AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025320317
RESEARCH ARTICLE

Mixed ultrashort peptide bioinks for improved 3D bioprinting of self-healing trachea-like constructs

Alexander U. Valle-Pérez1,2‡ Dana Alhattab1,3 Rui Ge1,2 Eter Othman1 Panayiotis Bilalis1 Abdulelah Alrashoudi1 Antonio Cárdenas-Calvario1 Alan Eduardo Avila Ramírez1 Zainab N. Khan1 Manola Moretti1,2 Christian Baumgartner4 Charlotte A.E. Hauser1,2,4*
Show Less
1 Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Makkah Province, Saudi Arabia
2 Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah Province, Saudi Arabia
3 Bio-ontology research group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah Province, Saudi Arabia
4 Institute of Health Care Engineering with European Testing Center of Medical Devices, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Graz, Styria, Austria
5 ‡Current author affiliation: Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
Received: 7 August 2025 | Accepted: 24 September 2025 | Published online: 6 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Concerns related to the trachea frequently arise from obstructive conditions and occlusions, such as tracheal stenosis, tracheomalacia, traumatic disruptions, and papillary thyroid carcinoma. These medical challenges underscore the need for new biomaterials to support tissue engineering for tissue regeneration. The advent of three-dimensional (3D) bioprinting technology has emerged as a pivotal advancement, facilitating the fabrication of patient-specific, biocompatible, cell-laden constructs. This technological advancement enables the controlled promotion of cell growth and tissue development, thereby offering a promising avenue for tissue regeneration. In this study, we developed mixed ultrashort peptide bioinks for the 3D bioprinting of a trachea-like construct that exhibits self-healing and elastic properties. We employed a stiffness prediction map (SPM) as an empirical tool to predict the physical characteristics and stiffness behavior of the mixed bioinks, thereby facilitating the optimization of the 3D bioprinting process. The SPM enabled the fine-tuning of these bioinks by identifying peptide mixtures that successfully mimic the natural stiffness of the perichondral niche microenvironment. These mixed bioinks successfully promoted mesenchymal stromal cell differentiation towards chondrocyte formation, thereby facilitating the biofabrication of elastic 3D-printed structures for trachea regeneration. Our bioinks exhibited remarkable printing resolution and mechanical properties while supporting cell growth and chondrogenesis. The bioprinted trachea-like model, cultured for up to 100 days, showed excellent mechanical properties, resulting a stable elastic biomaterial. This study is the first to combine SPM with 3D bioprinting for the fabrication of a trachea-like model, supporting the development of advanced self-healing biomaterials for trachea tissue regeneration.

Graphical abstract
Keywords
3D bioprinting
Chondrocytes
Mesenchymal stromal cells
Self-healing biomaterials
Stiffness prediction map
Trachea-like model
Ultrashort peptide bioinks
Funding
This research was funded by King Abdullah University of Science and Technology (KAUST) to Charlotte A. E. Hauser (grant number: Faculty (CH) baseline funding) and Graz University of Technology (TU Graz) for additional funding.
Conflict of interest
Charlotte A. E. Hauser serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  2. Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5(9):686-705. doi: 10.1038/s41578-020-0209-x
  3. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3): 312-319. doi: 10.1038/nbt.3413
  4. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012;37(8):1079-1104. doi: 10.1016/j.progpolymsci.2011.11.007
  5. Jorgensen AM, Yoo JJ, Atala A. Solid organ bioprinting: strategies to achieve organ function. Chem Rev. 2020;120(19):11093-11127. doi: 10.1021/acs.chemrev.0c00145
  6. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021;20(5):345-361. doi: 10.1038/s41573-020-0079-3
  7. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467-491. doi: 10.1038/s41576-022-00466-9
  8. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1):14023, s41598-020-70086-y. doi: 10.1038/s41598-020-70086-y
  9. Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D bioprinting technology based on machine learning: A review of recent trends and advances. Micromachines. 2022;13(3):363. doi: 10.3390/mi13030363
  10. Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen. 2021;2:1-18. doi: 10.1016/j.engreg.2020.12.001
  11. Wang Y, Wang J, Ji Z, et al. Application of bioprinting in ophthalmology. Int J Bioprint. 2022;8(2):552. doi: 10.18063/ijb.v8i2.552
  12. Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort peptide bioinks support automated printing of large-scale constructs assuring long-term survival of printed tissue constructs. Nano Lett. 2021;21(7):2719-2729. doi: 10.1021/acs.nanolett.0c04426
  13. Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction using 3D‐bioprinted native‐like tissue architecture based on designable tissue‐specific bioinks. Adv Sci. 2022;9(29):2202181. doi: 10.1002/advs.202202181
  14. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2019;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  15. Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication. 2022;14(4):044103. doi: 10.1088/1758-5090/ac7eec
  16. Khan ZN, Albalawi HI, Valle-Pérez AU, et al. From 3D printed molds to bioprinted scaffolds: A hybrid material extrusion and vat polymerization bioprinting approach for soft matter constructs. Mater Sci Addit Manuf. 2022;1(1):7. doi: 10.18063/msam.v1i1.7
  17. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. Fresh 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459. doi: 10.1021/acsbiomaterials.0c01133
  18. Jiang X, Zuo X, Wang H, Zhu P, Kang YJ. Fabrication of vascular grafts using poly(ε-caprolactone) and collagen-encapsuled ADSCs for interposition implantation of abdominal aorta in rhesus monkeys. ACS Biomater Sci Eng. 2024;10(5):3120-3135. doi: 10.1021/acsbiomaterials.3c01209
  19. He C, Yan J, Fu Y, Guo J, Shi Y, Guo J. Organoid bioprinting strategy and application in biomedicine: a review. IJB. 2023;9(6):0112. doi: 10.36922/ijb.0112
  20. Hammad NS, Khan ZN, Valle-Pérez AU, Hauser C. A predictive machine learning model to optimize flow rates on an integrated microfluidic pumping system for peptide-based 3D bioprinting. In: Gray BL, Rapp BE, eds. Microfluidics, BioMEMS, and Medical Microsystems XXI. SPIE; 2023:3. doi: 10.1117/12.2650440
  21. Tang M, Jiang S, Huang X, et al. Integration of 3D bioprinting and multi-algorithm machine learning identified glioma susceptibilities and microenvironment characteristics. Cell Discov. 2024;10(1):39. doi: 10.1038/s41421-024-00650-7
  22. Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink formulation and machine learning-empowered bioprinting optimization. Front Bioeng Biotechnol. 2022;10:913579. doi: 10.3389/fbioe.2022.913579
  23. Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 2023;14(1):3168. doi: 10.1038/s41467-023-38832-8
