ATPS bioinks and microgel formation for bioprinting

Biological tissues possess intricate hierarchical structures that enable diverse cellular functions, which are critical for maintaining physiological processes. Mimicking these properties is central to advancing tissue engineering and regenerative medicine. Aqueous two-phase systems (ATPS)-derived microgel bioinks have emerged as a versatile platform, offering biocompatibility, mechanical tunability, and multifunctionality for bioprinting applications. Recent advancements, such as oxygen-releasing constructs and modular designs, have demonstrated the potential of ATPS-derived microgel bioinks to create tailored cellular microenvironments, addressing challenges like oxygen delivery and tissue-specific integration while replicating the complexities of native tissues. This review synthesizes these advancements, critically discussing key considerations, including material selection, physicochemical properties, mechanotransduction, and stress-relaxation behavior. Future directions include advancing multi-scale fabrication techniques, refining cell–material interactions, and addressing scalability challenges to bridge the gap between research and clinical application. By providing a comprehensive perspective on the state-of-the-art in ATPS-derived microgel bioinks, this review emphasizes their potential to transform bioprinting and tissue engineering.

- Chen F, Li X, Yu Y, et al. Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel. Nat Commun. 2023;14(1):2793. doi: 10.1038/s41467-023-38394-9
- An C, Zhang S, Xu J, et al. The microparticulate inks for bioprinting applications. Mater Today Bio. 2023; 24:100930. doi: 10.1016/j.mtbio.2023.100930
- Wang Q, Karadas Ö, Backman O, et al. Aqueous two-phase emulsion bioresin for facile one-step 3D microgel-based bioprinting. Adv Healthc Mater. 2023;12(19):e2203243. doi: 10.1002/adhm.202203243
- Tuftee C, Alsberg E, Ozbolat IT, Rizwan M. Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs. Trends Biotechnol. 2024;42(3):339-352. doi: 10.1016/j.tibtech.2023.09.007
- He W, Deng J, Ma B, et al. Recent advancements of bioinks for 3D bioprinting of human tissues and organs. ACS Appl Bio Mater. 2024;7(1):17-43. doi: 10.1021/acsabm.3c00806
- Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
- Xin S, Deo KA, Dai J, et al. Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci Adv. 2021;7(42):eabk3087. doi: 10.1126/sciadv.abk3087
- Riley L, Schirmer L, Segura T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr Opin Biotechnol. 2019;60:1-8. doi: 10.1016/j.copbio.2018.11.001
- Highley CB, Song KH, Daly AC, Burdick JA. Jammed microgel inks for 3D printing applications. Adv Sci (Weinh). 2018;6(1):1801076. doi: 10.1002/advs.201801076
- Kajtez J, Wesseler MF, Birtele M, et al. Embedded 3D printing in self-healing annealable composites for precise patterning of functionally mature human neural constructs. Adv Sci (Weinh). 2022;9(25):e2201392. doi: 10.1002/advs.202201392
- Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43. doi: 10.1038/s41578-019-0148-6
- Daly AC. Granular hydrogels in biofabrication: recent advances and future perspectives. Adv Healthc Mater. 2024;13(25):e2301388. doi: 10.1002/adhm.202301388
- Wang C, Zhang Z, Wang Q, et al. Aqueous two-phase emulsions toward biologically relevant applications. Trends Chem. 2023;5(1):61-75. doi: 10.1016/j.trechm.2022.10.009
- Ying GL, Jiang N, Maharjan S, et al. Aqueous two-phase emulsion Bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater. 2018;30(50):e1805460. doi: 10.1002/adma.201805460
- Zhang Y, Luo Y, Zhao J, et al. Emerging delivery systems based on aqueous two-phase systems: a review. Acta Pharm Sin B. 2024;14(1):110-132. doi: 10.1016/j.apsb.2023.08.024
- Mierke CT. Bidirectional mechanical response between cells and their microenvironment. Front Phys. 2021;9:749830. doi: 10.3389/fphy.2021.749830
- Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev. 2020;49(1):114-142. doi: 10.1039/C9CS00466A
- Iqbal M, Tao Y, Xie S, et al. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online. 2016;18:18. doi: 10.1186/s12575-016-0048-8
- Fick C, Khan Z, Srivastava S. Interfacial stabilization of aqueous two-phase systems: a review. Mater Adv. 2023;4(20):4665-4678. doi: 10.1039/D3MA00307H
- Dumas F, Roger E, Rodriguez R, et al. Aqueous two-phase systems: simple one-step process formulation and phase diagram for characterisation. Colloid Polymer Sci. 2020;298(12):1629-1636. doi:10.1007/s00396-020-04748-8
- Liu L, Ngai T. Pickering emulsions stabilized by binary mixtures of colloidal particles: synergies between contrasting properties. Langmuir. 2022;38(44):13322-13329. doi: 10.1021/acs.langmuir.2c02338
- Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin methacryloyl (GelMA) bioink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications. Small. 2022;18(25):e2106357. doi: 10.1002/smll.202106357
- Ouyang L, Wojciechowski JP, Tang J, Guo Y, Stevens MM. Tunable microgel-templated porogel (MTP) bioink for 3D bioprinting applications. Adv Healthc Mater. 2022;11(8):e2200027. doi: 10.1002/adhm.202200027
- Chengcheng D. The application and prospects of 3D printable microgel in biomedical science and engineering. IJB. 2023;9(5):753. doi: 10.18063/ijb.753
- Cheng W, Zhang J, Liu J, et al. Granular hydrogels for 3D bioprinting applications. VIEW 2020;1(3):20200060. doi: 10.1002/VIW.20200060
- Jeong S.-H, Hiemstra J, Blokzijl PV, et al. An oxygenating colloidal bioink for the engineering of biomimetic tissue constructs. Bio-Des Manuf. 2024;7(3):240-261. doi:10.1007/s42242-024-00281-7
- Ying G, Jiang N, Parra C, et al. Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape-memory properties. Adv Funct Mater. 2020;30(46):2003740. doi: 10.1002/adfm.202003740
- Liu T, Yi S, Liu G, et al. Aqueous two-phase emulsions-templated tailorable porous alginate beads for 3D cell culture. Carbohydr Polym. 2021;258:117702. doi: 10.1016/j.carbpol.2021.117702
- Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater. 2022;16:66-81. doi: 10.1016/j.bioactmat.2022.02.032
- Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering (Basel). 2021;8(2):27. doi: 10.3390/bioengineering8020027
- Moraes C, Simon AB, Putnam AJ, Takayama S. Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials. 2013;34(37):9623-9631. doi: 10.1016/j.biomaterials.2013.08.046
- Wang Q, Karadas O, Rosenholm JM, et al. Bioprinting macroporous hydrogel with aqueous two-phase emulsion-based bioink: in vitro mineralization and differentiation empowered by phosphorylated cellulose nanofibrils. Adv Funct Mater. 2024;34(29):2400431. doi: 10.1002/adfm.202400431
- Levato R, Lim KS, Li W, et al. High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Mater Today Bio. 2021;12:100162. doi: 10.1016/j.mtbio.2021.100162
- Tao J, Zhu S, Zhou N, et al. Nanoparticle-stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs. Adv Healthc Mater. 2022;11(12):e2102810. doi: 10.1002/adhm.202102810
- Luo G, Yu Y, Yuan Y, Chen X, Liu Z, Kong T. Freeform, reconfigurable embedded printing of all-aqueous 3D architectures. Adv Mater. 2019;31(49):e1904631. doi: 10.1002/adma.201904631
- Cui H, Zhang Y, Shen Y, et al. Dynamic assembly of viscoelastic networks by aqueous liquid-liquid phase separation and liquid-solid phase separation (AqLL-LS PS2 ). Adv Mater. 2022;34(51):e2205649. doi: 10.1002/adma.202205649
- Zhang S, Qi C, Zhang W, et al. In situ endothelialization of free-form 3D network of interconnected tubular channels via interfacial coacervation by aqueous-in-aqueous embedded bioprinting. Adv Mater. 2023;35(7):e2209263. doi: 10.1002/adma.202209263
- Becker M, Gurian M, Schot M, Leijten J. Aqueous two‐phase enabled low viscosity 3D (LoV3D) bioprinting of living matter. Adv Sci (Weinh). 2023;10(8):2370046. doi:10.1002/advs.202370046
- Jin Z, Seong H-G, Srivastava S, et al., 3D printing of aqueous two-phase systems with linear and bottlebrush polyelectrolytes. Angew Chem Int Ed. 2024;63(25):e202404382. doi: 10.1002/anie.202404382
- Beldengrün Y, Aragon J, Prazeres SF, Montalvo G, Miras J, Esquena J. Gelatin/maltodextrin water-in-water (W/W) emulsions for the preparation of cross-linked enzyme-loaded microgels. Langmuir. 2018;34(33):9731-9743. doi: 10.1021/acs.langmuir.8b01599.
- Wang A, Madden LA, Paunov VN. Vascularized co-culture clusteroids of primary endothelial and Hep-G2 cells based on aqueous two-phase pickering emulsions. Bioengineering (Basel). 2022;9(3):126. doi: 10.3390/bioengineering9030126.
- Mytnyk S, Ziemecka I, Olive AGL, et al. Microcapsules with a permeable hydrogel shell and an aqueous core continuously produced in a 3D microdevice by all-aqueous microfluidics. RSC Adv. 2017;7(19):11331-11337. doi: 10.1039/C7RA00452D
- He H, Hong M, Yang F, et al. Preparation of controlled multicompartmental gel microcarriers based on aqueous two-phase emulsions for 3D partitioned cell coculture in vitro. Biomacromolecules. 2024;25(7):4469-4481. doi: 10.1021/acs.biomac.4c00516
- Hori A, Watabe Y, Yamada M, et al. One-step formation of microporous hydrogel sponges encapsulating living cells by utilizing bicontinuous dispersion of aqueous polymer solutions. ACS Appl Bio Mater. 2019;2(5):2237-2245. doi: 10.1021/acsabm.9b00194
- Tavana H, Mosadegh B, Takayama S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv Mater. 2010;22(24):2628-2631. doi: 10.1002/adma.200904271
- Robinson S, Chang J, Parigoris E, Hecker L, Takayama S. Aqueous two-phase deposition and fibrinolysis of fibroblast-laden fibrin micro-scaffolds. Biofabrication. 2021;13(3):10.1088/1758-5090/abdb85. doi: 10.1088/1758-5090/abdb85
- Aydın D, Kızılel S. Water-in-water emulsion based synthesis of hydrogel nanospheres with tunable release kinetics. JOM. 2017;69(7):1185-1194. doi:10.1007/s11837-016-1969-z
- Oh H, Kang M, Bae E. et al. Fabrication of hydrogel microchannels using aqueous two-phase printing for 3D blood brain barrier. BioChip J 2023;17:369-383. doi: 10.1007/s13206-023-00110-6
- Zhu J, He Y, Wang Y, et al. Voxelated bioprinting of modular double-network bio-ink droplets. Nat Commun. 2024; 15:5902. doi: 10.1038/s41467-024-49705-z.
- Tang G, Luo Z, Lian L, et al. Liquid-embedded (bio)printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proc Natl Acad Sci U S A. 2023;120(7):e2206762120. doi: 10.1073/pnas.2206762120
- Wang M, Li W, Luo Z, et al. A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication. 2022;14(2):10.1088/1758-5090/ac5936. doi: 10.1088/1758-5090/ac5936
- Xu Y, Liao X, Zhang L, et al. Digital light processing-based bioprinting of microtissue hydrogel arrays using dextran-induced aqueous emulsion ink. J Bioact Compat Polym. 2024;39(3):162-174. doi: 10.1177/08839115241237327
- Lee MC, Lee JS, Kim S, et al. Synergistic effect of hypoxic conditioning and cell-tethering colloidal gels enhanced productivity of MSC paracrine factors and accelerated vessel regeneration. Adv Mater. 2025;37(3):e2408488. doi: 10.1002/adma.202408488
- Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12(17):e2203148. doi: 10.1002/adhm.202203148
- Qin X-S, Wang M, Li W, et al. Biosurfactant-stabilized micropore-forming GelMA inks enable improved usability for 3D printing applications. Regen Eng Transl Med. 2022;8(3):471-481. doi: 10.1007/s40883-022-00250-5
- Deo KA, Murali A, Tronolone JJ, et al. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv Healthc Mater. 2024;13(25):e2303810. doi: 10.1002/adhm.202303810
- Widener AE, Duraivel S, Angelini TE, Phelps EA. Injectable microporous annealed particle hydrogel based on guest-host-interlinked polyethylene glycol maleimide microgels. Adv Nanobiomed Res. 2022;2(10):2200030. doi:10.1002/anbr.202200030
- Wang A. Advanced Biomedical Applications of Cell Clusteroids Based on Aqueous Two-phase Pickering Emulsion Systems. University of Hull; 2022.
- Muir VG, Qazi TH, Shan J, Groll J, Burdick JA. Influence of microgel fabrication technique on granular hydrogel properties. ACS Biomater Sci Eng. 2021;7(9): 4269-4281. doi: 10.1021/acsbiomaterials.0c01612
- Qazi TH, Muir VG, Burdick JA. Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomater Sci Eng. 2022;8(4):1427-1442. doi: 10.1021/acsbiomaterials.1c01440
- Wang A, Madden LA, Paunov VN. Advanced biomedical applications based on emerging 3D cell culturing platforms. J Mater Chem B. 2020;8(46):10487-10501. doi: 10.1039/D0TB01658F
- Teixeira AG, Agarwal R, Ko KR, et al. Emerging biotechnology applications of aqueous two-phase systems. Adv Healthc Mater. 2018;7(6):e1701036. doi: 10.1002/adhm.201701036
- Deng X, Qi C, Meng S, et al. All-aqueous embedded 3D printing for freeform fabrication of biomimetic 3D constructs. Adv Mater. 2024;36(50):e2406825. doi: 10.1002/adma.202406825
- Chairez-Cantu K, González-González M, Rito-Palomares M. Novel approach for neuronal stem cell differentiation using aqueous two-phase systems in 3D cultures. J Chem Technol Biotechnol. 2021;96(1):8-13. doi: 10.1002/jctb.6586
- Lin Z, Beneyton T, Baret JC, Martin N. Coacervate droplets for synthetic cells. Small Methods. 2023;7(12):e2300496. doi: 10.1002/smtd.202300496
- Keller S, Teora SP, Boujemaa M, et al. Exploring new horizons in liquid compartmentalization via microfluidics. Biomacromolecules. 2021;22(5):1759-1769. doi: 10.1021/acs.biomac.0c01796
- Dumas F, Benoit JP, Saulnier P, Roger E. A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents. J Colloid Interface Sci. 2021;599:642-649. doi: 10.1016/j.jcis.2021.03.141
- Bai L, Huan S, Zhao B, et al. All-aqueous liquid crystal nanocellulose emulsions with permeable interfacial assembly. ACS Nano. 2020;14(10):13380-13390. doi: 10.1021/acsnano.0c05251
- Qian X, Peng G, Ge L, Wu D. Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface modifications. J Colloid Interface Sci. 2022;607 (Pt 2):1613-1624. doi: 10.1016/j.jcis.2021.09.085
- Peddireddy KR, Nicolai T, Benyahia L, Capron I. Stabilization of water-in-water emulsion by nanorods. ACS Macro Lett. 2016;5(3):283-286. doi: 10.1021/acsmacrolett.5b00953
- Ahmed T, Yamanishi C, Kojima T, Takayama S. Aqueous two-phase systems and microfluidics for microscale assays and analytical measurements. Annu Rev Anal Chem (Palo Alto Calif). 2021;14(1):231-255. doi: 10.1146/annurev-anchem-091520-101759.
- Ying G, Jiang N, Yu C, et al. Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-des. Manuf. 2018;1:215-224. doi: 10.1007/s42242-018-0028-8
- Duraivel S, Subramaniam V, Chisolm S, et al. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. Biophys Rev (Melville). 2022;3(3):031307. doi: 10.1063/5.0087387
- Flégeau K, Puiggali-Jou A, Zenobi-Wong M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication. 2022;14(3):034105. doi: 10.1088/1758-5090/ac6b58
- Pereira JFB, Coutinho JAP. Chapter 5 - aqueous two-phase systems. In: Poole CF, editor. Liquid-Phase Extraction. Elsevier; 2020:157-182. doi: 10.1016/B978-0-12-816911-7.00005-0
- Qazi TH, Wu J, Muir VG, et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Adv Mater. 2022;34(12):e2109194. doi: 10.1002/adma.202109194
- Guo Z, Zhang S, Guo Y. et al. Bioinspired coacervate-based bioinks for construction of multiscale tissue engineering scaffolds. Nano Res. 2024;17:8209–8219. doi: 10.1007/s12274-024-6844-6
- Leung BM, Labuz JM, Moraes C, et al. Chapter 9 - Bioprinting using aqueous two-phase system. In: Atala A, Yoo JJ, editors. Essentials of 3D Biofabrication and Translation. Boston: Academic Press; 2015:165–178.
- Rogers BA, Rembert KB, Poyton MF, et al. A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions. Proc Natl Acad Sci U S A. 2019;116(32):15784-15791. doi: 10.1073/pnas.1900886116
- Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. doi: 10.1038/s41598-019-42186-x
- Ben Messaoud G, Aveic S, Wachendoerfer M, Fischer H, Richtering W. 3D printable gelatin methacryloyl (GelMA)-dextran aqueous two-phase system with tunable pores structure and size enables physiological behavior of embedded cells in vitro. Small. 2023;19(44):e2208089. doi: 10.1002/smll.202208089
- Zhang Y, O’Mahony A, He Y, et al. Hydrodynamic shear stress’ impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication. 2024;16(2):022003. doi: 10.1088/1758-5090/ad22ee
- Bercea M. Rheology as a tool for fine-tuning the properties of printable bioinspired gels. Molecules. 2023;28(6):2766. doi: 10.3390/molecules28062766.
- Ning L, Gil CJ, Hwang B, et al. Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev. 2020;7(4):041319. doi: 10.1063/5.0023206
- Dubbin K, Hori Y, Lewis KK, Heilshorn SC. Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv Healthc Mater. 2016;5(19):2488-2492. doi: 10.1002/adhm.201600636
- Moon D, Lee MG, Sun JY, Song KH, Doh J. Jammed microgel-based inks for 3D printing of complex structures transformable via pH/temperature variations. Macromol Rapid Commun. 2022;43(19):e2200271. doi: 10.1002/marc.202200271
- Kessler M, Nassisi Q, Amstad E. Does the size of microgels influence the toughness of microgel-reinforced hydrogels? Macromol Rapid Commun. 2022;43(15):e2200196. doi: 10.1002/marc.202200196
- Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv Funct Mater. 2021; 31(24): 2100848. doi: 10.1002/adfm.202100848
- Chaudhuri O, Gu L, Klumpers D., et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Mater 2016;15:326–334. doi: 10.1038/nmat4489
- Whitaker KA, Varga Z, Hsiao LC, Solomon MJ, Swan JW, Furst EM. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nat Commun. 2019;10(1):2237. doi: 10.1038/s41467-019-10039-w
- Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516. doi: 10.1038/s41580-023-00583-1
- Di X, Gao X, Peng L, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8(1):282. doi: 10.1038/s41392-023-01501-9
- Bakhshandeh B, Sorboni SG, Ranjbar N, et al. Mechanotransduction in tissue engineering: insights into the interaction of stem cells with biomechanical cues. Exp Cell Res. 2023;431(2):113766. doi: 10.1016/j.yexcr.2023.113766
- Jafarinia H, Khalilimeybodi A, Barrasa-Fano J, et al. Insights gained from computational modeling of YAP/TAZ signaling for cellular mechanotransduction. npj Syst Biol Appl. 2024;10:90. doi: 10.1038/s41540-024-00414-9
- Li Y, Wang J, Zhong W. Regulation and mechanism of YAP/ TAZ in the mechanical microenvironment of stem cells (Review). Mol Med Rep. 2021;24(1):506. doi: 10.3892/mmr.2021.12145
- Naqvi SM, McNamara LM. Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration. Front Bioeng Biotechnol. 2020;8:597661. doi: 10.3389/fbioe.2020.597661
- Zebda N, Dubrovskyi O, Birukov KG. Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res. 2012;83(1):71-81. doi: 10.1016/j.mvr.2011.06.007
- Casarella S, Ferla F, Di Francesco D, et al. Focal adhesion’s role in cardiomyocytes function: from cardiomyogenesis to mechanotransduction. Cells. 2024;13(8):664. doi: 10.3390/cells13080664
- Cao R, Tian H, Tian Y, et al. A hierarchical mechanotransduction system: from macro to micro. Adv Sci. 2024;11(11):2302327. doi: 10.1002/advs.202302327
- Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm. 2023;640: 123020. doi: 10.1016/j.ijpharm.2023.123020
- Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A. 2021;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305
- Somasekhar L, Huynh ND, Vecheck A, Kishore V, Bashur CA, Mitra K. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. J Biomed Mater Res A. 2022;110(3):535-546. doi: 10.1002/jbm.a.37303
- Lee SJ, Seok JM, Lee JH, Lee J, Kim WD, Park SA. Three- Dimensional Printable Hydrogel Using a Hyaluronic Acid/ Sodium Alginate Bio-Ink. Poly (Basel). 2021;13(5):794. doi: 10.3390/polym13050794
- Snyder J, Rin Son A, Hamid Q, Wang C, Lui Y, Sun W. Mesenchymal stem cell printing and process regulated cell properties. Biofabrication. 2015;7(4):044106. doi: 10.1088/1758-5090/7/4/044106
- Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res. 2022;9(1):70. doi: 10.1186/s40779-022-00429-5
- Nair K, Gandhi M, Khalil S, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168-1177. doi: 10.1002/biot.200900004
- Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs. 2023;26(4):255-274. doi: 10.1007/s10047-023-01394-z
- Shafiee A, Kassis J, Atala A, et al. Acceleration of tissue maturation by mechanotransduction-based bioprinting. Phys Rev Res. 2021;3(1):013008. doi: 10.1103/PhysRevResearch.3.013008
- Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016; 5(3):326-333. doi: 10.1002/adhm.201500677
- Zhang C, Elvitigala KCML, Mubarok W, et al. Machine learning-based prediction and optimisation framework for as-extruded cell viability in extrusion-based 3D bioprinting. Virtual Phys Prototyp. 2024;19(1):e2400330. doi.org/10.1080/17452759.2024.2400330
- Lee S, Kim W, Kim G. Efficient myogenic activities achieved through blade-casting-assisted bioprinting of aligned myoblasts laden in collagen bioink. Biomacromolecules. 2023;24(11):5219-5229. doi: 10.1021/acs.biomac.3c00749.
- Dey K, Roca E, Ramorino G, et al. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci. 2020;8(24):7033-7081. doi: 10.1039/D0BM01255F
- Liu S, Yu JM, Gan YC, et al. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Med Res. 2023;10:16. doi: 10.1186/s40779-023-00448-w
- Wu DT, Jeffreys N, Diba M, Mooney DJ. Viscoelastic biomaterials for tissue regeneration. Tissue Eng Part C Methods. 2022;28(7):289-300. doi: 10.1089/ten.TEC.2022.0040
- Hazur J, Endrizzi N, Schubert DW, et al. Stress relaxation amplitude of hydrogels determines migration, proliferation, and morphology of cells in 3-D culture. Biomater Sci. 2022;10(1):270-280. doi: 10.1039/D1BM01089A
- Statnik ES, Salimon AI, Gorshkova YE, Kaladzinskaya NS, Markova LV, Korsunsky AM. Analysis of stress relaxation in bulk and porous ultra-high molecular weight polyethylene (UHMWPE). Polymers (Basel). 2022;14(24):5374. doi: 10.3390/polym14245374
- Li T, Hou J, Wang L, et al. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater. 2023;156:21-36. doi: 10.1016/j.actbio.2022.08.037
- Wang KY, Jin XY, Ma YH, et al. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnol. 2021;19:214. doi: 10.1186/s12951-021-00950-0
- Kamperman T, Henke S, van den Berg A, et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv Healthcare Mater. 2017;6(3):1600913. doi: 10.1002/adhm.201600913
- Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res. 2023; 27(1):55. doi: 10.1186/s40824-023-00393-8
- Liu Y, Li J, Yao B, et al. The stiffness of hydrogel-based bioink impacts mesenchymal stem cells differentiation toward sweat glands in 3D-bioprinted matrix. Mater Sci Eng C Mater Biol Appl. 2021;118:111387. doi: 10.1016/j.msec.2020.111387
- Xuan L, Hou Y, Liang L, et al. Microgels for cell delivery in tissue engineering and regenerative medicine. Nanomicro Lett. 2024;16(1):218. doi: 10.1007/s40820-024-01421-5
- Suvarnapathaki S, Wu X, Lantigua D, et al. Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater. 2019;11:65. doi: 10.1038/s41427-019-0166-2
- Wang LH, Ernst AU, An D, et al. A bioinspired scaffold for rapid oxygenation of cell encapsulation systems. Nat Commun. 2021;12(1):5846. doi: 10.1038/s41467-021-26126-w.
- Lu Z, Jiang X, Chen M, Feng L, Kang YJ. An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication. 2019;11(4):045012. doi: 10.1088/1758-5090/ab332a
- Guan Y, Niu H, Liu Z, et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv. 2021;7(35):eabj0153. doi: 10.1126/sciadv.abj0153