(4): 430-433. doi: 10.5155/eurjchem.8.4.430-433.1667
  105. Wu H, White M, Khan MA. Quality-by-design (QbD): an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm. 2011;405(1-2):63-78. doi: 10.1016/j.ijpharm.2010.11.045
  106. Shojaei P, Vlahu-Gjorgievska E, Chow Y-W. Security and privacy of technologies in health information systems: a systematic literature review. Computers. 2024;13(2):41. doi: 10.3390/computers13020041
  107. Diaz O, Kushibar K, Osuala R, et al. Data preparation for artificial intelligence in medical imaging: a comprehensive guide to open-access platforms and tools. Phys Med. 2021;83:25-37. doi: 10.1016/j.ejmp.2021.02.007
  108. Expedited Programs for Regenerative Medicine Therapies for Serious Conditions, Guidance for Industry. U.S.: Food and Drug Administration; 2019.
  109. Morrison RJ, Kashlan KN, Flanangan CL, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8(5):594-600. doi: 10.1111/cts.12315
  110. Carl AK, Hochmann D. Comparison of the regulatory requirements for custom-made medical devices using 3D printing in Europe, the United States, and Australia. Biomed Tech (Berl). 2022;67(2):61-69. doi: 10.1515/bmt-2021-0266
  111. Spruijt NE, Hoogbergen MM, Buijs SJE, Grosveld MJW, Buth J. Stratification of chronic and complex wounds according to healing characteristics: a retrospective study. J Wound Care. 2019;28(7):446-452. doi: 10.12968/jowc.2019.28.7.446
  112. Millan-Reyes MJ, Afanador-Restrepo DF, Carcelen-Fraile MDC, et al. Reducing infections and improving healing in complex wounds: a systematic review and meta-analysis. J Clin Med. 2025;14(9):3237. doi: 10.3390/jcm14093237
  113. Chu H, Zhang K, Rao Z, et al. Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusion-based bioprinting with good printability and high post-printing cell viability. Biomater Transl. 2023;4(2):115-127. doi: 10.12336/biomatertransl.2023.02.006
  114. Boulton AJM, Whitehouse RW. The Diabetic Foot. Endotext; 2000.
  115. Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat Rev Dis Primers. 2022;8(1):50. doi: 10.1038/s41572-022-00377-3
  116. Matamoros M, Gomez-Blanco JC, Sanchez AJ, et al. Temperature and humidity PID controller for a bioprinter atmospheric enclosure system. Micromachines (Basel). 2020;11(11):999. doi: 10.3390/mi11110999
  117. Torres A, Rego L, Martins MS, et al. How to promote skin repair? In-depth look at pharmaceutical and cosmetic strategies. Pharmaceuticals (Basel). 2023;16(4):573. doi: 10.3390/ph16040573
  118. Garg S, Dahiya N, Gupta S. Surgical scar revision: an overview. J Cutan Aesthet Surg. 2014;7(1):3–13. doi: 10.4103/0974-2077.129959
  119. Boehm D, Menke H. Sepsis in burns-lessons learnt from developments in the management of septic shock. Medicina (Kaunas). 2021;58(1):26. doi: 10.3390/medicina58010026
  120. Jeschke MG, Shahrokhi S, Finnerty CC, et al. Wound coverage technologies in burn care: established techniques. J Burn Care Res 2018;39(3):313-318. doi: 10.1097/BCR.0b013e3182920d29
  121. Zhang J, Wehrle E, Rubert M, Muller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
  122. Pazhouhnia Z, Beheshtizadeh N, Namini MS, Lotfibakhshaiesh N. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng Transl Med. 2022;7(3):e10307. doi: 10.1002/btm2.10307
  123. James M. Beck MDJ. 3D printing: what could happen to products liability when users (and everyone else in between) become manufactur one else in between) become manufacturers. MJLST. 2017;18(1):143.
  124. Zhao W, Hu C, Xu T. In vivo bioprinting: Broadening the therapeutic horizon for tissue injuries. Bioact Mater. 2023;25:201-222. doi: 10.1016/j.bioactmat.2023.01.018
  125. Leberfinger AN, Dinda S, Wu Y, et al. Bioprinting functional tissues. Acta Biomater. 2019;95:32-49. doi: 10.1016/j.actbio.2019.01.009
  126. Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A, Escobedo-Lucea C. Accurate calibration in multi-material 3D bioprinting for tissue engineering. Materials (Basel). 2018;11(8):1402. doi: 10.3390/ma11081402
  127. Gil CJ, Evans CJ, Li L, et al. Leveraging 3D bioprinting and photon-counting computed tomography to enable noninvasive quantitative tracking of multifunctional tissue engineered constructs. Adv Healthc Mater. 2023;12(31):e2302271. doi: 10.1002/adhm.202302271
  128. Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16:20417314241308022. doi: 10.1177/20417314241308022
  129. Carson JS, Carter JE, Hickerson WL, et al. Analysis of real-world length of stay data and costs associated with use of autologous skin cell suspension for the treatment of small burns in U.S. centers. Burns. 2023;49(3):607-614. doi: 10.1016/j.burns.2022.11.007
  130. Carter JE, Carson JS, Hickerson WL, et al. Length of stay and costs with autologous skin cell suspension versus split-thickness skin grafts: burn care data from US Centers. Adv Ther. 2022;39(11):5191-5202. doi: 10.1007/s12325-022-02306-y
  131. Braza ME, Marietta M, Fahrenkopf MP. Split-Thickness Skin Grafts. StatPearls; 2025.
  132. Weng T, Zhang W, Xia Y, et al. 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng. 2021;12:20417314211028574. doi: 10.1177/20417314211028574
  133. Liu S, Kilian D, Bernhardt A, et al. Novel protein-rich bioactive bioink stimulates cellular proliferation and response in 3D bioprinted volumetric constructs. Adv Healthc Mater. 2025;14(10):e2404470. doi: 10.1002/adhm.202404470
  134. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol. 2022;96(3):691-710. doi: 10.1007/s00204-021-03212-y
  135. de Bengy AF, Forraz N, Danoux L, et al. Development of new 3D human ex vivo models to study sebaceous gland lipid metabolism and modulations. Cell Prolif. 2019;52(1):e12524. doi: 10.1111/cpr.12524
  136. Min D, Lee W, Bae IH, Lee TR, Croce P, Yoo SS. Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol. 2018;27(5):453-459. doi: 10.1111/exd.13376
  137. Yamauchi T, Yamasaki K, Tsuchiyama K, Aiba S. Artificial pigmented human skin created by muse cells. Adv Exp Med Biol. 2018;1103:255-271. doi: 10.1007/978-4-431-56847-6_14
  138. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A. 2016;113(12):3179-3184. doi: 10.1073/pnas.1521342113
  139. Mitra D, Whitehead J, Yasui OW, Leach JK. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials. 2017;146:29-39. doi: 10.1016/j.biomaterials.2017.08.044
  140. Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma. 2019;7:4. doi: 10.1186/s41038-019-0142-7
  141. Yu J, Park SA, Kim WD, et al. Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers (Basel). 2020;12(12):2958. doi: 10.3390/polym12122958
  142. Chiticaru EA, Ionita M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: a comprehensive review. Mater Today Bio. 2024;29:101341. doi: 10.1016/j.mtbio.2024.101341
  143. Mirshafiei M, Rashedi H, Yazdian F, Rahdar A, Baino F. Advancements in tissue and organ 3D bioprinting: current techniques, applications, and future perspectives. Mater Design. 2024;240:112853. doi: 10.1016/j.matdes.2024.112853
  144. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: from tissue and organ development to in vitro models. Chem Rev. 2020;120(19):10547-10607. doi: 10.1021/acs.chemrev.9b00789
  145. Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021;9:664188. doi: 10.3389/fbioe.2021.664188
  146. Merchant M, Hu SB, Miller C, Ahmadi T, Garcia E, Smith MI. Comprehensive management of severe burn injuries: a multidisciplinary approach from resuscitation to rehabilitation. Emerg Care Med. 2025;2(2):26. doi: 10.3390/ecm2020026
  147. Samandari M, Mostafavi A, Quint J, Memic A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009
  148. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2021;30:75-84. doi: 10.1016/j.jare.2020.11.011
  149. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res. 2020;23:123-132. doi: 10.1016/j.jare.2020.01.010
  150. Li X, Lian Q, Li D, Xin H, Jia S. Development of a robotic arm based hydrogel additive manufacturing system for in-situ printing. Appl Sci. 2017;7(1):73. doi: 10.3390/app7010073
  151. Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep. 2017;7(1):9416. doi: 10.1038/s41598-017-10060-3
  152. Yao Y, Zhang Y, Aburaia M, Lackner M. 3D printing of objects with continuous spatial paths by a multi-axis robotic FFF platform. Appl Sci. 2021;11(11):4825. doi: 10.3390/app11114825
  153. Romanelli P, Conti A, Bianchi L, Bergantin A, Martinotti A, Beltramo G. Image-guided robotic radiosurgery for trigeminal neuralgia. Neurosurgery. 2018;83(5):1023-1030. doi: 10.1093/neuros/nyx571
  154. Zhou C, Yang Y, Wang J, Wu Q, Gu Z, Zhou Y, et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat Commun. 2021;12(1):5072. doi: 10.1038/s41467-021-25386-w
  155. Zhao W, Xu T. Preliminary engineering for in situ in vivo bioprinting: a novel micro bioprinting platform for in situ in vivo bioprinting at a gastric wound site. Biofabrication. 2020;12(4):045020. doi: 10.1088/1758-5090/aba4ff
  156. Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101. doi: 10.1088/1758-5082/2/1/014101
  157. O’Connell CD, Di Bella C, Thompson F, et al. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication. 2016;8(1):015019. doi: 10.1088/1758-5090/8/1/015019
  158. Ying G, Manriquez J, Wu D, et al. An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing. Mater Today Bio. 2020;8:100074. doi: 10.1016/j.mtbio.2020.100074
  159. Bhattacharyya A, Ham HW, Sonh J, et al. 3D bioprinting of complex tissue scaffolds with in situ homogeneously mixed alginate-chitosan-kaolin bioink using advanced portable biopen. Carbohydr Polym. 2023;317:121046. doi: 10.1016/j.carbpol.2023.121046
  160. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip. 2018;18(10):1440-1451. doi: 10.1039/c7lc01236e
  161. Duarte Campos DF, Zhang S, Kreimendahl F, et al. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration. Connect Tissue Res. 2020;61(2):205-215. doi: 10.1080/03008207.2019.1640217
  162. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep. 2017;7(1):5837. doi: 10.1038/s41598-017-05699-x
  163. Wang M, He J, Liu Y, Li M, Li D, Jin Z. The trend towards in vivo bioprinting. Int J Bioprint. 2024;1(1):15-26. doi: 10.18063/ijb.2015.01.001
  164. Knudsen JE, Ghaffar U, Ma R, Hung AJ. Clinical applications of artificial intelligence in robotic surgery. J Robot Surg. 2024;18(1):102. doi: 10.1007/s11701-024-01867-0
  165. Vossel M, Muller M, Niesche A, Theisgen L, Radermacher K, de la Fuente M. MINARO HD: control and evaluation of a handheld, highly dynamic surgical robot. Int J Comput Assist Radiol Surg. 2021;16(3):467-474. doi: 10.1007/s11548-020-02306-9
  166. Pugliese R, Regondi S. Artificial intelligence-empowered 3D and 4D printing technologies toward smarter biomedical materials and approaches. Polymers (Basel). 2022;14(14):2794. doi: 10.3390/polym14142794
  167. Chen H, Zhang B, Huang J. Recent advances and applications of artificial intelligence in 3D bioprinting. Biophys Rev (Melville). 2024;5(3):031301. doi: 10.1063/5.0190208
  168. Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: from bench to bedside. Bioact Mater. 2025;45:201-230. doi: 10.1016/j.bioactmat.2024.11.021
  169. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  170. Pati F, Gantelius J, Svahn HA. 3D bioprinting of tissue/organ models. Angew Chem Int Ed Engl. 2016;55(15):4650-4665. doi: 10.1002/anie.201505062
  171. Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Biofabrication. 2020;12(4):045006. doi: 10.1088/1758-5090/ab97a1
  172. Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med. 2018;12(3):611-621. doi: 10.1002/term.2476
  173. Cohen DL, Lipton JI, Bonassar LJ, Lipson H. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication. 2010;2(3):035004. doi: 10.1088/1758-5082/2/3/035004
  174. Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D bioprinting by nozzle-free acoustic droplet ejection. Small Methods. 2021;5(6):e2000971. doi: 10.1002/smtd.202000971
  175. Sun H, Jia Y, Dong H, Dong D, Zheng J. Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips. Curr Opin Chem Eng. 2020;28:1-9. doi: 10.1016/j.coche.2019.10.006
  176. Darwish LR, El-Wakad MT, Farag MM. Towards an ultra-affordable three-dimensional bioprinter: a heated inductive-enabled syringe pump extrusion multifunction module for open-source fused deposition modeling three-dimensional printers. J Manuf Sci Eng. 2021;143(12):125001. doi: 10.1115/1.4050824
  177. Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123-1127. doi: 10.1517/14712598.7.8.1123
  178. Salehi MM, Ataeefard M. Micro powder poly lactic acid/ carbon black composite as a bio printing ink. J Compos Mater. 2019;53(17):2407-2414. doi: 10.1177/0021998319828154
  179. Masaeli E, Marquette C. Direct-write bioprinting approach to construct multilayer cellular tissues. Front Bioeng Biotechnol. 2019;7:478. doi: 10.3389/fbioe.2019.00478
  180. Russell CS, Mostafavi A, Quint JP, et al. In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries. ACS Appl Bio Mater. 2020;3(3):1568-1579. doi: 10.1021/acsabm.9b01176
  181. Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A State‐of‐the‐art review of laser‐assisted bioprinting and its future research trends. ChemBioEng Rev. 2021;8(5):517-534. doi: 10.1002/cben.202000037
  182. Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol. 2023;11:1255782. doi: 10.3389/fbioe.2023.1255782
  183. Keriquel V, Oliveira H, Remy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
  184. Curley JL, Sklare SC, Bowser DA, Saksena J, Moore MJ, Chrisey DB. Isolated node engineering of neuronal systems using laser direct write. Biofabrication. 2016;8(1):015013. doi: 10.1088/1758-5090/8/1/015013
  185. Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting – an emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater. 2024;32:356-384. doi: 10.1016/j.bioactmat.2023.10.012
  186. Fortunato GM, Sigismondi S, Nicoletta M, et al. Analysis of the robotic-based in situ bioprinting workflow for the regeneration of damaged tissues through a case study. Bioengineering (Basel). 2023;10(5):560. doi: 10.3390/bioengineering10050560
  187. Gu F, Song Z, Zhao Z. Single-shot structured light sensor for 3D dense and dynamic reconstruction. Sensors (Basel). 2020;20(4):1094. doi: 10.3390/s20041094
  188. Sten G, Feng L, Moller B. Enhancing off-road topography estimation by fusing LIDAR and stereo camera data with interpolated ground plane. Sensors (Basel). 2025;25(2):509. doi: 10.3390/s25020509
  189. Yang S, Chen Q, Wang L, Xu M. In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int J Bioprint. 2023;9(1):624. doi: 10.18063/ijb.v9i1.624
  190. Chakraborty D, Aneesh Reddy B, Roy Choudhury A. Extruder path generation for curved layer fused deposition modeling. Computer-Aided Design. 2008;40(2):235-243. doi: 10.1016/j.cad.2007.10.014
  191. Ezair B, Fuhrmann S, Elber G. Volumetric covering print-paths for additive manufacturing of 3D models. Computer- Aided Design. 2018;100:1-13. doi: 10.1016/j.cad.2018.02.006
  192. Brunel LG, Hull SM, Heilshorn SC. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Biofabrication. 2022;14(3): 10.1088/1758-5090/ac6bbe. doi: 10.1088/1758-5090/ac6bbe
  193. Sola A, Trinchi A, Hill AJ. Self-assembly meets additive manufacturing: bridging the gap between nanoscale arrangement of matter and macroscale fabrication. Smart Mater Manuf. 2023;1:100013. doi: 10.1016/j.smmf.2022.100013
  194. Mierke CT. Bioprinting of cells, organoids and organs-on-a-chip together with hydrogels improves structural and mechanical cues. Cells. 2024;13(19):1638. doi: 10.3390/cells13191638
  195. Ye B, Kim K-J, Sacks EP. Global and local defect detection for 3D printout surface based on geometric shape comparison. Precision Eng. 2023;82:324-337. doi: 10.1016/j.precisioneng.2023.04.005
  196. Huang X, Wu C, Xu X, et al. Polarization structured light 3D depth image sensor for scenes with reflective surfaces. Nat Commun. 2023;14(1):6855. doi: 10.1038/s41467-023-42678-5
  197. Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3d imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors (Basel). 2009;9(1):568-601. doi: 10.3390/s90100568
  198. Filko D, Marijanovic D, Nyarko EK. Automatic robot-driven 3d reconstruction system for chronic wounds. Sensors (Basel). 2021;21(24):8308. doi: 10.3390/s21248308
  199. Filko D, Nyarko EK. Autonomous robot-driven chronic wound 3D reconstruction and analysis system. Robotics. 2025;14(3):30. doi: 10.3390/robotics14030030
  200. Nowakowski AZ, Kaczmarek M. Artificial intelligence in IR thermal imaging and sensing for medical applications. Sensors (Basel). 2025;25(3):891. doi: 10.3390/s25030891
  201. Lucas Y, Niri R, Treuillet S, Douzi H, Castaneda B. Wound size imaging: ready for smart assessment and monitoring. Adv Wound Care (New Rochelle). 2021;10(11):641-661. doi: 10.1089/wound.2018.0937
  202. Liu H, Sun W, Cai W, et al. Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics. Theranostics. 2025;15(5):1662-1688. doi: 10.7150/thno.105109
  203. Chang CW, Ho CY, Lai F, et al. Application of multiple deep learning models for automatic burn wound assessment. Burns. 2023;49(5):1039-1051. doi: 10.1016/j.burns.2022.07.006
  204. Rossi A, Pescara T, Gambelli AM, et al. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol. 2024;12:1393641. doi: 10.3389/fbioe.2024.1393641
  205. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003
  206. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  207. Zhang B, Li J, Yang X, Yin Z. Advances in multimodal electrohydrodynamic printing for high-resolution sensor fabrication: mechanisms, materials, and applications. Nanoscale. 2025;17(25):15132-15174. doi: 10.1039/d5nr01375e
  208. Hansen CJ, Saksena R, Kolesky DB, et al. High-throughput printing via microvascular multinozzle arrays. Adv Mater. 2013;25(1):96-102. doi: 10.1002/adma.201203321
  209. Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater. 2021;6(2):460-471. doi: 10.1016/j.bioactmat.2020.08.020
  210. Mohan TS, Datta P, Nesaei S, Ozbolat V, Ozbolat IT. 3D coaxial bioprinting: process mechanisms, bioinks and applications. Prog Biomed Eng (Bristol). 2022;4(2):022003. doi: 10.1088/2516-1091/ac631c
  211. Liu W, Zhong Z, Hu N, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication. 2018;10(2):024102. doi: 10.1088/1758-5090/aa9d44
  212. Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv Mater. 2020;32(1):e1902026. doi: 10.1002/adma.201902026
  213. Fortunato GM, Rossi G, Bonatti AF, et al. Robotic platform and path planning algorithm for in situ bioprinting. Bioprinting. 2021;22:e00139. doi: 10.1016/j.bprint.2021.e00139
  214. Pandey PM, Reddy NV, Dhande SG. Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf. 2003;43(1):61-71. doi: 10.1016/s0890-6955(02)00164-5