  24. Trucco D, Sharma A, Manferdini C, et al. Modeling and fabrication of silk fibroin–gelatin-based constructs using extrusion-based three-dimensional bioprinting. ACS Biomater Sci Eng. 2021;7(7):3306-3320. doi: 10.1021/acsbiomaterials.1c00410
  25. Perin F, Spessot E, Famà A, et al. Modeling a dynamic printability window on polysaccharide blend inks for extrusion bioprinting. ACS Biomater Sci Eng. 2023;9(3):1320-1331. doi: 10.1021/acsbiomaterials.2c01143
  26. Zanderigo G, Bracco F, Semeraro Q, Colosimo BM. In-situ printability maps (IPM): a new approach for in-situ printability assessment with application to extrusion-based bioprinting. Bioprinting. 2023;36:e00320. doi: 10.1016/j.bprint.2023.e00320
  27. Harris CG, Semprini L, Rochefort WE, Fogg KC. Statistical optimization of cell–hydrogel interactions for green microbiology – a tutorial review. RSC Sustain. 2024;2(12):3750-3768. doi: 10.1039/D4SU00400K
  28. Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013;1(7):763. doi: 10.1039/c3bm00012e
  29. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi: 10.1088/1758-5090/8/3/032002
  30. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi: 10.1002/anbr.202000097
  31. Kumar S, Tharayil A, Thomas S. 3D bioprinting of nature-inspired hydrogel inks based on synthetic polymers. ACS Appl Polym Mater. 2021;3(8):3685-3701. doi: 10.1021/acsapm.1c00567
  32. Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3d bioprinting: a focus on multicomponent hydrogel‐based bioinks. Adv Healthc Mater. 2020;9(15):1901648. doi: 10.1002/adhm.201901648
  33. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  34. Pérez-Pedroza R, Ávila-Ramírez A, Khan Z, Moretti M, Hauser CAE. Supramolecular biopolymers for tissue engineering. Adv Polym Technol. 2021;2021:1-23. doi: 10.1155/2021/8815006
  35. Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today. 2011;6(3):232-239. doi: 10.1016/j.nantod.2011.05.001
  36. Hauser CAE, Deng R, Mishra A, et al. Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366. doi: 10.1073/pnas.1014796108
  37. Khan Z, Kahin K, Rauf S, et al. Optimization of a 3D bioprinting process using ultrashort peptide bioinks. IJB. 2018;5(1):173. doi: 10.18063/ijb.v5i1.173
  38. Pantoja Angles A, Valle-Pérez AU, Hauser C, Mahfouz MM. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front Bioeng Biotechnol. 2022;10:830200. doi: 10.3389/fbioe.2022.830200
  39. Li Q, Qi G, Liu X, et al. Universal peptide hydrogel for scalable physiological formation and bioprinting of 3d spheroids from human induced pluripotent stem cells. Adv Funct Mater. 2021;31(41):2104046. doi: 10.1002/adfm.202104046
  40. Loo Y, Hauser CAE. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed Mater. 2015;11(1):014103. doi: 10.1088/1748-6041/11/1/014103
  41. Alhattab DM, Isaioglou I, Alshehri S, et al. Fabrication of a three-dimensional bone marrow niche-like acute myeloid leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res. 2023;27(1):111. doi: 10.1186/s40824-023-00457-9
  42. Bilalis P, Alrashoudi AΑ, Susapto HH, et al. Dipeptide-based photoreactive instant glue for environmental and biomedical applications. ACS Appl Mater Interfaces. 2023;15(40):46710-46720. doi: 10.1021/acsami.3c10726
  43. Perez-Pedroza R, Moretti M, Hauser CAE. Fabrication and characterization of colorectal cancer organoids from SW1222 cell line in ultrashort self-assembling peptide matrix. JoVE. 2024;(207):66060. doi: 10.3791/66060
  44. Wang Y, Liu X, Ge R, et al. Peptide gel electrolytes for stabilized Zn metal anodes. ACS Nano. 2024;18(1): 164-177. doi: 10.1021/acsnano.3c04414
  45. Moretti M, Hountondji M, Ge R, et al. Selectively positioned catechol moiety supports ultrashort self-assembling peptide hydrogel adhesion for coral restoration. Langmuir. 2023;39(49):17903-17920. doi: 10.1021/acs.langmuir.3c02553
  46. Xu J, Pérez-Pedroza R, Moretti M, et al. 3D bioprinting of colon organoids in ultrashort self-assembling and decorated peptide matrices. IJB. 2024;0(0):3033. doi: 10.36922/ijb.3033
  47. Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic self-assembling peptide scaffolds for functional tissue regeneration. Biomacromolecules. 2018;19(9):3597-3611. doi: 10.1021/acs.biomac.8b01137
  48. Ng WL, Chua CK, Shen YF. Print me an organ! Why we are not there yet. Prog Polym Sci. 2019;97:101145. doi: 10.1016/j.progpolymsci.2019.101145
  49. Tang D. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. 2016;83:363-382. doi: 10.1016/j.biomaterials.2016.01.024
  50. de León EHP, Valle-Pérez AU, Khan ZN, Hauser CAE. Intelligent and smart biomaterials for sustainable 3D printing applications. Curr Opin Biomed Eng. 2023;26:100450. doi: 10.1016/j.cobme.2023.100450
  51. Crowley C, Birchall M, Seifalian AM. Trachea transplantation: from laboratory to patient: trachea transplantation. J Tissue Eng Regen Med. 2015;9(4):357-367. doi: 10.1002/term.1847
  52. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials. 2021;279:121246. doi: 10.1016/j.biomaterials.2021.121246
  53. She Y, Fan Z, Wang L, et al. 3D printed biomimetic PCL scaffold as framework interspersed with collagen for long segment tracheal replacement. Front Cell Dev Biol. 2021;9:629796. doi: 10.3389/fcell.2021.629796
  54. Xu Y, Guo Y, Li Y, et al. Biomimetic trachea regeneration using a modular ring strategy based on poly(sebacoyl diglyceride)/polycaprolactone for segmental trachea defect repair. Adv Funct Mater. 2020;30(42):2004276. doi: 10.1002/adfm.202004276
  55. Ke D, Yi H, Est-Witte S, et al. Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication. 2019;12(1):015022. doi: 10.1088/1758-5090/ab5354
  56. Nomoto M, Nomoto Y, Tada Y, et al. Bioengineered trachea using autologous chondrocytes for regeneration of tracheal cartilage in a rabbit model. Laryngoscope. 2013;123(9):2195-2201. doi: 10.1002/lary.23784
  57. Tan ZH, Dharmadhikari S, Liu L, et al. Regeneration of tracheal neotissue in partially decellularized scaffolds. NPJ Regen Med. 2023;8(1):35. doi: 10.1038/s41536-023-00312-4
  58. Weber JF, Rehmani SS, Baig MZ, Jadoon Y, Bhora FY. Successes and failures in tracheal bioengineering: lessons learned. Ann Thorac Surg. 2021;112(4):1089-1094. doi: 10.1016/j.athoracsur.2020.10.021
  59. Wei S, Zhang Y, Luo F, Duan K, Li M, Lv G. Tissue‐engineered tracheal implants: Advancements, challenges, and clinical considerations. Bioeng Transl Med. 2024;9(4):e10671. doi: 10.1002/btm2.10671
  60. Mammana M, Bonis A, Verzeletti V, Dell’Amore A, Rea F. Tracheal tissue engineering: principles and state of the art. Bioengineering. 2024;11(2):198. doi: 10.3390/bioengineering11020198
  61. Fux T, Österholm C, Themudo R, Simonson O, Grinnemo KH, Corbascio M. Synthetic tracheal grafts seeded with bone marrow cells fail to generate functional tracheae: first long-term follow-up study. J Thorac Cardiovasc Surg. 2020;159(6):2525-2537.e23. doi: 10.1016/j.jtcvs.2019.09.185
  62. Dharmadhikari S, Liu L, Shontz K, et al. Deconstructing tissue engineered trachea: assessing the role of synthetic scaffolds, segmental replacement and cell seeding on graft performance. Acta Biomater. 2020;102:181-191.doi: 10.1016/j.actbio.2019.11.008
  63. Khan Z, Kahin K, Hauser C. Time-dependent pulsing of microfluidic pumps to enhance 3D bioprinting of peptide bioinks. In: Gray BL, Becker H, eds. Microfluidics, BioMEMS, and Medical Microsystems XIX. SPIE; 2021:5. doi: 10.1117/12.2578830
  64. Yang J, Rahardja S, Fränti P. Outlier detection: how to threshold outlier scores? In: Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing. ACM; 2019:1-6. doi: 10.1145/3371425.3371427
  65. Avila-Ramírez A, Valle-Perez AU, Susapto HH, et al. Ecologically friendly biofunctional ink for reconstruction of rigid living systems under wet conditions. Int J Bioprint. 2021;7(4):398. doi: 10.18063/ijb.v7i4.398.
  66. Khuri AI, Mukhopadhyay S. Response surface methodology. WIREs Comput Stat. 2010;2(2):128-149. doi: 10.1002/wics.73
  67. Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci U S A. 2005;102(19):6665-6670. doi: 10.1073/pnas.0408037102
  68. Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. doi: 10.1016/j.softx.2015.06.001
  69. Dodda LS, Cabeza de Vaca I, Tirado-Rives J, Jorgensen WL. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017;45(W1):W331-W336. doi: 10.1093/nar/gkx312
  70. Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089-10092. doi: 10.1063/1.464397
  71. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684-3690. doi: 10.1063/1.448118
  72. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101. doi: 10.1063/1.2408420
  73. Alhattab D, Khan Z, Alshehri S, H. Susapto H, A. E. Hauser C. 3D bioprinting of ultrashort self-assembling peptides to engineer scaffolds with different matrix stiffness for chondrogenesis. Int J Bioprint. 2023;9(4):719. doi: 10.18063/ijb.719
  74. Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584(7822):535-546. doi: 10.1038/s41586-020-2612-2
  75. Chaudhuri O, Koshy ST, Branco Da Cunha C, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater. 2014;13(10):970-978. doi: 10.1038/nmat4009
  76. Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979-987. doi: 10.1038/nmat4051
  77. Kumar S. Stiffness does matter. Nat Mater. 2014;13(10):918-920. doi: 10.1038/nmat4094
  78. Foyt DA, Taheem DK, Ferreira SA, et al. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater. 2019;89: 73-83. doi: 10.1016/j.actbio.2019.03.002
  79. Hartig G, Esclamado R, Telian S. Comparison of the chondrogenic potential of free and vascularized perichondrium in the airway. Ann Otol Rhinol Laryngol. 1994;103(1):9-15. doi: 10.1177/000348949410300102
  80. Bachmann B, Spitz S, Schädl B, et al. Stiffness matters: fine-tuned hydrogel elasticity alters chondrogenic redifferentiation. Front Bioeng Biotechnol. 2020;8:373. doi: 10.3389/fbioe.2020.00373
  81. Spagnolie SE, ed. Complex Fluids in Biological Systems: Experiment, Theory, and Computation. New York: Springer; 2015. doi: 10.1007/978-1-4939-2065-5
  82. Wu D, Pang S, Röhrs V, et al. Man vs. machine: automated bioink mixing device improves reliability and reproducibility of bioprinting results compared to human operators. IJB. 2024;10(2):1974. doi: 10.36922/ijb.1974
  83. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev. 2020;7(4):041319. doi: 10.1063/5.0023206
  84. Giri RS, Mandal B. Boc-Val-Val-OMe (Aβ39–40) and Boc-Ile-Ala-OMe (Aβ41–42) crystallize in a parallel β-sheet arrangement but generate a different morphology. CrystEngComm. 2018;20(31):4441-4448. doi: 10.1039/C8CE00097B
  85. Dandurand J, Samouillan V, Lacoste-Ferre MH, Lacabanne C, B.Bochicchio, Pepe A. Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: signature of the amyloid fibers. Pathol Biol. 2014;62(2):100-107. doi: 10.1016/j.patbio.2014.02.001
  86. Qian Y, Engel MH, Macko SA, Carpenter S, Deming JW. Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochim Cosmochim Acta. 1993;57(14):3281-3293. doi: 10.1016/0016-7037(93)90540-D
  87. Kahin K, Khan Z, Albagami M, et al. Development of a robotic 3D bioprinting and microfluidic pumping system for tissue and organ engineering. In: Gray BL, Becker H, eds. Microfluidics, BioMEMS, and Medical Microsystems XVII. SPIE; 2019:25. doi: 10.1117/12.2507237
  88. Isidro-Llobet A, Kenworthy MN, Mukherjee S, et al. Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem. 2019;84(8):4615-4628. doi: 10.1021/acs.joc.8b03001
  89. Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D. Cartilage cell clusters. Arthritis Rheum. 2010;62(8):2206-2218. doi: 10.1002/art.27528
  90. Matta C, Mobasheri A. Regulation of chondrogenesis by protein kinase C: emerging new roles in calcium signalling. Cell Signal. 2014;26(5):979-1000. doi: 10.1016/j.cellsig.2014.01.011
  91. Zhang Q, Yu Y, Zhao H. The effect of matrix stiffness on biomechanical properties of chondrocytes. ABBS. 2016;48(10):958-965. doi: 10.1093/abbs/gmw087
  92. Malko AV, Villagomez M, Aubin JE, Opas M. Both chondroinduction and proliferation account for growth of cartilage nodules in mouse limb bud cultures. Stem Cell Rev Rep. 2013;9(2):121-131. doi: 10.1007/s12015-013-9434-7
  93. Sarem M, Otto O, Tanaka S, Shastri VP. Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis. Stem Cell Res Ther. 2019;10(1):10. doi: 10.1186/s13287-018-1103-y
  94. Rolfe RA, Shea CA, Murphy P. Geometric analysis of chondrogenic self-organisation of embryonic limb bud cells in micromass culture. Cell Tissue Res. 2022;388(1): 49-62. doi: 10.1007/s00441-021-03564-y
  95. Lefebvre V, Behringer RR, De Crombrugghe B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage. 2001;9 Suppl A:S69-S75. doi: 10.1053/joca.2001.0447
  96. De Moor L, Fernandez S, Vercruysse C, et al. Hybrid bioprinting of chondrogenically induced human mesenchymal stem cell spheroids. Front Bioeng Biotechnol. 2020;8:484. doi: 10.3389/fbioe.2020.00484
  97. Von Der Mark K. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. In: Dynamics of Bone and Cartilage Metabolism. Erlangen, Germany: Elsevier; 2006:3-40. doi: 10.1016/B978-012088562-6/50002-9
  98. Naumann A, Dennis JE, Awadallah A, et al. Immunochemical and Mechanical Characterization of Cartilage Subtypes in Rabbit. 2002;50(8):1049-1058. doi: 10.1177/002215540205000807
  99. Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, 3000 DR Rotterdam, the Netherlands, Knuth C, Andres Sastre E, et al. Collagen type X is essential for successful mesenchymal stem cell-mediated cartilage formation and subsequent endochondral ossification. eCM. 2019;38: 106-122. doi: 10.22203/eCM.v038a09
  100. He Y, Siebuhr AS, Brandt-Hansen NU, et al. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. BMC Musculoskelet Disord. 2014;15(1):309. doi: 10.1186/1471-2474-15-309
  101. Sasano Y, Takahashi I, Mizoguchi I, Kagayama M, Takita H, Kuboki Y. Type X collagen is not localized in hypertrophic or calcified cartilage in the developing rat trachea. Anat Embryol. 1998;197(5):399-403. doi: 10.1007/s004290050151
  102. Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE. Tissue‐engineered trachea for airway reconstruction. Laryngoscope. 2009;119(11):2118-2123. doi: 10.1002/lary.20700
  103. Taylor DL, In Het Panhuis M. Self‐healing hydrogels. Adv Mater. 2016;28(41):9060-9093. doi: 10.1002/adma.201601613
  104. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461-468. doi: 10.1177/1941738109350438
  105. Villegas DF, Donahue TLH. Collagen morphology in human meniscal attachments: a SEM study. Connect Tissue Res. 2010;51(5):327-336. doi: 10.3109/03008200903349639

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing