AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8387
REVIEW

ATPS bioinks and microgel formation for bioprinting

Jéssica Heline Lopes da Fonseca1* Cintia Delai da Silva Horinouchi2 Min-Ho Kang3,4 Seol-Ha Jeong5*
Show Less
1 Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas, Brazil
2 National Laboratory of Bioscience – LNBio, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
3 Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
4 Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
5 School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
Received: 3 January 2025 | Revised: 1 March 2025 | Accepted: 1 April 2025 | Published online: 3 April 2025
(This article belongs to the Special Issue Bioprinting: towards New Frontiers)
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Biological tissues possess intricate hierarchical structures that enable diverse cellular functions, which are critical for maintaining physiological processes. Mimicking these properties is central to advancing tissue engineering and regenerative medicine. Aqueous two-phase systems (ATPS)-derived microgel bioinks have emerged as a versatile platform, offering biocompatibility, mechanical tunability, and multifunctionality for bioprinting applications. Recent advancements, such as oxygen-releasing constructs and modular designs, have demonstrated the potential of ATPS-derived microgel bioinks to create tailored cellular microenvironments, addressing challenges like oxygen delivery and tissue-specific integration while replicating the complexities of native tissues. This review synthesizes these advancements, critically discussing key considerations, including material selection, physicochemical properties, mechanotransduction, and stress-relaxation behavior. Future directions include advancing multi-scale fabrication techniques, refining cell–material interactions, and addressing scalability challenges to bridge the gap between research and clinical application. By providing a comprehensive perspective on the state-of-the-art in ATPS-derived microgel bioinks, this review emphasizes their potential to transform bioprinting and tissue engineering.  

Graphical abstract
Keywords
Aqueous two-phase systems
Bioprinting
Microgel bioinks
Regenerative medicine
Tissue engineering
Funding
This work was supported by the National Research Foundation of Korea (RS-2025-00521275).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Chen F, Li X, Yu Y, et al. Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel. Nat Commun. 2023;14(1):2793. doi: 10.1038/s41467-023-38394-9
  2. An C, Zhang S, Xu J, et al. The microparticulate inks for bioprinting applications. Mater Today Bio. 2023; 24:100930. doi: 10.1016/j.mtbio.2023.100930
  3. Wang Q, Karadas Ö, Backman O, et al. Aqueous two-phase emulsion bioresin for facile one-step 3D microgel-based bioprinting. Adv Healthc Mater. 2023;12(19):e2203243. doi: 10.1002/adhm.202203243
  4. Tuftee C, Alsberg E, Ozbolat IT, Rizwan M. Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs. Trends Biotechnol. 2024;42(3):339-352. doi: 10.1016/j.tibtech.2023.09.007
  5. He W, Deng J, Ma B, et al. Recent advancements of bioinks for 3D bioprinting of human tissues and organs. ACS Appl Bio Mater. 2024;7(1):17-43. doi: 10.1021/acsabm.3c00806
  6. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  7. Xin S, Deo KA, Dai J, et al. Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci Adv. 2021;7(42):eabk3087. doi: 10.1126/sciadv.abk3087
  8. Riley L, Schirmer L, Segura T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr Opin Biotechnol. 2019;60:1-8. doi: 10.1016/j.copbio.2018.11.001
  9. Highley CB, Song KH, Daly AC, Burdick JA. Jammed microgel inks for 3D printing applications. Adv Sci (Weinh). 2018;6(1):1801076. doi: 10.1002/advs.201801076
  10. Kajtez J, Wesseler MF, Birtele M, et al. Embedded 3D printing in self-healing annealable composites for precise patterning of functionally mature human neural constructs. Adv Sci (Weinh). 2022;9(25):e2201392. doi: 10.1002/advs.202201392
  11. Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43. doi: 10.1038/s41578-019-0148-6
  12. Daly AC. Granular hydrogels in biofabrication: recent advances and future perspectives. Adv Healthc Mater. 2024;13(25):e2301388. doi: 10.1002/adhm.202301388
  13. Wang C, Zhang Z, Wang Q, et al. Aqueous two-phase emulsions toward biologically relevant applications. Trends Chem. 2023;5(1):61-75. doi: 10.1016/j.trechm.2022.10.009
  14. Ying GL, Jiang N, Maharjan S, et al. Aqueous two-phase emulsion Bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater. 2018;30(50):e1805460. doi: 10.1002/adma.201805460
  15. Zhang Y, Luo Y, Zhao J, et al. Emerging delivery systems based on aqueous two-phase systems: a review. Acta Pharm Sin B. 2024;14(1):110-132. doi: 10.1016/j.apsb.2023.08.024
  16. Mierke CT. Bidirectional mechanical response between cells and their microenvironment. Front Phys. 2021;9:749830. doi: 10.3389/fphy.2021.749830
  17. Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev. 2020;49(1):114-142. doi: 10.1039/C9CS00466A
  18. Iqbal M, Tao Y, Xie S, et al. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online. 2016;18:18. doi: 10.1186/s12575-016-0048-8
  19. Fick C, Khan Z, Srivastava S. Interfacial stabilization of aqueous two-phase systems: a review. Mater Adv. 2023;4(20):4665-4678. doi: 10.1039/D3MA00307H
  20. Dumas F, Roger E, Rodriguez R, et al. Aqueous two-phase systems: simple one-step process formulation and phase diagram for characterisation. Colloid Polymer Sci. 2020;298(12):1629-1636. doi:10.1007/s00396-020-04748-8
  21. Liu L, Ngai T. Pickering emulsions stabilized by binary mixtures of colloidal particles: synergies between contrasting properties. Langmuir. 2022;38(44):13322-13329. doi: 10.1021/acs.langmuir.2c02338
  22. Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin methacryloyl (GelMA) bioink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications. Small. 2022;18(25):e2106357. doi: 10.1002/smll.202106357
  23. Ouyang L, Wojciechowski JP, Tang J, Guo Y, Stevens MM. Tunable microgel-templated porogel (MTP) bioink for 3D bioprinting applications. Adv Healthc Mater. 2022;11(8):e2200027. doi: 10.1002/adhm.202200027
  24. Chengcheng D. The application and prospects of 3D printable microgel in biomedical science and engineering. IJB. 2023;9(5):753. doi: 10.18063/ijb.753
  25. Cheng W, Zhang J, Liu J, et al. Granular hydrogels for 3D bioprinting applications. VIEW 2020;1(3):20200060. doi: 10.1002/VIW.20200060
  26. Jeong S.-H, Hiemstra J, Blokzijl PV, et al. An oxygenating colloidal bioink for the engineering of biomimetic tissue constructs. Bio-Des Manuf. 2024;7(3):240-261. doi:10.1007/s42242-024-00281-7
  27. Ying G, Jiang N, Parra C, et al. Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape-memory properties. Adv Funct Mater. 2020;30(46):2003740. doi: 10.1002/adfm.202003740
  28. Liu T, Yi S, Liu G, et al. Aqueous two-phase emulsions-templated tailorable porous alginate beads for 3D cell culture. Carbohydr Polym. 2021;258:117702. doi: 10.1016/j.carbpol.2021.117702
  29. Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater. 2022;16:66-81. doi: 10.1016/j.bioactmat.2022.02.032
  30. Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering (Basel). 2021;8(2):27. doi: 10.3390/bioengineering8020027
  31. Moraes C, Simon AB, Putnam AJ, Takayama S. Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials. 2013;34(37):9623-9631. doi: 10.1016/j.biomaterials.2013.08.046
  32. Wang Q, Karadas O, Rosenholm JM, et al. Bioprinting macroporous hydrogel with aqueous two-phase emulsion-based bioink: in vitro mineralization and differentiation empowered by phosphorylated cellulose nanofibrils. Adv Funct Mater. 2024;34(29):2400431. doi: 10.1002/adfm.202400431
  33. Levato R, Lim KS, Li W, et al. High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Mater Today Bio. 2021;12:100162. doi: 10.1016/j.mtbio.2021.100162
  34. Tao J, Zhu S, Zhou N, et al. Nanoparticle-stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs. Adv Healthc Mater. 2022;11(12):e2102810. doi: 10.1002/adhm.202102810
  35. Luo G, Yu Y, Yuan Y, Chen X, Liu Z, Kong T. Freeform, reconfigurable embedded printing of all-aqueous 3D architectures. Adv Mater. 2019;31(49):e1904631. doi: 10.1002/adma.201904631
  36. Cui H, Zhang Y, Shen Y, et al. Dynamic assembly of viscoelastic networks by aqueous liquid-liquid phase separation and liquid-solid phase separation (AqLL-LS PS2 ). Adv Mater. 2022;34(51):e2205649. doi: 10.1002/adma.202205649
  37. Zhang S, Qi C, Zhang W, et al. In situ endothelialization of free-form 3D network of interconnected tubular channels via interfacial coacervation by aqueous-in-aqueous embedded bioprinting. Adv Mater. 2023;35(7):e2209263. doi: 10.1002/adma.202209263
  38. Becker M, Gurian M, Schot M, Leijten J. Aqueous two‐phase enabled low viscosity 3D (LoV3D) bioprinting of living matter. Adv Sci (Weinh). 2023;10(8):2370046. doi:10.1002/advs.202370046
  39. Jin Z, Seong H-G, Srivastava S, et al., 3D printing of aqueous two-phase systems with linear and bottlebrush polyelectrolytes. Angew Chem Int Ed. 2024;63(25):e202404382. doi: 10.1002/anie.202404382
  40. Beldengrün Y, Aragon J, Prazeres SF, Montalvo G, Miras J, Esquena J. Gelatin/maltodextrin water-in-water (W/W) emulsions for the preparation of cross-linked enzyme-loaded microgels. Langmuir. 2018;34(33):9731-9743. doi: 10.1021/acs.langmuir.8b01599.
  41. Wang A, Madden LA, Paunov VN. Vascularized co-culture clusteroids of primary endothelial and Hep-G2 cells based on aqueous two-phase pickering emulsions. Bioengineering (Basel). 2022;9(3):126. doi: 10.3390/bioengineering9030126.
  42. Mytnyk S, Ziemecka I, Olive AGL, et al. Microcapsules with a permeable hydrogel shell and an aqueous core continuously produced in a 3D microdevice by all-aqueous microfluidics. RSC Adv. 2017;7(19):11331-11337. doi: 10.1039/C7RA00452D
  43. He H, Hong M, Yang F, et al. Preparation of controlled multicompartmental gel microcarriers based on aqueous two-phase emulsions for 3D partitioned cell coculture in vitro. Biomacromolecules. 2024;25(7):4469-4481. doi: 10.1021/acs.biomac.4c00516
  44. Hori A, Watabe Y, Yamada M, et al. One-step formation of microporous hydrogel sponges encapsulating living cells by utilizing bicontinuous dispersion of aqueous polymer solutions. ACS Appl Bio Mater. 2019;2(5):2237-2245. doi: 10.1021/acsabm.9b00194
  45. Tavana H, Mosadegh B, Takayama S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv Mater. 2010;22(24):2628-2631. doi: 10.1002/adma.200904271
  46. Robinson S, Chang J, Parigoris E, Hecker L, Takayama S. Aqueous two-phase deposition and fibrinolysis of fibroblast-laden fibrin micro-scaffolds. Biofabrication. 2021;13(3):10.1088/1758-5090/abdb85. doi: 10.1088/1758-5090/abdb85
  47. Aydın D, Kızılel S. Water-in-water emulsion based synthesis of hydrogel nanospheres with tunable release kinetics. JOM. 2017;69(7):1185-1194. doi:10.1007/s11837-016-1969-z
  48. Oh H, Kang M, Bae E. et al. Fabrication of hydrogel microchannels using aqueous two-phase printing for 3D blood brain barrier. BioChip J 2023;17:369-383. doi: 10.1007/s13206-023-00110-6
  49. Zhu J, He Y, Wang Y, et al. Voxelated bioprinting of modular double-network bio-ink droplets. Nat Commun. 2024; 15:5902. doi: 10.1038/s41467-024-49705-z.
  50. Tang G, Luo Z, Lian L, et al. Liquid-embedded (bio)printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proc Natl Acad Sci U S A. 2023;120(7):e2206762120. doi: 10.1073/pnas.2206762120
  51. Wang M, Li W, Luo Z, et al. A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication. 2022;14(2):10.1088/1758-5090/ac5936. doi: 10.1088/1758-5090/ac5936
  52. Xu Y, Liao X, Zhang L, et al. Digital light processing-based bioprinting of microtissue hydrogel arrays using dextran-induced aqueous emulsion ink. J Bioact Compat Polym. 2024;39(3):162-174. doi: 10.1177/08839115241237327
  53. Lee MC, Lee JS, Kim S, et al. Synergistic effect of hypoxic conditioning and cell-tethering colloidal gels enhanced productivity of MSC paracrine factors and accelerated vessel regeneration. Adv Mater. 2025;37(3):e2408488. doi: 10.1002/adma.202408488
  54. Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12(17):e2203148. doi: 10.1002/adhm.202203148
  55. Qin X-S, Wang M, Li W, et al. Biosurfactant-stabilized micropore-forming GelMA inks enable improved usability for 3D printing applications. Regen Eng Transl Med. 2022;8(3):471-481. doi: 10.1007/s40883-022-00250-5
  56. Deo KA, Murali A, Tronolone JJ, et al. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv Healthc Mater. 2024;13(25):e2303810. doi: 10.1002/adhm.202303810
  57. Widener AE, Duraivel S, Angelini TE, Phelps EA. Injectable microporous annealed particle hydrogel based on guest-host-interlinked polyethylene glycol maleimide microgels. Adv Nanobiomed Res. 2022;2(10):2200030. doi:10.1002/anbr.202200030
  58. Wang A. Advanced Biomedical Applications of Cell Clusteroids Based on Aqueous Two-phase Pickering Emulsion Systems. University of Hull; 2022.
  59. Muir VG, Qazi TH, Shan J, Groll J, Burdick JA. Influence of microgel fabrication technique on granular hydrogel properties. ACS Biomater Sci Eng. 2021;7(9): 4269-4281. doi: 10.1021/acsbiomaterials.0c01612
  60. Qazi TH, Muir VG, Burdick JA. Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomater Sci Eng. 2022;8(4):1427-1442. doi: 10.1021/acsbiomaterials.1c01440
  61. Wang A, Madden LA, Paunov VN. Advanced biomedical applications based on emerging 3D cell culturing platforms. J Mater Chem B. 2020;8(46):10487-10501. doi: 10.1039/D0TB01658F
  62. Teixeira AG, Agarwal R, Ko KR, et al. Emerging biotechnology applications of aqueous two-phase systems. Adv Healthc Mater. 2018;7(6):e1701036. doi: 10.1002/adhm.201701036
  63. Deng X, Qi C, Meng S, et al. All-aqueous embedded 3D printing for freeform fabrication of biomimetic 3D constructs. Adv Mater. 2024;36(50):e2406825. doi: 10.1002/adma.202406825
  64. Chairez-Cantu K, González-González M, Rito-Palomares M. Novel approach for neuronal stem cell differentiation using aqueous two-phase systems in 3D cultures. J Chem Technol Biotechnol. 2021;96(1):8-13. doi: 10.1002/jctb.6586
  65. Lin Z, Beneyton T, Baret JC, Martin N. Coacervate droplets for synthetic cells. Small Methods. 2023;7(12):e2300496. doi: 10.1002/smtd.202300496
  66. Keller S, Teora SP, Boujemaa M, et al. Exploring new horizons in liquid compartmentalization via microfluidics. Biomacromolecules. 2021;22(5):1759-1769. doi: 10.1021/acs.biomac.0c01796
  67. Dumas F, Benoit JP, Saulnier P, Roger E. A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents. J Colloid Interface Sci. 2021;599:642-649. doi: 10.1016/j.jcis.2021.03.141
  68. Bai L, Huan S, Zhao B, et al. All-aqueous liquid crystal nanocellulose emulsions with permeable interfacial assembly. ACS Nano. 2020;14(10):13380-13390. doi: 10.1021/acsnano.0c05251
  69. Qian X, Peng G, Ge L, Wu D. Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface modifications. J Colloid Interface Sci. 2022;607 (Pt 2):1613-1624. doi: 10.1016/j.jcis.2021.09.085
  70. Peddireddy KR, Nicolai T, Benyahia L, Capron I. Stabilization of water-in-water emulsion by nanorods. ACS Macro Lett. 2016;5(3):283-286. doi: 10.1021/acsmacrolett.5b00953
  71. Ahmed T, Yamanishi C, Kojima T, Takayama S. Aqueous two-phase systems and microfluidics for microscale assays and analytical measurements. Annu Rev Anal Chem (Palo Alto Calif). 2021;14(1):231-255. doi: 10.1146/annurev-anchem-091520-101759.
  72. Ying G, Jiang N, Yu C, et al. Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-des. Manuf. 2018;1:215-224. doi: 10.1007/s42242-018-0028-8
  73. Duraivel S, Subramaniam V, Chisolm S, et al. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. Biophys Rev (Melville). 2022;3(3):031307. doi: 10.1063/5.0087387
  74. Flégeau K, Puiggali-Jou A, Zenobi-Wong M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication. 2022;14(3):034105. doi: 10.1088/1758-5090/ac6b58
  75. Pereira JFB, Coutinho JAP. Chapter 5 - aqueous two-phase systems. In: Poole CF, editor. Liquid-Phase Extraction. Elsevier; 2020:157-182. doi: 10.1016/B978-0-12-816911-7.00005-0
  76. Qazi TH, Wu J, Muir VG, et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Adv Mater. 2022;34(12):e2109194. doi: 10.1002/adma.202109194
  77. Guo Z, Zhang S, Guo Y. et al. Bioinspired coacervate-based bioinks for construction of multiscale tissue engineering scaffolds. Nano Res. 2024;17:8209–8219. doi: 10.1007/s12274-024-6844-6
  78. Leung BM, Labuz JM, Moraes C, et al. Chapter 9 - Bioprinting using aqueous two-phase system. In: Atala A, Yoo JJ, editors. Essentials of 3D Biofabrication and Translation. Boston: Academic Press; 2015:165–178.
  79. Rogers BA, Rembert KB, Poyton MF, et al. A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions. Proc Natl Acad Sci U S A. 2019;116(32):15784-15791. doi: 10.1073/pnas.1900886116
  80. Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. doi: 10.1038/s41598-019-42186-x
  81. Ben Messaoud G, Aveic S, Wachendoerfer M, Fischer H, Richtering W. 3D printable gelatin methacryloyl (GelMA)-dextran aqueous two-phase system with tunable pores structure and size enables physiological behavior of embedded cells in vitro. Small. 2023;19(44):e2208089. doi: 10.1002/smll.202208089
  82. Zhang Y, O’Mahony A, He Y, et al. Hydrodynamic shear stress’ impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication. 2024;16(2):022003. doi: 10.1088/1758-5090/ad22ee
  83. Bercea M. Rheology as a tool for fine-tuning the properties of printable bioinspired gels. Molecules. 2023;28(6):2766. doi: 10.3390/molecules28062766.
  84. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev. 2020;7(4):041319. doi: 10.1063/5.0023206
  85. Dubbin K, Hori Y, Lewis KK, Heilshorn SC. Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv Healthc Mater. 2016;5(19):2488-2492. doi: 10.1002/adhm.201600636
  86. Moon D, Lee MG, Sun JY, Song KH, Doh J. Jammed microgel-based inks for 3D printing of complex structures transformable via pH/temperature variations. Macromol Rapid Commun. 2022;43(19):e2200271. doi: 10.1002/marc.202200271
  87. Kessler M, Nassisi Q, Amstad E. Does the size of microgels influence the toughness of microgel-reinforced hydrogels? Macromol Rapid Commun. 2022;43(15):e2200196. doi: 10.1002/marc.202200196
  88. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv Funct Mater. 2021; 31(24): 2100848. doi: 10.1002/adfm.202100848
  89. Chaudhuri O, Gu L, Klumpers D., et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Mater 2016;15:326–334. doi: 10.1038/nmat4489
  90. Whitaker KA, Varga Z, Hsiao LC, Solomon MJ, Swan JW, Furst EM. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nat Commun. 2019;10(1):2237. doi: 10.1038/s41467-019-10039-w
  91. Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516. doi: 10.1038/s41580-023-00583-1
  92. Di X, Gao X, Peng L, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8(1):282. doi: 10.1038/s41392-023-01501-9
  93. Bakhshandeh B, Sorboni SG, Ranjbar N, et al. Mechanotransduction in tissue engineering: insights into the interaction of stem cells with biomechanical cues. Exp Cell Res. 2023;431(2):113766. doi: 10.1016/j.yexcr.2023.113766
  94. Jafarinia H, Khalilimeybodi A, Barrasa-Fano J, et al. Insights gained from computational modeling of YAP/TAZ signaling for cellular mechanotransduction. npj Syst Biol Appl. 2024;10:90. doi: 10.1038/s41540-024-00414-9
  95. Li Y, Wang J, Zhong W. Regulation and mechanism of YAP/ TAZ in the mechanical microenvironment of stem cells (Review). Mol Med Rep. 2021;24(1):506. doi: 10.3892/mmr.2021.12145
  96. Naqvi SM, McNamara LM. Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration. Front Bioeng Biotechnol. 2020;8:597661. doi: 10.3389/fbioe.2020.597661
  97. Zebda N, Dubrovskyi O, Birukov KG. Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res. 2012;83(1):71-81. doi: 10.1016/j.mvr.2011.06.007
  98. Casarella S, Ferla F, Di Francesco D, et al. Focal adhesion’s role in cardiomyocytes function: from cardiomyogenesis to mechanotransduction. Cells. 2024;13(8):664. doi: 10.3390/cells13080664
  99. Cao R, Tian H, Tian Y, et al. A hierarchical mechanotransduction system: from macro to micro. Adv Sci. 2024;11(11):2302327. doi: 10.1002/advs.202302327
  100. Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm. 2023;640: 123020. doi: 10.1016/j.ijpharm.2023.123020
  101. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A. 2021;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305
  102. Somasekhar L, Huynh ND, Vecheck A, Kishore V, Bashur CA, Mitra K. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. J Biomed Mater Res A. 2022;110(3):535-546. doi: 10.1002/jbm.a.37303
  103. Lee SJ, Seok JM, Lee JH, Lee J, Kim WD, Park SA. Three- Dimensional Printable Hydrogel Using a Hyaluronic Acid/ Sodium Alginate Bio-Ink. Poly (Basel). 2021;13(5):794. doi: 10.3390/polym13050794
  104. Snyder J, Rin Son A, Hamid Q, Wang C, Lui Y, Sun W. Mesenchymal stem cell printing and process regulated cell properties. Biofabrication. 2015;7(4):044106. doi: 10.1088/1758-5090/7/4/044106
  105. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res. 2022;9(1):70. doi: 10.1186/s40779-022-00429-5
  106. Nair K, Gandhi M, Khalil S, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168-1177. doi: 10.1002/biot.200900004
  107. Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs. 2023;26(4):255-274. doi: 10.1007/s10047-023-01394-z
  108. Shafiee A, Kassis J, Atala A, et al. Acceleration of tissue maturation by mechanotransduction-based bioprinting. Phys Rev Res. 2021;3(1):013008. doi: 10.1103/PhysRevResearch.3.013008
  109. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016; 5(3):326-333. doi: 10.1002/adhm.201500677
  110. Zhang C, Elvitigala KCML, Mubarok W, et al. Machine learning-based prediction and optimisation framework for as-extruded cell viability in extrusion-based 3D bioprinting. Virtual Phys Prototyp. 2024;19(1):e2400330. doi.org/10.1080/17452759.2024.2400330
  111. Lee S, Kim W, Kim G. Efficient myogenic activities achieved through blade-casting-assisted bioprinting of aligned myoblasts laden in collagen bioink. Biomacromolecules. 2023;24(11):5219-5229. doi: 10.1021/acs.biomac.3c00749.
  112. Dey K, Roca E, Ramorino G, et al. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci. 2020;8(24):7033-7081. doi: 10.1039/D0BM01255F
  113. Liu S, Yu JM, Gan YC, et al. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Med Res. 2023;10:16. doi: 10.1186/s40779-023-00448-w
  114. Wu DT, Jeffreys N, Diba M, Mooney DJ. Viscoelastic biomaterials for tissue regeneration. Tissue Eng Part C Methods. 2022;28(7):289-300. doi: 10.1089/ten.TEC.2022.0040
  115. Hazur J, Endrizzi N, Schubert DW, et al. Stress relaxation amplitude of hydrogels determines migration, proliferation, and morphology of cells in 3-D culture. Biomater Sci. 2022;10(1):270-280. doi: 10.1039/D1BM01089A
  116. Statnik ES, Salimon AI, Gorshkova YE, Kaladzinskaya NS, Markova LV, Korsunsky AM. Analysis of stress relaxation in bulk and porous ultra-high molecular weight polyethylene (UHMWPE). Polymers (Basel). 2022;14(24):5374. doi: 10.3390/polym14245374
  117. Li T, Hou J, Wang L, et al. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater. 2023;156:21-36. doi: 10.1016/j.actbio.2022.08.037
  118. Wang KY, Jin XY, Ma YH, et al. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnol. 2021;19:214. doi: 10.1186/s12951-021-00950-0
  119. Kamperman T, Henke S, van den Berg A, et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv Healthcare Mater. 2017;6(3):1600913. doi: 10.1002/adhm.201600913
  120. Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res. 2023; 27(1):55. doi: 10.1186/s40824-023-00393-8
  121. Liu Y, Li J, Yao B, et al. The stiffness of hydrogel-based bioink impacts mesenchymal stem cells differentiation toward sweat glands in 3D-bioprinted matrix. Mater Sci Eng C Mater Biol Appl. 2021;118:111387. doi: 10.1016/j.msec.2020.111387
  122. Xuan L, Hou Y, Liang L, et al. Microgels for cell delivery in tissue engineering and regenerative medicine. Nanomicro Lett. 2024;16(1):218. doi: 10.1007/s40820-024-01421-5
  123. Suvarnapathaki S, Wu X, Lantigua D, et al. Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater. 2019;11:65. doi: 10.1038/s41427-019-0166-2
  124. Wang LH, Ernst AU, An D, et al. A bioinspired scaffold for rapid oxygenation of cell encapsulation systems. Nat Commun. 2021;12(1):5846. doi: 10.1038/s41467-021-26126-w.
  125. Lu Z, Jiang X, Chen M, Feng L, Kang YJ. An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication. 2019;11(4):045012. doi: 10.1088/1758-5090/ab332a
  126. Guan Y, Niu H, Liu Z, et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv. 2021;7(35):eabj0153. doi: 10.1126/sciadv.abj0153
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing