Bioprinting vascularized human islet tissue models via aggregate-based co-culture and self-assembly
Diabetes is a significant global metabolic disease. Current treatments, including islet or pancreas transplantation and insulin therapy, are limited by donor shortages and suboptimal glycemic control. Islet organoids, three-dimensional (3D) cell aggregates that mimic pancreatic islets, offer a powerful tool for diabetes research, drug screening, and transplantation therapies. However, challenges remain in engineering methods for the scalable preparation of human islet organoids (hIOs) with homogeneous consistency and controllable incorporation of vascular elements. In this study, we developed a novel bioengineering approach for the stable production of human islet tissue models with vascular elements using a combination of 3D bioprinting-based organoid co-culture and cell self-assembly principles. Human adipose-derived mesenchymal stem cells were differentiated into massive and uniform human islet β-like cell aggregates (hICAs) using an off-the-shelf polydimethylsiloxane user-defined micropatterning platform system. A tri-module thermal-controlled bioprinting process employing a gelatin–alginate– Matrigel bioink was used for the 3D bioprinting of hICAs and human umbilical vein endothelial cells (HUVECs). Compared with bioprinted hICAs alone, co-bioprinted and co-cultured hICAs and HUVECs more effectively recapitulated the morphogenesis of human islet development, significantly upregulated the expression of pancreatic islet- and endothelial cell-related markers, and enhanced islet function, namely glucose-stimulated insulin secretion. Thus, the self-assembly of hICAs and HUVECs to form hIOs with vascular elements mimics natural human pancreatic islets and may promote functional maturity. Our method provides a scalable platform for generating vascularized aggregation-based tissue models, supporting studies of pancreatic development and diabetes therapy.

- Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119
- Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg. 2014;51(2):49-86. doi: 10.1067/j.cpsurg.2013.10.002
- Kim Y, Kim H, Ko UH, et al. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep. 2016;6:35145. doi: 10.1038/srep35145
- Liang S, Su Y, Yao R. 3D bioprinting of induced pluripotent stem cells and disease modeling. In: Kuehn MH, Zhu W, eds. Human iPSC-derived Disease Models for Drug Discovery. Handbook of experimental pharmacology. Springer, Cham. 2023; vol 281: 29-56. doi: 10.1007/164_2023_646
- Candiello J, Grandhi TSP, Goh SK, et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials. 2018;177:27-39. doi: 10.1016/j.biomaterials.2018.05.031
- Liang S, Luo Y, Su Y, et al. Distinct toxicity of microplastics/ TBBPA co-exposure to bioprinted liver organoids derived from hiPSCs of healthy and patient donors. Int J Bioprint. 2024;10(3):1403. doi: 10.36922/ijb.1403
- de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol (Lausanne). 2021;12:631463. doi: 10.3389/fendo.2021.631463
- Panes J, Garcia-Olmo D, Van Assche G, et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2018;154(5):1334-1342.e4. doi: 10.1053/j.gastro.2017.12.020
- Hong Y, Park EY, Kim D, Lee H, Jung HS, Jun HS. Glucosamine potentiates the differentiation of adipose-derived stem cells into glucose-responsive insulin-producing cells. Ann Transl Med. 2020;8(8):561. doi: 10.21037/atm.2020.03.103
- Dave SD, Vanikar AV, Trivedi HL. Extrinsic factors promoting in vitro differentiation of insulin-secreting cells from human adipose tissue-derived mesenchymal stem cells. Appl Biochem Biotechnol. 2013;170(4):962-71. doi: 10.1007/s12010-013-0250-y
- Wang X, Luo Y, Ma Y, Wang P, Yao R. Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol. 2024;42(5): 648-663. doi: 10.1016/j.tibtech.2023.11.006
- Luo Y, Luo L, Wang L, et al. Large-scale bioprinting of human epiblast-like models featuring disc-shaped morphogenesis and gastrulation events. Adv Sci (Weinh). 2025;12(33):e05340. doi: 10.1002/advs.202505340
- Marchioli G, van Gurp L, van Krieken PP, et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7(2):025009. doi: 10.1088/1758-5090/7/2/025009
- Song J, Millman JR. Economic 3D-printing approach for transplantation of human stem cell-derived beta-like cells. Biofabrication. 2016;9(1):015002. doi: 10.1088/1758-5090/9/1/015002
- Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication. 2021;14(1). doi: 10.1088/1758-5090/ac23ac
- Kim J, Shim IK, Hwang DG, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B. 2019;7(10):1773-1781. doi: 10.1039/c8tb02787k
- Idaszek J, Volpi M, Paradiso A, et al. Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: a step towards vascularized pancreas grafts. Bioprinting. 2021;24:e00163. doi: 10.1016/j.bprint.2021.e00163
- Yao R, Wang J, Li X, et al. Hepatic differentiation of human embryonic stem cells as microscaled multilayered colonies leading to enhanced homogeneity and maturation. Small. 2014;10(21):4311-4323. doi: 10.1002/smll.201401040
- Costa EC, de Melo-Diogo D, Moreira AF, Carvalho MP, Correia IJ. Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol J. 2018;13(1). doi: 10.1002/biot.201700417
- Ansari A, Trehan R, Watson C, Senyo S. Increasing silicone mold longevity: a review of surface modification techniques for PDMS-PDMS double casting. Soft Mater. 2021; 19(4):388-399. doi: 10.1080/1539445x.2020.1850476
- Clark CT, Wang Y, Johnson DC, Lee SC, Smith Q. Effects of PDMS culture on stem cell differentiation towards definitive endoderm and hepatocytes. Acta Biomater. 2025; 200:508-519. doi: 10.1016/j.actbio.2025.05.017
- Anitha R, Vaikkath D, Shenoy SJ, Nair PD. Tissue-engineered islet-like cell clusters generated from adipose tissue-derived stem cells on three-dimensional electrospun scaffolds can reverse diabetes in an experimental rat model and the role of porosity of scaffolds on cluster differentiation. J Biomed Mater Res A. 2020;108(3):749-759. doi: 10.1002/jbm.a.36854
- Nyitray CE, Chavez MG, Desai TA. Compliant 3D microenvironment improves β-cell cluster insulin expression through mechanosensing and β-catenin signaling. Tissue Eng Part A. 2014;20(13-14):1888-1895. doi: 10.1089/ten.tea.2013.0692
- Tran R, Moraes C, Hoesli CA. Developmentally-inspired biomimetic culture models to produce functional islet-like cells from pluripotent precursors. Front Bioeng Biotechnol. 2020;8:583970. doi: 10.3389/fbioe.2020.583970
- Ding S, Feng L, Wu J, Zhu F, Tan Z, Yao R. Bioprinting of stem cells: interplay of bioprinting process, bioinks, and stem cell properties. ACS Biomater Sci Eng. 2018; 4(9):3108-3124. doi: 10.1021/acsbiomaterials.8b00399
- Chen R, Su Y, Chen D, et al. Bioprinting with superelastic and fatigue-resistant bioinks for large-sized tissue delivery. Int J Bioprint. 2024;10(5):3898. doi: 10.36922/ijb.3898
- Cahn F. Biomaterials aspects of porous microcarriers for animal cell culture. Trends Biotechnol. 1990;8(5):131-136. doi: 10.1016/0167-7799(90)90154-P
- Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication. 2015;7(4):044101. doi: 10.1088/1758-5090/7/4/044101
- Yao R, Zhang R, Luan J, Lin F. Alginate and alginate/ gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication. 2012;4(2):025007. doi: 10.1088/1758-5082/4/2/025007
- Townsend SE, Gannon M. Extracellular matrix-associated factors play critical roles in regulating pancreatic beta-cell proliferation and survival. Endocrinology. 2019; 160(8):1885-1894. doi: 10.1210/en.2019-00206
- Parvaneh S, Kemeny L, Ghaffarinia A, Yarani R, Vereb Z. Three-dimensional bioprinting of functional beta-islet-like constructs. Int J Bioprint. 2023;9(2):665. doi: 10.18063/ijb.v9i2.665
- Wex C, Frohlich M, Brandstadter K, Bruns C, Stoll A. Experimental analysis of the mechanical behavior of the viscoelastic porcine pancreas and preliminary case study on the human pancreas. J Mech Behav Biomed Mater. 2015;41:199-207. doi: 10.1016/j.jmbbm.2014.10.013
- Aplin AC, Aghazadeh Y, Mohn OG, Hull-Meichle RL. Role of the pancreatic islet microvasculature in health and disease. J Histochem Cytochem. 2024;72(11-12):711-728. doi: 10.1369/00221554241299862
- Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001;294(5542):564-567. doi: 10.1126/science.1064344 .
- Wang X, Ye K. Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng Part A. 2009;15(8):1941-1952. doi: 10.1089/ten.tea.2008.0181
- Aghazadeh Y, Poon F, Sarangi F, et al. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell. 2021;28(11):1936-1949.e8. doi: 10.1016/j.stem.2021.08.001
- Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A. 2015;21(1-2):14-25. doi: 10.1089/ten.tea.2014.0013
- Zanone MM, Favaro E, Camussi G. From endothelial to beta cells: insights into pancreatic islet microendothelium. Curr Diabetes Rev. 2008;4(1):1-9. doi: 10.2174/157339908783502415
- Glorieux L, Sapala A, Willnow D, et al. Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development. 2022;149(3):dev199655. doi: 10.1242/dev.199655
- Ranjan AK, Joglekar MV, Hardikar AA. Endothelial cells in pancreatic islet development and function. Islets. 2009;1(1):2-9. doi: 10.4161/isl.1.1.9054
- Mateus Goncalves L, Almaca J. Functional characterization of the human islet microvasculature using living pancreas slices. Front Endocrinol (Lausanne). 2020;11:602519. doi: 10.3389/fendo.2020.602519
- Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of dynamic function in human stem cell-derived beta cells. Stem Cell Rep. 2019;12(2):351-365. doi: 10.1016/j.stemcr.2018.12.012
- Velazco-Cruz L, Goedegebuure MM, Maxwell KG, Augsornworawat P, Hogrebe NJ, Millman JR. SIX2 regulates human beta cell differentiation from stem cells and functional maturation in vitro. Cell Rep. 2020; 31(8):107687. doi: 10.1016/j.celrep.2020.107687
- Cardenas-Diaz FL, Osorio-Quintero C, Diaz-Miranda MA, et al. Modeling monogenic diabetes using human ESCs reveals developmental and metabolic deficiencies caused by mutations in HNF1A. Cell Stem Cell. 2019;25(2):273-289.e5. doi: 10.1016/j.stem.2019.07.007
