Artificial intelligence-augmented bioprinting systems: Data-driven optimization and future applications in pharmacological research
 
 The high attrition rate of drug candidates in clinical trials is often attributed to the use of conventional two-dimensional cell cultures and animal models that fail to accurately recapitulate human physiology. Three-dimensional (3D) bioprinting has emerged as a transformative technology for creating sophisticated, patient-relevant tissue models for drug screening and toxicity assessment. Concurrently, machine learning (ML) offers a powerful paradigm for extracting insights from complex, multi-modal data and optimizing intricate processes. This review presents a comprehensive and critical overview of the convergence of 3D bioprinting and ML, with a focus on their integrated applications in drug development. We critically and comprehensively analyze the various data types generated throughout the bioprinting workflow, from process parameters and material properties to biological and “omics” data. We then discuss the application of diverse ML approaches, from statistical methods to deep learning, for optimizing bioprinting processes and enhancing the predictive accuracy of drug screening. By including specific quantitative outcomes and comparative analyses from recent studies, we provide an evidence-based perspective on the state of the field and highlight its potential to accelerate the drug discovery pipeline.

- Schlander M, Hernandez-Villafuerte K, Cheng CY, Mestre-Ferrandiz J, Baumann M. How much does it cost to research and develop a new drug? A systematic review and assessment. Pharmacoeconomics. 2021;39(11): 1243-1269. doi: 10.1007/s40273-021-01065-y
- Rennane S, Baker L, Mulcahy A. Estimating the cost of industry investment in drug research and development: a review of methods and results. Inquiry. 2021;58:00469580211059731. doi: 10.1177/00469580211059731
- Esposito A, Ferraresi A, Vallino L, Garavaglia B, Dhanasekaran DN, Isidoro C. Three-dimensional in vitro cell cultures as a feasible and promising alternative to two-dimensional and animal models in cancer research. Int J Biol Sci. 2024;20(13):5293-5311. doi: 10.7150/ijbs.96469
- Urzì O, Gasparro R, Costanzo E, et al. Three-dimensional cell cultures: the bridge between in vitro and in vivo models. IJMS. 2023;24(15):12046. doi: 10.3390/ijms241512046
- Kreutzer FP, Meinecke A, Schmidt K, Fiedler J, Thum T. Alternative strategies in cardiac preclinical research and new clinical trial formats. Cardiovasc Res. 2022;118(3):746-762. doi: 10.1093/cvr/cvab075
- Han X, Cai C, Deng W, et al. Landscape of human organoids: ideal model in clinics and research. Innovation (Camb). 2024;5(3):100620. doi: 10.1016/j.xinn.2024.100620
- Cacciamali A, Villa R, Dotti S. 3D cell cultures: evolution of an ancient tool for new applications. Front Physiol. 2022;13:836480. doi: 10.3389/fphys.2022.836480
- Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 2023;14(1):3168. doi: 10.1038/s41467-023-38832-8
- Soheilmoghaddam F, Rumble M, Cooper-White J. High-throughput routes to biomaterials discovery. Chem Rev. 2021;121(18):10792-10864. doi: 10.1021/acs.chemrev.0c01026
- Engel M, Belfiore L, Aghaei B, Sutija M. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow. SLAS Technol. 2022;27(1):32-38. doi: 10.1016/j.slast.2021.10.002
- Johnson PA, Menegatti S, Chambers AC, et al. A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitro drug- and radiation-response. Biofabrication. 2023;15(1):014103. doi: 10.1088/1758-5090/ac999f
- Da Silva VA, Sharma R, Shteinberg E, et al. Machine learning approaches to 3D models for drug screening. Biomedi Mater Dev. 2024;2(2):695-720. doi: 10.1007/s44174-023-00142-4
- Kim MH, Singh YP, Celik N, et al. High-throughput bioprinting of spheroids for scalable tissue fabrication. Nat Commun. 2024;15(1):10083. doi: 10.1038/s41467-024-54504-7
- Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302. doi: 10.1063/1.5056188
- Huskin G, Chen J, Davis T, Jun HW. Tissue-engineered 3D in vitro disease models for high-throughput drug screening. Tissue Eng Regen Med. 2023;20(4):523-538. doi: 10.1007/s13770-023-00522-3
- Wang X, Luo Y, Ma Y, Wang P, Yao R. Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol. 2024;42(5): 648-663. doi: 10.1016/j.tibtech.2023.11.006
- Tofani LB, Avelino TM, De Azevedo RJ, et al. Biofabricated 3D intestinal models as an alternative to animal-based approaches for drug toxicity assays. Tissue Eng Regen Med. 2025;22(2):181-194. doi: 10.1007/s13770-024-00694-6
- Kesti M, Fisch P, Pensalfini M, Mazza E, Zenobi-Wong M. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures. BioNanoMaterials. 2016;17(3-4):193-204. doi: 10.1515/bnm-2016-0004
- Putrama IM, Martinek P. Heterogeneous data integration: challenges and opportunities. Data Brief. 2024;56:110853. doi: 10.1016/j.dib.2024.110853
- Rickert CA, Lieleg O. Machine learning approaches for biomolecular, biophysical, and biomaterials research. Biophys Rev. 2022;3(2):021306. doi: 10.1063/5.0082179
- Yu J, Yao D, Wang L, Xu M. Machine learning in predicting and optimizing polymer printability for 3D bioprinting. Polymers (Basel). 2025;17(13):1873. doi: 10.3390/polym17131873
- Rafieyan S, Ansari E, Vasheghani-Farahani E. A practical machine learning approach for predicting the quality of 3D (bio)printed scaffolds. Biofabrication. 2024;16(4):045014. doi: 10.1088/1758-5090/ad6374
- Sun J, Yao K, An J, Jing L, Huang K, Huang D. Machine learning and 3D bioprinting. IJB. 2024;9(4):717. doi: 10.18063/ijb.717
- Ahmed E, Mulay P, Ramirez C, Tirado-Mansilla G, Cheong E, Gormley AJ. Mapping biomaterial complexity by machine learning. Tissue Eng Part A. 2024;30(19-20):662-680. doi: 10.1089/ten.tea.2024.0067
- Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink formulation and machine learning-empowered bioprinting optimization. Front Bioeng Biotechnol. 2022;10:913579. doi: 10.3389/fbioe.2022.913579
- Shin J, Kang R, Hyun K, et al. Machine learning‐enhanced optimization for high‐throughput precision in cellular droplet bioprinting. Adv Sci. 2025;12(20):2412831. doi: 10.1002/advs.202412831
- Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914. doi: 10.1016/j.apmt.2020.100914
- Vitacolonna M, Bruch R, Schneider R, et al. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer. 2024;24(1):1542. doi: 10.1186/s12885-024-13329-9
- Fritschen A, Lindner N, Scholpp S, et al. High‐scale 3D‐bioprinting platform for the automated production of vascularized organs‐on‐a‐chip. Adv Healthc Mater. 2024;13(17):2304028. doi: 10.1002/adhm.202304028
- Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharma Sci. 2020;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003
- Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D, Colosimo BM. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-des Manuf. 2022;5(1):14-42. doi: 10.1007/s42242-021-00165-0
- Ramiah P, Du Toit LC, Choonara YE, Kondiah PPD, Pillay V. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater. 2020;7:76. doi: 10.3389/fmats.2020.00076
- Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
- Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting – process, bio-inks and applications. Biomater Sci. 2017;5(4):632-647. doi: 10.1039/C6BM00861E
- Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. IJMS. 2021;22(8):3971. doi: 10.3390/ijms22083971
- Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT. Essential steps in bioprinting: from pre- to post-bioprinting. Biotechnol Adv. 2018;36(5):1481-1504. doi: 10.1016/j.biotechadv.2018.06.003
- Choi JW, Kang SJ, Choi JI, Kwack K, Kim M. Role of Nuclear-receptor-related 1 in the synergistic neuroprotective effect of umbilical cord blood and erythropoietin combination therapy in hypoxic ischemic encephalopathy. IJMS. 2022;23(5):2900. doi: 10.3390/ijms23052900
- Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
- Tarassoli SP, Jessop ZM, Jovic T, Hawkins K, Whitaker IS. Candidate bioinks for extrusion 3D bioprinting—a systematic review of the literature. Front Bioeng Biotechnol. 2021;9:616753. doi: 10.3389/fbioe.2021.616753
- Yu J, Park SA, Kim WD, et al. Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers. 2020;12(12):2958. doi: 10.3390/polym12122958
- Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules. 2016;21(6):685. doi: 10.3390/molecules21060685
- Kong Z, Wang X. Bioprinting technologies and bioinks for vascular model establishment. IJMS. 2023;24(1):891. doi: 10.3390/ijms24010891
- Yu C, Schimelman J, Wang P, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev. 2020;120(19):10695-10743. doi: 10.1021/acs.chemrev.9b00810
- Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
- Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):045009. doi: 10.1088/1758-5090/7/4/045009
- Strauß S, Schroth B, Hubbuch J. Evaluation of the reproducibility and robustness of extrusion-based bioprinting processes applying a flow sensor. Front Bioeng Biotechnol. 2022;10:831350. doi: 10.3389/fbioe.2022.831350
- Pössl A, Hartzke D, Schlupp P, Runkel FE. Optimized cell mixing facilitates the reproducible bioprinting of constructs with high cell viability. Appl Sci. 2021;12(1):326. doi: 10.3390/app12010326
- Grijalva Garces D, Strauß S, Gretzinger S, et al. On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field. Biofabrication. 2023;16(1):015002. doi: 10.1088/1758-5090/acfe3b
- Strauß S, Grijalva Garces D, Hubbuch J. Analytics in extrusion-based bioprinting: standardized methods improving quantification and comparability of the performance of bioinks. Polymers. 2023;15(8):1829. doi: 10.3390/polym15081829
- Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
- Upton A, Mylona A, Zimbitas G. Utilising design of experiment to design an optimised bioink for 3D bioprinting. J Mater Sci. 2025;60(25):10467-10477. doi: 10.1007/s10853-025-11076-1
- Chen H, Liu Y, Balabani S, Hirayama R, Huang J. Machine learning in predicting printable biomaterial formulations for direct ink writing. Research. 2023;6:0197. doi: 10.34133/research.0197
- Yang Y, Jia Y, Yang Q, Xu F. Engineering bio-inks for 3D bioprinting cell mechanical microenvironment. IJB. 2022;9(1):632. doi: 10.18063/ijb.v9i1.632
- An J, Chua CK, Mironov V. Application of machine learning in 3D bioprinting: focus on development of big data and digital twin. IJB. 2024;7(1):342. doi: 10.18063/ijb.v7i1.342
- Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev. 2024;208:115237. doi: 10.1016/j.addr.2024.115237
- Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D bioprinting technology based on machine learning: a review of recent trends and advances. Micromachines. 2022;13(3):363. doi: 10.3390/mi13030363
- Wu D, Xu C. Predictive modeling of droplet formation processes in inkjet-based bioprinting. J Manuf Sci Eng. 2018;140(10):101007. doi: 10.1115/1.4040619
- Sarah R, Rohauer R, Schimmelpfennig K, Limon SM, Lewis CL, Habib A. Data-driven optimization of bioink formulations for extrusion-based bioprinting: a predictive modeling approach. J Manuf Sci Eng. 2025;147(10):101001. doi: 10.1115/1.4069041
- Nadernezhad A, Groll J. Machine learning to explain printability induced by rheology additives. ChemRxiv. 2021. doi: 10.26434/chemrxiv-2021-41mn8
- Tang M, Jiang S, Huang X, et al. Integration of 3D bioprinting and multi-algorithm machine learning identified glioma susceptibilities and microenvironment characteristics. Cell Discov. 2024;10(1):39. doi: 10.1038/s41421-024-00650-7
- Choi YM, Na D, Yoon G, et al. Prediction of patient drug response via 3D bioprinted gastric cancer model utilized patient-derived tissue laden tissue-specific bioink. Adv Sci (Weinh). 2025;12(10):e2411769. doi: 10.1002/advs.202411769
- Sarah R, Schimmelpfennig K, Rohauer R, Lewis CL, Limon SM, Habib A. Characterization and machine learning-driven property prediction of a novel hybrid hydrogel bioink considering extrusion-based 3D bioprinting. Gels. 2025;11(1):45. doi: 10.3390/gels11010045
- Habib A, Sarah R, Tuladhar S, Khoda B, Limon SM. Modulating rheological characteristics of bio-ink with component weight and shear rate for enhanced bioprinted scaffold fidelity. Bioprinting. 2024;38:e00332. doi: 10.1016/j.bprint.2024.e00332
- Janani G, Priya S, Dey S, Mandal BB. Mimicking native liver lobule microarchitecture in vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications. ACS Appl Mater Interfaces. 2022;14(8):10167-10186. doi: 10.1021/acsami.2c00312
- Szűcs D, Fekete Z, Guba M, et al. Toward better drug development: three-dimensional bioprinting in toxicological research. IJB. 2023;9(2):663. doi: 10.18063/ijb.v9i2.663
- Royo F, Garcia-Vallicrosa C, Azparren-Angulo M, Bordanaba-Florit G, Lopez-Sarrio S, Falcon-Perez JM. Three-dimensional hepatocyte spheroids: model for assessing chemotherapy in hepatocellular carcinoma. Biomedicines. 2024;12(6):1200. doi: 10.3390/biomedicines12061200
- Maloney E, Clark C, Sivakumar H, et al. Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput. Micromachines. 2020;11(2):208. doi: 10.3390/mi11020208
- Parodi I, Di Lisa D, Pastorino L, Scaglione S, Fato MM. 3D bioprinting as a powerful technique for recreating the tumor microenvironment. Gels. 2023;9(6):482. doi: 10.3390/gels9060482
- Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: exploring cell sources for organ fabrication. Heliyon. 2024;10(3):e24593. doi: 10.1016/j.heliyon.2024.e24593
- Langer EM, Allen-Petersen BL, King SM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 2019;26(3):608-623.e6. doi: 10.1016/j.celrep.2018.12.090
- Estermann M, Bisig C, Septiadi D, Petri-Fink A, Rothen- Rutishauser B. Bioprinting for human respiratory and gastrointestinal in vitro models. Methods Mol Biol. 2020;2140:199-215. doi: 10.1007/978-1-0716-0520-2_13
- Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep. 2020;7:1578-1587. doi: 10.1016/j.toxrep.2020.11.003
- Ide I, Nagao E, Kajiyama S, Mizoguchi N. A novel evaluation method for determining drug-induced hepatotoxicity using 3D bio-printed human liver tissue. Toxicol Mech Methods. 2020;30(3):189-196. doi: 10.1080/15376516.2019.1686795
- Ort C, Chen Y, Ghagre A, Ehrlicher A, Moraes C. Bioprintable, stiffness-tunable collagen-alginate microgels for increased throughput 3D cell culture studies. ACS Biomater Sci Eng. 2021;7(6):2814-2822. doi: 10.1021/acsbiomaterials.1c00129
- Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi: 10.1038/s41563-020-00853-9
- Bouwmeester MC, Bernal PN, Oosterhoff LA, et al. Bioprinting of human liver-derived epithelial organoids for toxicity studies. Macromol Biosci. 2021;21(12):e2100327. doi: 10.1002/mabi.202100327
- Kang HK, Sarsenova M, Kim DH, et al. Establishing a 3D in vitro hepatic model mimicking physiologically relevant to in vivo state. Cells. 2021;10(5):1268. doi: 10.3390/cells10051268
- Datta P, Wu Y, Yu Y, Moncal KK, Ozbolat IT. A scaffold free 3D bioprinted cartilage model for in vitro toxicology. Methods Mol Biol. 2021;2147:175-183. doi: 10.1007/978-1-0716-0611-7_15
- Hong S, Song JM. A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity. Biomater Sci. 2021;9(17):5939-5950. doi: 10.1039/d1bm00749a
- Geevarghese R, Somasekharan LT, Bhatt A, Kasoju N, Nair RP. Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application. Int J Biol Macromol. 2022;207:278-288. doi: 10.1016/j.ijbiomac.2022.02.191
- Tröndle K, Miotto G, Rizzo L, et al. Deep learning-assisted nephrotoxicity testing with bioprinted renal spheroids. Int J Bioprint. 2022;8(2):528. doi: 10.18063/ijb.v8i2.528
- Wang P, Sun L, Li C, et al. Study on drug screening multicellular model for colorectal cancer constructed by three-dimensional bioprinting technology. Int J Bioprint. 2023;9(3):694. doi: 10.18063/ijb.694
- Huang B, Wei X, Chen K, Wang L, Xu M. Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening. Int J Bioprint. 2023; 9(3):676. doi: 10.18063/ijb.676
- Fan Z, Wei X, Chen K, Wang L, Xu M. 3D bioprinting of an endothelialized liver lobule-like construct as a tumor-scale drug screening platform. Micromachines (Basel). 2023;14(4):878. doi: 10.3390/mi14040878
- Yu M, Ni M, Xu F, et al. NSUN6-mediated 5-methylcytosine modification of NDRG1 mRNA promotes radioresistance in cervical cancer. Mol Cancer. 2024; 23(1):139. doi: 10.1186/s12943-024-02055-2
- Gu WJ, Liu XX, Shen YW, et al. TRIM4 enhances small-molecule-induced neddylated-degradation of CORO1A for triple negative breast cancer therapy. Theranostics. 2024;14(18):7023-7041. doi: 10.7150/thno.97662
- Ali ASM, Berg J, Roehrs V, et al. Xeno-free 3D bioprinted liver model for hepatotoxicity assessment. Int J Mol Sci. 2024;25(3):1811. doi: 10.3390/ijms25031811
- do Amaral SR, Amantino CF, Atanasov A, et al. Photodynamic therapy as a novel therapeutic modality applying quinizarin-loaded nanocapsules and 3D bioprinting skin permeation for inflammation treatment. Pharmaceuticals (Basel). 2024;17(9):1169. doi: 10.3390/ph17091169
- Suwannakot P, Zhu L, Tolentino MAK, et al. Electrostatically cross-linked bioinks for jetting-based bioprinting of 3D cell cultures. ACS Appl Bio Mater. 2024;7(1):269-283. doi: 10.1021/acsabm.3c00849
- Shrestha S, Lekkala VKR, Acharya P, Kang SY, Vanga MG, Lee MY. Reproducible generation of human liver organoids (HLOs) on a pillar plate platform via microarray 3D bioprinting. Lab Chip. 2024;24(10):2747-2761. doi: 10.1039/d4lc00149d
- Lu TY, Ji Y, Lyu C, et al. Bioprinted high cell density liver model with improved hepatic metabolic functions. Biomaterials. 2025;320:123256. doi: 10.1016/j.biomaterials.2025.123256
- Feng T, Wei L, Zhou C, et al. Light-based 3D bioprinting of testicular organoid as an in vitro model for reproductive toxicity assessment. ACS Biomater Sci Eng. 2025;11(7):4357-4367. doi: 10.1021/acsbiomaterials.5c00414
- Hu Y, Nicolas GM, Cai Y, Dai X, Ma S. Epidermal and dermal cell-composed organospheres to assess microplastic-induced skin toxicity. Biomaterials. 2026;324:123513. doi: 10.1016/j.biomaterials.2025.123513
- Chandarana C, Sane D, Mishra S, Chaubey A, Gohil U, Prajapati B. Recent advances in bioink research for biomedical applications. Biomed Mater Dev. 2025. doi: 10.1007/s44174-025-00478-z
- Alonzo M, Dominguez E, Alvarez-Primo F, et al. A comparative study in the printability of a bioink and 3D models across two bioprinting platforms. Mater Lett. 2020;264:127382. doi: 10.1016/j.matlet.2020.127382
- Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
- Yu C, Jiang J. A perspective on using machine learning in 3D bioprinting. IJB. 2020;6(1):253. doi: 10.18063/ijb.v6i1.253
- Elbadawi M, McCoubrey LE, Gavins FKH, et al. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci. 2021;42(9):745-757. doi: 10.1016/j.tips.2021.06.002
- Visan AI, Negut I. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life. 2024;14(2):233. doi: 10.3390/life14020233
- Elbadawi M, Muñiz Castro B, Gavins FKH, et al. M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines. Int J Pharma. 2020;590: 119837. doi: 10.1016/j.ijpharm.2020.119837
- Ong JJ, Castro BM, Gaisford S, et al. Accelerating 3D printing of pharmaceutical products using machine learning. Int J Pharma: X. 2022;4:100120. doi: 10.1016/j.ijpx.2022.100120
- Rahmani AM, Yousefpoor E, Yousefpoor MS, et al. Machine learning (ML) in medicine: review, applications, and challenges. Mathematics. 2021;9(22):2970. doi: 10.3390/math9222970
- Jovel J, Greiner R. An introduction to machine learning approaches for biomedical research. Front Med. 2021;8:771607. doi: 10.3389/fmed.2021.771607
- Cano G, Garcia-Rodriguez J, Garcia-Garcia A, et al. Automatic selection of molecular descriptors using random forest: application to drug discovery. Expert Syst Appl. 2017;72:151-159. doi: 10.1016/j.eswa.2016.12.008
- Rodríguez-Pérez R, Bajorath J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J Comput Aided Mol Des. 2022;36(5):355-362. doi: 10.1007/s10822-022-00442-9
- Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021;25(3):1315-1360. doi: 10.1007/s11030-021-10217-3
- Tsuneki M. Deep learning models in medical image analysis. J Oral Biosci. 2022;64(3):312-320. doi: 10.1016/j.job.2022.03.003
- Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: resources, methods, and applications. Mol Ther Nucleic Acids. 2023;31:691-702. doi: 10.1016/j.omtn.2023.02.019
- Ravindra Padalkar G, Dinkar Patil S, Mallikarjun Hegadi M, Kailash Jaybhaye N. Drug discovery using generative adversarial network with reinforcement learning. In: 2021 International Conference on Computer Communication and Informatics (ICCCI). IEEE; 2021:1-3. doi: 10.1109/ICCCI50826.2021.9402449
- Wang J, He R, Wang X, Li H, Lu Y. MCF-DTI: multi-scale convolutional local–global feature fusion for drug–target interaction prediction. Molecules. 2025;30(2):274. doi: 10.3390/molecules30020274
- Zhang L, Zhang H, Ai H, et al. Applications of machine learning methods in drug toxicity prediction. CTMC. 2018;18(12):987-997. doi: 10.2174/1568026618666180727152557
- Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol. 2020;33(1):20-37. doi: 10.1021/acs.chemrestox.9b00227
- Parvatikar PP, Patil S, Khaparkhuntikar K, et al. Artificial intelligence: machine learning approach for screening large database and drug discovery. Antiviral Res. 2023;220:105740. doi: 10.1016/j.antiviral.2023.105740
- Judson R, Elloumi F, Setzer RW, Li Z, Shah I. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinformatics. 2008;9(1):241. doi: 10.1186/1471-2105-9-241
- Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20(1):2. doi: 10.1186/s40360-018-0282-6
- Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30. doi: 10.3389/fchem.2018.00030
- Fu R, Chen Z, Tian H, et al. A review on the applications of machine learning in biomaterials, biomechanics, and biomanufacturing for tissue engineering. Smart Mater Med. 2025;6(2):171-204. doi: 10.1016/j.smaim.2025.06.003
- Tuna C, Ouzir N, Dubois D, et al. Automated defect classification in aerospace x-ray images using CNNs. eJNDT. 2025;30(8). doi: 10.58286/31418
- Cumbajin E, Rodrigues N, Costa P, et al. A systematic review on deep learning with CNNs applied to surface defect detection. J Imaging. 2023;9(10):193.doi: 10.3390/jimaging9100193
- Zhang Z, Zhou X, Fang Y, Xiong Z, & Zhang T. AI-driven 3D bioprinting for regenerative medicine: from bench to bedside. Bioact Mater. 2025;45:201-230. doi: 10.1016/j.bioactmat.2024.11.021
- Wang J, Heshmati Aghda N, Jiang J, Mridula Habib A, Ouyang D, Maniruzzaman M. 3D bioprinted microparticles: Optimizing loading efficiency using advanced DoE technique and machine learning modeling. Int J Pharma. 2022;628:122302. doi: 10.1016/j.ijpharm.2022.122302
- Ng WL, Chan A, Ong YS, Chua CK. Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual Phys Prototyping. 2020;15(3):340-358. doi: 10.1080/17452759.2020.1771741
- Bao D, Wang L, Zhou X, Yang S, He K, Xu M. Automated detection and growth tracking of 3D bio-printed organoid clusters using optical coherence tomography with deep convolutional neural networks. Front Bioeng Biotechnol. 2023;11:1133090. doi: 10.3389/fbioe.2023.1133090
- Bone JM, Childs CM, Menon A, et al. Hierarchical machine learning for high-fidelity 3D printed biopolymers. ACS Biomater Sci Eng. 2020;6(12):7021-7031. doi: 10.1021/acsbiomaterials.0c00755
- Lee J, Oh SJ, An SH, Kim WD, Kim SH. Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Biofabrication. 2020;12(3):035018. doi: 10.1088/1758-5090/ab8707
- Chen H, Zhang B, Huang J. Recent advances and applications of artificial intelligence in 3D bioprinting. Biophys Rev. 2024;5(3):031301. doi: 10.1063/5.0190208
- Xu Y, Sarah R, Habib A, Liu Y, Khoda B. Constraint based Bayesian optimization of bioink precursor: a machine learning framework. Biofabrication. 2024;16(4):045031. doi: 10.1088/1758-5090/ad716e
- Shin J, Kang M, Hyun K, et al. Machine learning driven optimization for high precision cellular droplet bioprinting. BioRxiv. 2024:2024;611131. doi: 10.1101/2024.09.04.611131
- Rezvani A, Bigverdi M, Rohban MH. Image-based cell profiling enhancement via data cleaning methods. PLoS One. 2022;17(5):e0267280. doi: 10.1371/journal.pone.0267280
- Dehbozorgi P, Ryabchykov O, Bocklitz T. A systematic investigation of image pre-processing on image classification. IEEE Access. 2024;12:64913-64926. doi: 10.1109/ACCESS.2024.3395063
- Asachi M, Alonso Camargo-Valero M. Multi-sensors data fusion for monitoring of powdered and granule products: Current status and future perspectives. Adv Powder Technol. 2023;34(7):104055. doi: 10.1016/j.apt.2023.104055
- Kush JC. Integrating sensor technologies with conversational AI: enhancing context-sensitive interaction through real-time data fusion. Sensors. 2025;25(1):249. doi: 10.3390/s25010249
- Yetgin A. Revolutionizing multi‐omics analysis with artificial intelligence and data processing. Quant Biol. 2025;13(3):e70002. doi: 10.1002/qub2.70002
- Zhang J, Che Y, Liu R, Wang Z, Liu W. Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics. Brief Bioinform. 2025;26(4):bbaf440. doi: 10.1093/bib/bbaf440
- You S, Fan Y, Chen Y, et al. Advancements and prospects of deep learning in biomaterials evolution. CR-PHYS-SC. 2024;5(9):102116. doi: 10.1016/j.xcrp.2024.102116
- Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (2020). 2023;4(1):e194. doi: 10.1002/mco2.194
- Ning H, Zhou T, Joo SW. Machine learning boosts three-dimensional bioprinting. IJB. 2023;9(4):739. doi: 10.18063/ijb.739
- Bonatti AF, Vozzi G, De Maria C. Enhancing quality control in bioprinting through machine learning. Biofabrication. 2024;16(2):022001. doi: 10.1088/1758-5090/ad2189
- Al-Kharusi G, Dunne NJ, Little S, Levingstone TJ. The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research. Bioengineering. 2022;9(10):561. doi: 10.3390/bioengineering9100561
- Setiya A, Jani V, Sonavane U, Joshi R. MolToxPred: small molecule toxicity prediction using machine learning approach. RSC Adv. 2024;14(6):4201-4220. doi: 10.1039/D3RA07322J
- Kamble SD, Singh SC, Ashwani Kumar, Dwivedi G, eds. Tissue Engineering and Regenerative Medicine: Advances and Applications. 1st edition. CRC Press, Taylor & Francis Group; 2025. doi: 10.1201/9781003536352
- Bonatti AF, Vozzi G, Chua CK, Maria CD. A deep learning quality control loop of the extrusion-based bioprinting process. Int J Bioprint. 2022;8(4):620. doi: 10.18063/ijb.v8i4.620
- Arduengo J, Hascoet N, Chinesta F, Hascoet JY. Open-loop control system for high precision extrusion-based bioprinting through machine learning modeling. J Mach Eng. 2024;24(1):103-117.doi: 10.36897/jme/186044
- Sani AR, Zolfagharian A, Kouzani AZ. Artificial intelligence‐augmented additive manufacturing: insights on closed‐loop 3D printing. Adv Intell Syst. 2024;6(10):2400102. doi: 10.1002/aisy.202400102
- Arduengo J, Hascoët N, Chinesta F, Hascoet JY. Closed-loop control of extrusion-based bioprinting through real-time computer vision. J Mach Eng. 2025;25(2):28-42. doi: 10.36897/jme/205422
- Rahmani Dabbagh S, Ozcan O, Tasoglu S. Machine learning-enabled optimization of extrusion-based 3D printing. Methods. 2022;206:27-40. doi: 10.1016/j.ymeth.2022.08.002
- Inayathullah S, Buddala R. Review of machine learning applications in additive manufacturing. Results Eng. 2025;25:103676. doi: 10.1016/j.rineng.2024.103676
- Tian S, Stevens R, McInnes BT, Lewinski NA. Machine assisted experimentation of extrusion-based bioprinting systems. Micromachines (Basel). 2021;12(7):780. doi: 10.3390/mi12070780
- Hashemi A, Ezati M, Zumberg I, et al. Characterization and optimization of a biomaterial ink aided by machine learning-assisted parameter suggestion. Mater Today Commun. 2024;40:109777. doi: 10.1016/j.mtcomm.2024.109777
- Zhang C, Elvitigala KCML, Mubarok W, Okano Y, Sakai S. Machine learning-based prediction and optimisation framework for as-extruded cell viability in extrusion-based 3D bioprinting. Virtual Phys Prototyping. 2024;19(1):e2400330. doi: 10.1080/17452759.2024.2400330
- Ronzetti M, Simeonov A. A comprehensive update on the application of high-throughput fluorescence imaging for novel drug discovery. Expert Opin Drug Discov. 2025;20(6):785-797. doi: 10.1080/17460441.2025.2499123
- Vinken M, Grimm D, Baatout S, et al. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv. 2025;81:108574. doi: 10.1016/j.biotechadv.2025.108574
- Ayad A. Bioinspired NeuroPods: AI-Enhanced 4D Composite Bioprinting Revolutionizing Brain-on-Chip and Neural Regeneration; 2025. doi: 10.20944/preprints202507.1943.v1
- Biehn SE, Goncalves LM, Lehmann J, et al. BioPrint meets the AI age: development of artificial intelligence-based ADMET models for the drug-discovery platform SAFIRE. Future Med Chem. 2024;16(7):587-599. doi: 10.4155/fmc-2024-0007
- Safir F, Vu N, Tadesse LF, et al. Combining acoustic bioprinting with AI-assisted raman spectroscopy for high-throughput identification of bacteria in blood. Nano Lett. 2023;23(6):2065-2073. doi: 10.1021/acs.nanolett.2c03015
- Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov. 2018;13(12):1115-1129. doi: 10.1080/17460441.2018.1542427