  215. Ma L, Yu S, Xu X, Moses Amadi S, Zhang J, Wang Z. Application of artificial intelligence in 3D printing physical organ models. Mater Today Bio. 2023;23:100792. doi: 10.1016/j.mtbio.2023.100792
  216. Fianko SK, Dzogbewu TC, Agbamava E, de Beer DJ. Mass customisation strategies in additive manufacturing: a systematic review and implementation framework. Processes. 2025;13(6):1855. doi: 10.3390/pr13061855
  217. Gerdes S, Gaikwad A, Ramesh S, Rivero IV, Tamayol A, Rao P. Monitoring and control of biological additive manufacturing using machine learning. J Intell Manuf. 2023;35(3):1055-1077. doi: 10.1007/s10845-023-02092-6
  218. Ngoc HV, Mayer JRR, Bitar-Nehme E. Deep learning to directly predict compensation values of thermally induced volumetric errors. Machines. 2023;11(4):496. doi: 10.3390/machines11040496
  219. Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: a comprehensive review focus on the applications. Mater Today Bio. 2024;26:101082. doi: 10.1016/j.mtbio.2024.101082
  220. Huang L, Guo Z, Yang X, et al. Advancements in GelMA bioactive hydrogels: strategies for infection control and bone tissue regeneration. Theranostics. 2025;15(2):460-493. doi: 10.7150/thno.103725
  221. Wang Y, Zhang S, Wang J. Photo-crosslinkable hydrogel and its biological applications. Chinese Chem Lett. 2021;32(5):1603-1614. doi: 10.1016/j.cclet.2020.11.073
  222. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  223. Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion‐based 3D bioprinting strategies. Adv Sci. 2023;11(8):2306470. doi: 10.1002/advs.202306470
  224. Orr A, Kalantarnia F, Nazir S, et al. Recent advances in 3D bioprinted neural models: a systematic review on the applications to drug discovery. Adv Drug Deliv Rev. 2025;218:115524. doi: 10.1016/j.addr.2025.115524
  225. Kumar MS, Varma P, Kandasubramanian B. From lab to life: advances in in-situ bioprinting and bioink technology. Biomed Mater. 2024;20(1):1391259. doi: 10.1088/1748-605X/ad9dd0
  226. Hu C, Wang C, Bian S, et al. In situ bioprinting: tailored printing strategies for regenerative medicine. Int J Bioprint. 2024;10(5):3366. doi: 10.36922/ijb.3366
  227. Wu J, Wu C, Zou S, et al. Investigation of biomaterial ink viscosity properties and optimization of the printing process based on pattern path planning. Bioengineering (Basel). 2023;10(12):1358. doi: 10.3390/bioengineering10121358
  228. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  229. Li L, Wu W, Zhu Q, et al. Advanced cell-adaptable hydrogels for bioprinting. Bioact Mater. 2025;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044
  230. Noshadi I, Hong S, Sullivan KE, et al. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci. 2017;5(10):2093-2105. doi: 10.1039/c7bm00110j
  231. Gadzinski P, Froelich A, Jadach B, et al. Ionotropic gelation and chemical crosslinking as methods for fabrication of modified-release gellan gum-based drug delivery systems. Pharmaceutics. 2022;15(1):108. doi: 10.3390/pharmaceutics15010108
  232. Senturk E, Bilici C, Afghah F, et al. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface. Biofabrication. 2023;15(3). doi: 10.1088/1758-5090/acd6bf
  233. Bhattacharjee P, Ahearne M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics. 2021;13(3):319. doi: 10.3390/pharmaceutics13030319
  234. Baldino L, Concilio S, Cardea S, De Marco I, Reverchon E. Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. J Supercrit Fluids. 2015;103:70-76. doi: 10.1016/j.supflu.2015.04.020
  235. Rizzo R, Barber DM, Wilt JK, Ainscough AJ, Lewis JA. Photoinitiator-free light-mediated crosslinking of dynamic polymer and pristine protein networks. Biomater Sci. 2024;13(1):210-222. doi: 10.1039/d4bm00849a
  236. Nuutila K, Samandari M, Endo Y, et al. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing. Bioact Mater. 2022;8:296-308. doi: 10.1016/j.bioactmat.2021.06.030
  237. Wang C, Hu C, Cheng H, et al. A programmable handheld extrusion-based bioprinting platform for in situ skin wounds dressing: balance mobility and customizability. Adv Sci (Weinh). 2024;11(46):e2405823. doi: 10.1002/advs.202405823
  238. Rotaru-Zavaleanu AD, Bica M, Dinescu SN, Ruscu MA, Vasile RC, Zavate AC, et al. Bioactive hydrogels for spinal cord injury repair: emphasis on gelatin and its derivatives. Gels. 2025;11(7):497. doi: 10.3390/gels11070497
  239. Dong Z, Yuan Q, Huang K, Xu W, Liu G, Gu Z. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv. 2019;9(31):17737-17744. doi: 10.1039/c9ra02695a
  240. Wei Y, Huang M, Jiang L. Advancements in serine protease inhibitors: from mechanistic insights to clinical applications. Catalysts. 2024;14(11):787. doi: 10.3390/catal14110787
  241. de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60-76. doi: 10.1016/j.actbio.2020.09.024
  242. Shpichka A, Osipova D, Efremov Y, et al. Fibrin-based bioinks: new tricks from an old dog. Int J Bioprint. 2020;6(3):269. doi: 10.18063/ijb.v6i3.269
  243. Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res. 2023;27(1):137. doi: 10.1186/s40824-023-00460-0
  244. Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live cells. Eng Regenerat. 2022;3(3):292-309. doi: 10.1016/j.engreg.2022.07.002
  245. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271-292. doi: 10.1016/j.bioactmat.2019.10.005
  246. Wang Z, Sun Y, Li C. Advances in 3D printing technology for preparing bone tissue engineering scaffolds from biodegradable materials. Front Bioeng Biotechnol. 2024;12:1483547. doi: 10.3389/fbioe.2024.1483547
  247. Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv Healthc Mater. 2018;7(11):e1701347. doi: 10.1002/adhm.201701347
  248. Zeng Y, Hoque J, Varghese S. Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater. 2019;93:152-168. doi: 10.1016/j.actbio.2019.01.060
  249. Yoon MS, Lee JM, Jo MJ, et al. Dual-drug delivery systems using hydrogel-nanoparticle composites: recent advances and key applications. Gels. 2025;11(7):520. doi: 10.3390/gels11070520
  250. Guo Z, Zhang Yn, Zhao M, et al. Intelligent transdermal nanoparticles as synergizing advanced delivery systems for precision therapeutics. Mater Today Bio. 2025;34:102220. doi: 10.1016/j.mtbio.2025.102220
  251. Lukomskyj AO, Rao N, Yan L, et al. Stem cell-based tissue engineering for the treatment of burn wounds: a systematic review of preclinical studies. Stem Cell Rev Rep. 2022;18(6):1926-1955. doi: 10.1007/s12015-022-10341-z
  252. Suca H, Coma M, Tomsu J, et al. Current approaches to wound repair in burns: how far have we come from cover to close? A narrative review. J Surg Res. 2024;296:383-403. doi: 10.1016/j.jss.2023.12.043
  253. Karvinen J, Kellomäki M. Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting. Bioprinting. 2023;32:e00274. doi: 10.1016/j.bprint.2023.e00274
  254. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  255. Du Plessis LH, Gouws C, Nieto D. The influence of viscosity of hydrogels on the spreading and migration of cells in 3D bioprinted skin cancer models. Front Cell Dev Biol. 2024;12:1391259.vv doi: 10.3389/fcell.2024.1391259
  256. Xu F, Dawson C, Lamb M, et al. Hydrogels for tissue engineering: addressing key design needs toward clinical translation. Front Bioeng Biotechnol. 2022;10:849831. doi: 10.3389/fbioe.2022.849831
  257. Barajaa MA, Ghosh D, Laurencin CT. Decellularized extracellular matrix-derived hydrogels: a powerful class of biomaterials for skeletal muscle regenerative engineering applications. Regen Eng Transl Med. 2025;11(1):39-63. doi: 10.1007/s40883-023-00328-8
  258. Huang Y, Wu W, Liu H, et al. 3D printing of functional nerve guide conduits. Burns Trauma. 2021;9:tkab011. doi: 10.1093/burnst/tkab011
  259. Schimelman J, Berry DB, Johnson S, et al. 3D printed nerve guidance conduit for biologics-free nerve regeneration and vascular integration. bioRxiv. 2025: 2025.04.30.651603. doi: 10.1101/2025.04.30.651603
  260. Lee H, Jang TS, Han G, Kim HW, Jung HD. Freeform 3D printing of vascularized tissues: Challenges and strategies. J Tissue Eng. 2021;12:20417314211057236.s doi: 10.1177/20417314211057236
  261. Wang X, Yang C, Yu Y, Zhao Y. In Situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research (Wash D C). 2022;2022:9794745. doi: 10.34133/2022/9794745
  262. Zhou F, Xin L, Wang S, et al. Portable handheld “SkinPen” loaded with biomaterial ink for in situ wound healing. ACS Appl Mater Interfaces. 2023;15(23):27568-27585. doi: 10.1021/acsami.3c02825
  263. Chen H, Ma X, Gao T, Zhao W, Xu T, Liu Z. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Biomed Pharmacother. 2023;158:114140. doi: 10.1016/j.biopha.2022.114140
  264. Levin AA, Karalkin PA, Koudan EV, et al. Commercial articulated collaborative in situ 3D bioprinter for skin wound healing. Int J Bioprint. 2023;9(2):675. doi: 10.18063/ijb.v9i2.675
  265. Zhang M, Hou L, Song W, et al. Development of an alginate-based bioink with enhanced hemostatic and antibacterial properties. Int J Biol Macromol. 2025;302:140549. doi: 10.1016/j.ijbiomac.2025.140549
  266. Moncal KK, Gudapati H, Godzik KP, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction. Adv Funct Mater. 2021;31(29):2010858. doi: 10.1002/adfm.202010858
  267. Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792-802. doi: 10.5966/sctm.2012-0088
  268. Kang Y, Yeo M, Derman ID, et al. Intraoperative bioprinting of human adipose-derived stem cells and extra-cellular matrix induces hair follicle-like downgrowths and adipose tissue formation during full-thickness craniomaxillofacial skin reconstruction. bioRxiv. 2023. doi: 10.1101/2023.10.03.560695
  269. Zhao W, Chen H, Zhang Y, et al. Adaptive multi-degree-of-freedom in situ bioprinting robot for hair-follicle-inclusive skin repair: a preliminary study conducted in mice. Bioeng Transl Med. 2022;7(3):e10303. doi: 10.1002/btm2.10303
  270. Chen H, Zhang Y, Zhou D, Ma X, Yang S, Xu T. Mechanical engineering of hair follicle regeneration by in situ bioprinting. Biomater Adv. 2022;142:213127. doi: 10.1016/j.bioadv.2022.213127
  271. Binder KW, Zhao W, Aboushwareb T, Dice D, Atala A, Yoo JJ. In situ bioprinting of the skin for burns. J Am Coll Surg. 2010;211(3):S76. doi: 10.1016/j.jamcollsurg.2010.06.198
  272. Urciuolo A, Poli I, Brandolino L, Raffa P, Scattolini V, Laterza C, et al. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020;4(9):901-915. doi: 10.1038/s41551-020-0568-z
  273. Wang AYL, Avina AE, Liu YY, Kao HK. Pluripotent stem cells: recent advances and emerging trends. Biomedicines. 2025;13(4):765. doi: 10.3390/biomedicines13040765
  274. Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: potential in therapeutic applications. Front Cell Dev Biol. 2022;10:1005926. doi: 10.3389/fcell.2022.1005926
  275. Wang AYL, Loh CYY. Episomal induced pluripotent stem cells: functional and potential therapeutic applications. Cell Transplant. 2019;28(1_suppl):112S-131S. doi: 10.1177/0963689719886534
  276. Wang AYL, Kao HK, Liu YY, Loh CYY. Engineered extracellular vesicles derived from pluripotent stem cells: a cell-free approach to regenerative medicine. Burns Trauma. 2025;13:tkaf013. doi: 10.1093/burnst/tkaf013
  277. Hsu HH, Wang AYL, Loh CYY, Pai AA, Kao HK. Therapeutic potential of exosomes derived from diabetic adipose stem cells in cutaneous wound healing of db/db mice. Pharmaceutics. 2022;14(6):1206. doi: 10.3390/pharmaceutics14061206
  278. Wang AYL. Human induced pluripotent stem cell-derived exosomes as a new therapeutic strategy for various diseases. Int J Mol Sci. 2021;22(4):1769. doi: 10.3390/ijms22041769
  279. Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials. 2020;255:120207. doi: 10.1016/j.biomaterials.2020.120207
  280. Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. Biomater Adv. 2022;140:213058. doi: 10.1016/j.bioadv.2022.213058
  281. Simpson A, Hewitt AW, Fairfax KA. Universal cell donor lines: A review of the current research. Stem Cell Rep. 2023;18(11):2038-2046. doi: 10.1016/j.stemcr.2023.09.010
  282. Bagno LL, Salerno AG, Balkan W, Hare JM. Mechanism of action of mesenchymal stem cells (MSCs): impact of delivery method. Expert Opin Biol Ther. 2022;22:449-463. doi: 10.1080/14712598.2022.2016695
  283. Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13(1):24. doi: 10.1186/s13287-021-02697-9
  284. Jin S, Oh YN, Son YR, et al. Three-dimensional skin tissue printing with human skin cell lines and mouse skin-derived epidermal and dermal cells. J Microbiol Biotechnol. 2022;32(2):238-247. doi: 10.4014/jmb.2111.11042
  285. Carvalho JPF, Teixeira MC, Lameirinhas NS, et al. Hydrogel bioinks of alginate and curcumin-loaded cellulose ester-based particles for the biofabrication of drug-releasing living tissue analogs. ACS Appl Mater Interfaces. 2023;15(34):40898-40912. doi: 10.1021/acsami.3c07077
  286. Lameirinhas NS, Carvalho JPF, Teixeira MC, et al. Nanocomposite hydrogel-based bioinks composed of a fucose-rich polysaccharide and nanocellulose fibers for 3D-bioprinting applications. Bioprinting. 2025;45: e00382. doi: 10.1016/j.bprint.2024.e00382
  287. Chastagnier L, Essayan L, Thomann C, et al. 3D bioprinting of bioproduction cell lines. Bioprinting. 2025;50:e00423. doi: 10.1016/j.bprint.2025.e00423
  288. Panferov E, Dodina M, Reshetnikov V, et al. Induced pluripotent (iPSC) and mesenchymal (MSC) stem cells for in vitro disease modeling and regenerative medicine. Int J Mol Sci. 2025;26(12):5617. doi: 10.3390/ijms26125617
  289. Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced pluripotent stem cells (iPSCs)-roles in regenerative therapies, disease modelling and drug screening. Cells. 2021;10(9):2319. doi: 10.3390/cells10092319
  290. Liu X, Michael S, Bharti K, Ferrer M, Song MJ. A biofabricated vascularized skin model of atopic dermatitis for preclinical studies. Biofabrication. 2020;12(3):035002. doi: 10.1088/1758-5090/ab76a1
  291. Moreau M, Capallere C, Chavatte L, et al. Reconstruction of functional human epidermis equivalent containing 5%IPS-derived keratinocytes treated with mitochondrial stimulating plant extracts. Sci Rep. 2022;12(1):9073. doi: 10.1038/s41598-022-13191-4
  292. Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One. 2013;8(10):e77673. doi: 10.1371/journal.pone.0077673
  293. Xie T, Qiao W, Jia T, Kaku K. Human induced pluripotent stem cells-derived reconstructed epidermal skin model as an alternative model for skin irritation. Cosmetics. 2025;12(2):75. doi: 10.3390/cosmetics12020075
  294. Smith L, Bunton D, Finch M, Przyborski S. Bioengineering a human dermal equivalent using induced pluripotent stem cell-derived fibroblasts to support the formation of a full-thickness skin construct. Cells. 2025;14(14):1044. doi: 10.3390/cells14141044
  295. Dubau M, Tripetchr T, Mahmoud L, Schumacher F, Kleuser B. Development of an iPSC-derived immunocompetent skin model for identification of skin sensitizing substances. J Tissue Eng. 2025;16:20417314251336296. doi: 10.1177/20417314251336296
  296. Dubau M, Tripetchr T, Mahmoud L, Kral V, Kleuser B. Advancing skin model development: a focus on a self-assembled, induced pluripotent stem cell-derived, xeno-free approach. J Tissue Eng. 2024;15:20417314241291848. doi: 10.1177/20417314241291848
  297. Zhou H, Wang L, Zhang C, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10(1):155. doi: 10.1186/s13287-019-1234-9
  298. Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. doi: 10.1038/s41392-022-00932-0
  299. Riedl J, Popp C, Eide C, Ebens C, Tolar J. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment. Cytotherapy. 2021;23(11):961-973. doi: 10.1016/j.jcyt.2021.06.004
  300. Loukogeorgakis SP, De Coppi P. Concise review: amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cells. 2017;35(7):1663-1673. doi: 10.1002/stem.2553
  301. Buckland KF, Bobby Gaspar H. Gene and cell therapy for children--new medicines, new challenges? Adv Drug Deliv Rev. 2014;73(100):162-169. doi: 10.1016/j.addr.2014.02.010
  302. Dai L-G, Dai N-T, Chen T-Y, Kang L-Y, Hsu S-h. A bioprinted vascularized skin substitute with fibroblasts, keratinocytes, and endothelial progenitor cells for skin wound healing. Bioprinting. 2022;28: e00237. doi: 10.1016/j.bprint.2022.e00237
  303. Mazari-Arrighi E, Lepine M, Ayollo D, et al. Self- Organization of Long-Lasting Human endothelial capillary-like networks guided by DLP bioprinting. Adv Healthc Mater. 2024;13(14):e2302830. doi: 10.1002/adhm.202302830
  304. Beerens M, Aranguren XL, Hendrickx B, et al. Multipotent adult progenitor cells support lymphatic regeneration at multiple anatomical levels during wound healing and lymphedema. Sci Rep. 2018;8(1):3852. doi: 10.1038/s41598-018-21610-8
  305. Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. Burns Trauma. 2021;9:tkab002. doi: 10.1093/burnst/tkab002
  306. Surowiecka A, Chrapusta A, Klimeczek-Chrapusta M, Korzeniowski T, Drukała J, Strużyna J. Mesenchymal stem cells in burn wound management. Int J Mol Sci. 2022;23(23):15339. doi: 10.3390/ijms232315339
  307. Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10(7):1729. doi: 10.3390/cells10071729
  308. El-Sayed ME, Atwa A, Sofy AR, et al. Mesenchymal stem cell transplantation in burn wound healing: uncovering the mechanisms of local regeneration and tissue repair. Histochem Cell Biol. 2024;161(2):165-181. doi: 10.1007/s00418-023-02244-y
  309. Zhu Y, Li J, Kim J, et al. Skin-interfaced electronics: a promising and intelligent paradigm for personalized healthcare. Biomaterials. 2023;296:122075. doi: 10.1016/j.biomaterials.2023.122075
  310. Short WD, Olutoye OO, 2nd, Padon BW, et al. Advances in non-invasive biosensing measures to monitor wound healing progression. Front Bioeng Biotechnol. 2022;10:952198. doi: 10.3389/fbioe.2022.952198
  311. Vo DK, Trinh KTL. Advances in wearable biosensors for wound healing and infection monitoring. Biosensors (Basel). 2025;15(3):139. doi: 10.3390/bios15030139
  312. Zhu Y, Chen B, Liu Y, et al. Recent advances in conductive hydrogels for electronic skin and healthcare monitoring. Biosensors (Basel). 2025;15(7):463. doi: 10.3390/bios15070463
  313. Liu J, Zhao W, Ma Z, Zhao H, Ren L. Self-powered flexible electronic skin tactile sensor with 3D force detection. Materials Today. 2024;81:84-94. doi: 10.1016/j.mattod.2024.10.011
  314. Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic materials for skin tissue regeneration and electronic skin. Biomimetics (Basel). 2024;9(5):278. doi: 10.3390/biomimetics9050278
  315. Kalasin S, Sangnuang P, Surareungchai W. Intelligent wearable sensors interconnected with advanced wound dressing bandages for contactless chronic skin monitoring: artificial intelligence for predicting tissue regeneration. Anal Chem. 2022;94(18):6842-6852. doi: 10.1021/acs.analchem.2c00782
  316. Byrne R, Carrico A, Lettieri M, Rajan AK, Forster RJ, Cumba LR. Bioinks and biofabrication techniques for biosensors development: a review. Mater Today Bio. 2024;28:101185. doi: 10.1016/j.mtbio.2024.101185
  317. Aizarna-Lopetegui U, Bittinger SC, Alvarez N, Henriksen- Lacey M, Jimenez de Aberasturi D. Stimuli-responsive hybrid materials for 4D in vitro tissue models. Mater Today Bio. 2025;33:102035. doi: 10.1016/j.mtbio.2025.102035
  318. Elango J, Zamora-Ledezma C. Rheological, structural, and biological trade-offs in bioink design for 3D bioprinting. Gels. 2025;11(8):659. doi: 10.3390/gels11080659
  319. Lu S-H, Samandari M, Li C, et al. Multimodal sensing and therapeutic systems for wound healing and management: a review. Sens Actuat Rep. 2022;4:100075. doi: 10.1016/j.snr.2022.100075
  320. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci. 2022;2:9. doi: 10.20517/ss.2022.13
  321. Shankhwar N, Verma AK, Noumani A, et al. Integrating advanced synthesis techniques and AI-driven approaches with nanofiber technology: a state-of-the-art approach to wound care management. Next Nanotechnol. 2025;8:100147. doi: 10.1016/j.nxnano.2025.100147
  322. Manickam P, Mariappan SA, Murugesan SM, et al. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors (Basel). 2022;12(8):562. doi: 10.3390/bios12080562
  323. Abhinav V, Basu P, Verma SS, et al. Advancements in wearable and implantable BioMEMS devices: transforming healthcare through technology. Micromachines (Basel). 2025;16(5):522. doi: 10.3390/mi16050522
  324. Pang Q, Yang F, Jiang Z, Wu K, Hou R, Zhu Y. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Mater Design. 2023;229: 111917. doi: 10.1016/j.matdes.2023.111917
  325. Shlomy I, Divald S, Tadmor K, Leichtmann-Bardoogo Y, Arami A, Maoz BM. Restoring tactile sensation using a triboelectric nanogenerator. ACS Nano. 2021;15(7):11087-11098. doi: 10.1021/acsnano.0c10141
  326. Sun X, Guo X, Gao J, et al. E-Skin and its advanced applications in ubiquitous health monitoring. Biomedicines. 2024;12(10):2307. doi: 10.3390/biomedicines12102307
  327. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater. 2019;31(48):e1904765. doi: 10.1002/adma.201904765
  328. Bunea AC, Dediu V, Laszlo EA, et al. E-skin: the dawn of a new era of on-body monitoring systems. Micromachines (Basel). Sep 10 2021;12(9):1091. doi: 10.3390/mi12091091
  329. Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-edge hydrogel technologies in tissue engineering and biosensing: an updated review. Materials (Basel). 2024;17(19):4792. doi: 10.3390/ma17194792
  330. Gogoi D, Kumar M, Singh J. A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing. Annals 3D Printed Med. 2024;15:100159. doi: 10.1016/j.stlm.2024.100159
  331. Lu P, Ruan D, Huang M, et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther. 2024;9(1):166. doi: 10.1038/s41392-024-01852-x
  332. Su Y, Ma C, Chen J, et al. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res Lett. 2020; 15(1):200. doi: 10.1186/s11671-020-03428-4
  333. Li Z, Mi B, Ma X, et al. Review of thin-film resistor sensors: Exploring materials, classification, and preparation techniques. Chem Eng J. 2023;477:147029. doi: 10.1016/j.cej.2023.147029
  334. Liu L, Dou Y, Wang J, et al. Recent advances in flexible temperature sensors: materials, mechanism, fabrication, and applications. Adv Sci (Weinh). 2024;11(36):e2405003. doi: 10.1002/advs.202405003
  335. Wang X, Stefanello ST, Shahin V, Qian Y. From mechanoelectric conversion to tissue regeneration: translational progress in piezoelectric materials. Adv Mater. 2025;37(33):e2417564. doi: 10.1002/adma.202417564
  336. Liu L, Li Z, Zhu T, Sun Y, Xu J. Advances in applications of low-dimensional piezoelectric materials in musculoskeletal system. Mater Today Bio. 2025;33:102065. doi: 10.1016/j.mtbio.2025.102065
  337. Ganeson K, Tan Xue May C, Abdullah AAA, Ramakrishna S, Vigneswari S. Advantages and prospective implications of smart materials in tissue engineering: piezoelectric, shape memory, and hydrogels. Pharmaceutics. 2023;15(9):2356. doi: 10.3390/pharmaceutics15092356
  338. Lee JC, Suh IW, Park CH, Kim CS. Polyvinylidene fluoride/ silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application. J Tissue Eng Regen Med. 2021;15(10):869-877. doi: 10.1002/term.3232
  339. De Giorgio G, Matera B, Vurro D, et al. Silk fibroin materials: biomedical applications and perspectives. Bioengineering. 2024;11(2):167. doi: 10.3390/bioengineering11020167
  340. Bierman-Duquette RD, Safarians G, Huang J, et al. Engineering tissues of the central nervous system: interfacing conductive biomaterials with neural stem/progenitor cells. Adv Healthc Mater. 2022;11(7):e2101577. doi: 10.1002/adhm.202101577
  341. Wei L, Wang S, Shan M, et al. Conductive fibers for biomedical applications. Bioact Mater. 2023;22:343-364. doi: 10.1016/j.bioactmat.2022.10.014
  342. Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional conductive hydrogel interface for bioelectronic recording and stimulation. Adv Healthc Mater. 2024;13(22):e2400562. doi: 10.1002/adhm.202400562
  343. Brooke R, Lay M, Jain K, et al. Nanocellulose and PEDOT:PSS composites and their applications. Polymer Rev. 2022;63(2):437-477. doi: 10.1080/15583724.2022.2106491
  344. Liu X, Miller Ii AL, Park S, et al. Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses. J Mater Chem B. 2016;4(43):6930-6941. doi: 10.1039/c6tb01722c
  345. Pourmokhtari M, Mohammad-Namazi A, Mohseni N, Imani R, Kianfar P. Advances in bioprinting with a focus on self-healing hydrogels bio-inks for soft tissue regeneration: innovations, applications, and future perspectives. Mater Today Commun. 2025;44:112094. doi: 10.1016/j.mtcomm.2025.112094
  346. Keshavarz M, Jahanshahi M, Hasany M, et al. Smart alginate inks for tissue engineering applications. Mater Today Bio. 2023;23:100829. doi: 10.1016/j.mtbio.2023.100829
  347. Criado-Gonzalez M, Dominguez-Alfaro A, Lopez-Larrea N, Alegret N, Mecerreyes D. Additive manufacturing of conducting polymers: recent advances, challenges, and opportunities. ACS Appl Polym Mater. 2021;3(6): 2865-2883. doi: 10.1021/acsapm.1c00252
  348. Serafin A, Casanova CR, Chandel AKS, Reis RL, Oliveira JM, Collins MN. Conductive biological materials for in vitro models: properties and sustainability implications. In Vitro Model. 2025;4(2):89-110. doi: 10.1007/s44164-025-00088-5
  349. Jiang Y, Zhou Y, Tian Y, et al. Conductive polymers in smart wound healing: from bioelectric stimulation to regenerative therapies. Mater Today Bio. 2025;34:102114. doi: 10.1016/j.mtbio.2025.102114
  350. Imani KBC, Dodda JM, Yoon J, et al. Seamless integration of conducting hydrogels in daily life: from preparation to wearable application. Adv Sci (Weinh). 2024;11(13):e2306784. doi: 10.1002/advs.202306784
  351. Li Y, Tan S, Zhang X, Li Z, Cai J, Liu Y. Design strategies and emerging applications of conductive hydrogels in wearable sensing. Gels. 2025;11(4):258. doi: 10.3390/gels11040258
  352. Li C. Towards conductive hydrogels in e-skins: a review on rational design and recent developments. RSC Adv. 2021;11(54):33835-33848. doi: 10.1039/d1ra04573c
  353. Spencer AR, Shirzaei Sani E, Soucy JR, et al. Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces. 2019;11(34):30518-30533. doi: 10.1021/acsami.9b07353
  354. Ali M, Bathaei MJ, Istif E, Karimi SNH, Beker L. Biodegradable piezoelectric polymers: recent advancements in materials and applications. Adv Healthc Mater. 2023;12(23):e2300318. doi: 10.1002/adhm.202300318
  355. Zhang J, Wang J, Zhong C, Zhang Y, Qiu Y, Qin L. Flexible electronics: advancements and applications of flexible piezoelectric composites in modern sensing technologies. Micromachines (Basel). 2024;15(8):982. doi: 10.3390/mi15080982
  356. Su YP, Sim LN, Coster HGL, Chong TH. Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane. J Membr Sci. 640 (2021):119861. doi: 10.1016/j.memsci.2021.119861
  357. Ying B, Liu X. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. iScience. 2021;24(11):103174. doi: 10.1016/j.isci.2021.103174
  358. Razack RK, Sadasivuni KK. Advancing nanogenerators: the role of 3d-printed nanocomposites in energy harvesting. Polymers (Basel). 2025;17(10):1367. doi: 10.3390/polym17101367
  359. Morouço P, Azimi B, Milazzo M, et al. Four-dimensional (Bio-)printing: a review on stimuli-responsive mechanisms and their biomedical suitability. Appl Sci. 2020;10(24):9143. doi: 10.3390/app10249143
  360. Gao Q, Lee JS, Kim BS, Gao G. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: a future direction of precision medicine. Int J Bioprint. 2023;9(1):638. doi: 10.18063/ijb.v9i1.638
  361. Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive “smart” interpenetrating polymer network hydrogels. Mater Today Bio. 2024;25:100998. doi: 10.1016/j.mtbio.2024.100998
  362. El-Husseiny HM, Mady EA, Hamabe L, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio. 2022;13:100186. doi: 10.1016/j.mtbio.2021.100186
  363. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-229. doi: 10.1177/0022034509359125
  364. Hossain MI, Zahid MS, Chowdhury MA, et al. Smart bandage: a device for wound monitoring and targeted treatment. Results Chem. 2024;7:101292. doi: 10.1016/j.rechem.2023.101292
  365. Wang Z, Xiao C, Roy M, et al. Bioinspired skin towards next-generation rehabilitation medicine. Front Bioeng Biotechnol. 2023;11:1196174. doi: 10.3389/fbioe.2023.1196174
  366. Hajjar S, Zhou X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol. 2023;44(10):807-825. doi: 10.1016/j.it.2023.08.008
  367. Herrmann A, Haag R, Schedler U. Hydrogels and their role in biosensing applications. Adv Healthc Mater. 2021;10(11):e2100062. doi: 10.1002/adhm.202100062
  368. He X, Wei Y, Xu K. Hydrogel-based treatment of diabetic wounds: from smart responsive to smart monitoring. Gels. 2025;11(8):647. doi: 10.3390/gels11080647
  369. Revathi D, Panda S, Deshmukh K, Khotele N, Murthy VRK, Pasha SKK. Smart hydrogels for sensing and biosensing – preparation, smart behaviours, and emerging applications – a comprehensive review. Polymer Test. 2025;150:108912. doi: 10.1016/j.polymertesting.2025.108912
  370. Liu Y, Liu X, Wang X, Jiang H. AI-empowered electrochemical sensors for biomedical applications: technological advances and future challenges. Biosensors (Basel). 2025;15(8):487. doi: 10.3390/bios15080487
  371. Pullanchery S, Kulik S, Schonfeldova T, et al. pH drives electron density fluctuations that enhance electric field-induced liquid flow. Nat Commun. 2024;15(1):5951. doi: 10.1038/s41467-024-50030-8
  372. Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors (Basel). 2020;10(7):79. doi: 10.3390/bios10070079
  373. Ferrari E, Palma C, Vesentini S, Occhetta P, Rasponi M. Integrating biosensors in organs-on-chip devices: a perspective on current strategies to monitor microphysiological systems. Biosensors (Basel). 2020;10(9):110. doi: 10.3390/bios10090110
  374. An T, Anaya DV, Gong S, et al. Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy. 2020;77:105295. doi: 10.1016/j.nanoen.2020.105295
  375. Azimzadeh M, Khashayar P, Amereh M, Tasnim N, Hoorfar M, Akbari M. Microfluidic-based oxygen (O(2)) sensors for on-chip monitoring of cell, tissue and organ metabolism. Biosensors (Basel). 2021;12(1):6. doi: 10.3390/bios12010006
  376. Gu J, Shen Y, Tian S, Xue Z, Meng X. Recent advances in nanowire-based wearable physical sensors. Biosensors (Basel). 2023;13(12):1025. doi: 10.3390/bios13121025
  377. Lin R, Lei M, Ding S, et al. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio. 2023;23:100787. doi: 10.1016/j.mtbio.2023.100787
  378. Luo Y, Abidian MR, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano. 2023;17(6):5211-5295. doi: 10.1021/acsnano.2c12606
  379. Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front Bioeng Biotechnol. 2021;9:622524. doi: 10.3389/fbioe.2021.622524
  380. Mohammed SA, Murad SS, Albeyboni HJ, et al. Supporting global communications of 6G networks using AI, digital twin, hybrid and integrated networks, and cloud: features, challenges, and recommendations. Telecom. 2025;6(2):35. doi: 10.3390/telecom6020035
  381. Xiong Z, Achavananthadith S, Lian S, et al. A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci Adv. 2021;7(47):eabj1617. doi: 10.1126/sciadv.abj1617
  382. Kang SG, Song MS, Kim JW, Lee JW, Kim J. Near-field communication in biomedical applications. Sensors (Basel). 2021;21(3):703. doi: 10.3390/s21030703
  383. Lazaro A, Villarino R, Lazaro M, Canellas N, Prieto-Simon B, Girbau D. Recent advances in batteryless NFC sensors for chemical sensing and biosensing. Biosensors (Basel). Jul 31 2023;13(8):775. doi: 10.3390/bios13080775
  384. Chai T, Kim D, Shin S. Efficient internet of things communication system based on near-field communication and long range radio. Sensors (Basel). 2025;25(8):2509. doi: 10.3390/s25082509
  385. Khadam U, Davidsson P, Spalazzese R. Exploring the role of artificial intelligence in internet of things systems: a systematic mapping study. Sensors (Basel). 2024;24(20):6511. doi: 10.3390/s24206511
  386. Ullah I, Adhikari D, Su X, Palmieri F, Wu C, Choi C. Integration of data science with the intelligent IoT (IIoT): current challenges and future perspectives. Digital Commun Netw. 2025;11(2):280-298. doi: 10.1016/j.dcan.2024.02.007
  387. Kodumuru R, Sarkar S, Parepally V, Chandarana J. Artificial intelligence and internet of things integration in pharmaceutical manufacturing: a smart synergy. Pharmaceutics. 2025;17(3):290. doi: 10.3390/pharmaceutics17030290
  388. Griffa D, Natale A, Merli Y, et al. Artificial intelligence in wound care: a narrative review of the currently available mobile apps for automatic ulcer segmentation. BioMedInformatics. 2024;4(4):2321-2337. doi: 10.3390/biomedinformatics4040126
  389. Berezo M, Budman J, Deutscher D, Hess CT, Smith K, Hayes D. Predicting chronic wound healing time using machine learning. Adv Wound Care. 2022;11(6):281-296. doi: 10.1089/wound.2021.0073
  390. Schmidt K, Lerm D, Schmidt A, et al. Automated high-throughput live cell monitoring of scratch wound closure. Biomed Eng Comput Biol. 2024;15:11795972241295619. doi: 10.1177/11795972241295619
  391. Samon Daniel SB, Joseph Oluwaseyi. Cloud-Based Big Data Analytics (Aws, Azure, Google Cloud). Seraphina Brightwood; 2024.
  392. Espina JA, Cordeiro MH, Milivojevic M, Pajic-Lijakovic I, Barriga EH. Response of cells and tissues to shear stress. J Cell Sci. 2023;136(18):jcs.260985. doi: 10.1242/jcs.260985
  393. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res. 2022;9(1):70. doi: 10.1186/s40779-022-00429-5
  394. Hagemann C, Bailey MCD, Carraro E, et al. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs. PLoS Biol. 2024;22(3):e3002503. doi: 10.1371/journal.pbio.3002503
  395. Sirkkunan D, Pingguan-Murphy B, Muhamad F. Directing axonal growth: a review on the fabrication of fibrous scaffolds that promotes the orientation of axons. Gels. 2021;8(1):25. doi: 10.3390/gels8010025
  396. Shlapakova LE, Surmeneva MA, Kholkin AL, Surmenev RA. Revealing an important role of piezoelectric polymers in nervous-tissue regeneration: a review. Mater Today Bio. 2024;25:100950. doi: 10.1016/j.mtbio.2024.100950
  397. Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging bioprinting for wound healing. Adv Mater. 2025;37(31):e2304738. doi: 10.1002/adma.202304738
  398. Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, et al. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol. 2024;44(5):860-891. doi: 10.1080/07388551.2023.2213398
  399. Ma W, Lu H, Xiao Y, Wu C. Advancing organoid development with 3D bioprinting. Organoid Res. 2025;1(1):025040004. doi: 10.36922/or025040004

 

 

 



 

 

 

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing