AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025370372
RESEARCH ARTICLE

Hyaluronic acid-based self-healing hydrogels with enhanced hydrolytic stability for 3D bioprinting in tissue engineering

Minhyung Kong1 Hyun Seung Kim1 Jiwon Hwang1 Joon Seo Park1 In Young Lee1 Kuen Yong Lee1,2*
Show Less
1 Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
2 Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
Received: 9 September 2025 | Accepted: 1 October 2025 | Published online: 2 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hyaluronic acid (HA)-based hydrogels have gained significant interest for many biomedical applications because of their biocompatibility and degradability as glycosaminoglycans. However, it is challenging to control their mechanical properties and degradation rates. In this study, we investigated the potential of carbodihydrazide-modified HA (HA-CDH) and oxidized diol-modified HA (odHA) to form hydrogels. We modulated the mechanical stiffness of the HA-CDH/odHA hydrogels by adjusting the degree of CDH substitution and polymer composition in the gels. These hydrogels exhibited improved hydrolytic stability under physiological conditions, which was attributed to the presence of multiple delocalized electron arrangements within the hydrazone bonds. Notably, the enzymatic degradability of these hydrogels was unaffected by the hydrazone bonds. We developed self-healing HA-CDH/odHA hydrogels using free adipic acid dihydrazide and utilized them to fabricate various three-dimensional (3D) structures via 3D printing. We integrated resonance-stabilized hydrazone chemistry with self-healing behavior in HA-based hydrogels, enabling both slow degradation and direct extrusion-based 3D bioprinting of cell-laden constructs without secondary networks or post-crosslinking treatments. Furthermore, we investigated the effect of enhanced mechanical stiffness on in vitro cell differentiation and observed significant gene expression levels that were indicative of chondrogenic and osteogenic differentiation within hydrogels with increased stiffness. These findings could help elucidate the effect of the physical properties of natural polysaccharide-based hydrogels on cell phenotype modulation and expand their applications in tissue engineering.  

Graphical abstract
Keywords
3D bioprinting
Hydrazide-modified hyaluronate
Hydrolytic degradation
Oxidized hyaluronate
Resonance structure
Self-healing
Funding
This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (RS-2024-00355200).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105-121. doi:10.1016/j.jare.2013.07.006.
  2. Zhu T, Mao J, Cheng Y, et al. Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces. 2019;6(17):1900761. doi:10.1002/admi.201900761.
  3. Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28(34):5185-5192. doi:10.1016/j.biomaterials.2007.07.044.
  4. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869-1880. doi:10.1021/cr000108x.
  5. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-4351. doi:10.1016/s0142-9612(03)00340-5.
  6. Li Z, Lin Z. Recent advances in polysaccharide‐based hydrogels for synthesis and applications. Aggregate. 2021;2(2):e21. doi:10.1002/agt2.21.
  7. Zhang H, Shi LWE, Zhou J. Recent developments of polysaccharide‐based double‐network hydrogels. J Polym Sci. 2022;61(1):7-43. doi:10.1002/pol.20220510.
  8. Chen Q, Chen H, Zhu L, Zheng J. Fundamentals of double network hydrogels. J Mater Chem B. 2015;3(18):3654-3676. doi:10.1039/c5tb00123d.
  9. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441-453. doi:10.1002/bit.25160.
  10. Gomes ME, Rodrigues MT, Domingues RMA, Reis, RL. Tissue engineering and regenerative medicine: new trends and directions—a year in review. Tissue Eng Part B Rev. 2017;23(3):211-224. doi:10.1089/ten.TEB.2017.0081.
  11. Liu C, Xu N, Zong Q, Yu J, Zhang P. Hydrogel prepared by 3D printing technology and its applications in the medical field. Colloid Interface Sci Commun. 2021;44:100498. doi:10.1016/j.colcom.2021.100498.
  12. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496-504. doi:10.1016/j.mattod.2013.11.017.
  13. Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:100543. doi:10.1016/j.mser.2020.100543.
  14. Mani MP, Sadia M, Jaganathan SK, et al. A review on 3D printing in tissue engineering applications. J Polym Eng. 2022;42(3):243-265. doi:10.1515/polyeng-2021-0059.
  15. Kirchmajer DM, Gorkin Iii R, in het Panhuis M. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B. 2015;3(20):4105-4117. doi:10.1039/c5tb00393h.
  16. Xu W, Jambhulkar S, Zhu Y, et al. 3D printing for polymer/ particle-based processing: a review. Compos B Eng. 2021;223:109102. doi:10.1016/j.compositesb.2021.109102.
  17. Wei J, Wang J, Su S, et al. 3D printing of an extremely tough hydrogel. RSC Adv. 2015;5 (99):81324-81329. doi:10.1039/c5ra16362e.
  18. Xu C, Dai G, Hong Y. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater. 2019;95:50-59. doi:10.1016/j.actbio.2019.05.032.
  19. Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA. Extrusion 3D printing of polymeric materials with advanced properties. Adv Sci. 2020;7(17):2001379. doi:10.1002/advs.202001379.
  20. Díaz A, Herrada-Manchón H, Nunes J, et al. 3D printable dynamic hydrogel: as simple as it gets! Macromol Rapid Commun. 2022;43(21):2200449. doi:10.1002/marc.202200449.
  21. Zhu Z, Wang Y-M, Yang J, Luo X-S. Hyaluronic acid: a versatile biomaterial in tissue engineering. Plast Aesthetic Res. 2017;4(12):219-227. doi:10.20517/2347-9264.2017.71.
  22. Nair S, Remya NS, Remya S, Nair PD. A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications. Carbohydr Polym. 2011;85(4):838-844. doi:10.1016/j.carbpol.2011.04.004.
  23. Jeon O, Song SJ, Lee K-J, et al. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr Polym. 2007;70(3):251-257. doi:10.1016/j.carbpol.2007.04.002.
  24. Kim HS, Kim C, Lee KY. Three-dimensional bioprinting of polysaccharide-based self-healing hydrogels with dual cross-linking. J Biomed Mater Res A. 2022;110(4):761-772. doi:10.1002/jbm.a.37325.
  25. Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng. 2016;2(10):1743-1751. doi:10.1021/acsbiomaterials.6b00158.
  26. Liu S, Liu X, Ren Y, et al. Mussel-inspired dual-cross-linking hyaluronic acid/epsilon-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Interfaces. 2020;12(25):27876-27888. doi:10.1021/acsami.0c00782.
  27. Kim SW, Kim DY, Roh HH, Kim HS, Lee JW, Lee KY. Three-dimensional bioprinting of cell-laden constructs using polysaccharide-based self-healing hydrogels. Biomacromolecules. 2019;20(5):1860-1866. doi:10.1021/acs.biomac.8b01589.
  28. Koivusalo L, Karvinen J, Sorsa E, et al. Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Mater Sci Eng C. 2018;85:68-78. doi:10.1016/j.msec.2017.12.013.
  29. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials. 2014;35(18):4969-4985. doi:10.1016/j.biomaterials.2014.03.001
  30. Ramimoghadam D, Eyckens DJ, Evans RA, Moad G, Holmes S, Simons R. Towards sustainable materials: a review of acylhydrazone chemistry for reversible polymers. Chem Eur J. 2024;30(49):e202401728. doi:10.1002/chem.202401728.
  31. Hozumi T, Kageyama T, Ohta S, Fukuda J, Ito T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff ’s base formation. Biomacromolecules. 2018;19(2):288-297. doi:10.1021/acs.biomac.7b01133.
  32. Oommen OP, Wang S, Kisiel M, Sloff M, Hilborn J, Varghese OP. Smart design of stable extracellular matrix mimetic hydrogel: synthesis, characterization, and in vitro and in vivo evaluation for tissue engineering. Adv Funct Mater. 2013;23(10):1273-1280. doi:10.1002/adfm.201201698.
  33. Jeon O, Alt DS, Ahmed SM, Alsberg E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials. 2012;33(13):3503-3514. doi:10.1016/j.biomaterials.2012.01.041.
  34. Kim HS, Kim JS, Hwang J, Lee IY, Lee KY. Decoupling stiffness and toughness of self-healing hydrogels for complex tissue regeneration via 3D bioprinting. Chem Eng J. 2024;487:150551. doi:10.1016/j.cej.2024.150551.
  35. Mun CU, Kim HS, Kong M, Lee KY. Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids Surf B Biointerfaces. 2023;221:113004. doi:10.1016/j.colsurfb.2022.113004.
  36. Wang S, Oommen OP, Yan H, Varghese OP. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor. Biomacromolecules. 2013;14(7):2427-2432. doi:10.1021/bm400612h.
  37. Kafili G, Tamjid E, Simchi A. The impact of mechanical tuning on the printability of decellularized amniotic membrane bioinks for cell-laden bioprinting of soft tissue constructs. Sci Rep. 2024;14(1):29697. doi:10.1038/s41598-024-80973-3.
  38. Kim JK, Srinivasan P, Kim JH, et al. Structural and antioxidant properties of gamma irradiated hyaluronic acid. Food Chem. 2008;109(4):763-770. doi:10.1016/j.foodchem.2008.01.038.
  39. Fan QG, Lewis DM, Tapley KN. Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J Appl Polym Sci. 2001;82(5):1195-1202. doi:10.1002/app.1953.
  40. Roh HH, Kim HS, Kim C, Lee KY. 3D printing of polysaccharide-based self-healing hydrogel reinforced with alginate for secondary cross-linking. Biomedicines. 2021;9(9):1224. doi:10.3390/biomedicines9091224.
  41. Morgan FLC, Beeren IAO, Moroni L, Baker MB. Designing dynamic hydrogels: The interplay of cross-linker length, valency, and reaction kinetics in hydrazone-based networks. Chem Mater. 2025;37(8):2709–2719. doi:10.1021/acs.chemmater.4c02573.
  42. Shin W, Chung K. Preparation and characterization of poly(acrylic acid)-based self-healing hydrogel for 3D shape fabrication via extrusion-based 3D printing. Materials. 2023;16(5):2085. doi:10.3390/ma16052085.
  43. Karvinen J, Kellomäki M. 3D-bioprinting of self-healing hydrogels. Eur Polym J. 2024;209:112864. doi:10.1016/j.eurpolymj.2024.112864.
  44. Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106(3):818-839. doi:10.1021/cr050247k.
  45. Lee HJ, Seo Y, Kim HS, Lee JW, Lee KY. Regulation of the viscoelastic properties of hyaluronate-alginate hybrid hydrogel as an injectable for chondrocyte delivery. ACS Omega 2020;5(25):15567-15575. doi:10.1021/acsomega.0c01763.
  46. Allen JL, Cooke ME, Alliston T. ECM stiffness primes the TGFbeta pathway to promote chondrocyte differentiation. Mol Biol Cell. 2012;23(18):3731-3742. doi:10.1091/mbc.E12-03-0172.
  47. Arora A, Kothari A, Katti DS. Pericellular plasma clot negates the influence of scaffold stiffness on chondrogenic differentiation. Acta Biomater. 2016;46:68-78. doi:10.1016/j.actbio.2016.09.038.

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing