AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025150128
Cite this article
14
Download
231
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Selective laser melted Fe–30Mn–6Cu alloy: A multifunctional candidate for MRI-compatible, biodegradable, antibacterial, and biocompatible orthopedic implants

Xinjun Yang1,2 Xinhong Yin3 Yali He1 Junjie Cheng1 Xin Li2 Guanping Chen1 Yingchao Zhao1 Ming-Chun Zhao2*
Show Less
1 Gynecology and Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
2 School of Materials Science and Engineering, Central South University, Changsha, Hunan, China
3 School of Nursing, University of South China, Hengyang, Hunan, China
Received: 8 March 2025 | Accepted: 9 April 2025 | Published online: 11 April 2025
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The orthopedic potential of biodegradable iron (Fe)–manganese (Mn)–copper (Cu) alloys remains insufficiently defined, necessitating comprehensive investigation into their mechanical properties, wear resistance, magnetic resonance imaging compatibility, biodegradation behavior, antibacterial efficacy, cytocompatibility, and osteogenic differentiation capacity. This study systematically addresses these aspects through microstructural characterization, mechanical testing, and biological evaluations of Fe–30Mn–6Cu alloy fabricated via selective laser melting (SLM). For comparison, a Cu-free Fe–30Mn alloy was fabricated under similar SLM conditions. The incorporation of 6 wt.% Cu into Fe–30Mn stabilized the γ-austenite phase, enhanced yield strength, improved wear resistance, accelerated electrochemical biodegradation, and imparted strong antibacterial activity. The SLMed Fe–30Mn– 6Cu (i) exhibited a fully γ-austenite microstructure with fine equiaxed grains (~7 μm) containing Cu-enriched intergranular second-phase particles; (ii) demonstrated a yield strength of ~230 MPa—approximately ~24% higher than that of SLMed Fe– 30Mn—along with improved tribological performance, a reduced hysteresis loop area indicating extremely low saturation magnetization and magnetic susceptibility, and a biodegradation rate three times higher compared to the Cu-free counterpart; and (iii) achieved a bacteriostatic rate exceeding 99% against Escherichia coli and Staphylococcus aureus, alongside excellent cytocompatibility and promotion of osteogenic differentiation in MC3T3-E1 cells. These findings provide insights into the structure–property–function relationship of multifunctional Fe–Mn–Cu alloys and their promising applicability in orthopedic implants.

 

Graphical abstract
Keywords
Antibacterial activity
Biodegradation
Fe–Mn–Cu alloys
Magnetic resonance imaging compatibility
Osteogenic differentiation
Tribological performance
Funding
The study was financially supported by the National Natural Science Foundation of China (No. 52305313), the Natural Science Foundation of Hunan Province (No. 2023JJ40553), and the Natural Science Foundation of Shandong Province (No. ZR2023ME181).
Conflict of interest
The authors declare they have no conflict of interest.
References
  1. Liu Z, Zhao MC, Yin D, Zhao YC, Atrens A. Bio-functional niobium-based metallic biomaterials: Exploring their physicomechanical properties, biological significance, and implant applications. Acta Biomater. 2025;192:1-27. doi: 10.1016/j.actbio.2024.12.036
  2. Zhang Y, Roux C, Rouchaud A, et al. Recent advances in Fe-based bioresorbable stents: materials design and biosafety. Bioact Mater. 2023;31:333-354. doi: 10.1016/j.bioactmat.2023.07.024
  3. Putra NE, Leeflang MA, Minneboo M, et al. Extrusion-based 3D printed biodegradable porous iron. Acta Biomater. 2021;121:741-756. doi: 10.1016/j.actbio.2020.11.022
  4. Li Y, Jahr H, Lietaert K, et al. Additively manufactured biodegradable porous iron. Acta Biomater. 2018; 77:380-393. doi: 10.1016/j.actbio.2019.10.034
  5. Lin W, Qin L, Qi H, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 2017;54:454-468. doi: 10.1016/j.actbio.2017.03.020
  6. Zhao Y, Feng J, Yu H, et al. Comparative study on biodegradation of pure iron prepared by microwave sintering and laser melting. Materials (Basel). 2022; 15(4):1604. doi: 10.3390/ma15041604
  7. Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7(3):1407-1420. doi: 10.1016/j.actbio.2010.11.001
  8. Li S, Ren J, Wang X, et al. Dilemmas and countermeasures of Fe-based biomaterials for next-generation bone implants. J Mater Res Technol. 2022;20:2034-2050. doi: 10.1016/j.jmrt.2022.07.089
  9. Putra NE, Leeflang MA, Taheri P, et al. Extrusion-based 3D printing of ex situ -alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomater. 2021;134:774-790. doi: 10.1016/j.actbio.2021.07.042
  10. He J, He F-L, Li D-W, et al. Advances in Fe-based biodegradable metallic materials. RSC Adv. 2016;6:112819-112838. doi: 10.1039/c6ra20594a
  11. Filli L, Luechinger R, Frauenfelder T, et al. Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls. Skeletal Radiol. 2015;44(6):849-856. doi: 10.1007/s00256-014-2057-5
  12. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331-2339. doi: 10.1016/j.biomaterials.2005.11.044
  13. Guo Y, Zhao M, Xie B, et al. In vitro corrosion resistance and antibacterial performance of novel Fe-xCu biomedical alloys prepared by selective laser melting. Adv Eng Mater. 2021;23:2001000. doi: 10.1002/adem.202001000
  14. Cordova LA, Stresing V, Gobin B, et al. Orthopaedic implant failure: aseptic implant loosening--the contribution and future challenges of mouse models in translational research. Clin Sci (Lond). 2014;127(5):277-293. doi: 10.1042/CS20130338
  15. Li X, Zhao YC, Yin D, et al. Microwave-sintered nano- SiC reinforced 8SiC/Ti-3Cu composite: fabrication, wear resistance, antibacterial function, and biocompatibility. Adv Healthc Mater. 2025;14(6):e2403626. doi: 10.1002/adhm.202403626
  16. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 2010;6(5):1852-1860. doi: 10.1016/j.actbio.2009.11.025
  17. Liu P, Huang Q, Shan Q, et al. Achieving exceptional work-hardening capability of additively-manufactured multiphase Fe-Mn alloys via multiple deformation mechanisms, Int J Plast. 2024;173:103871. doi: 10.1016/j.ijplas.2023.103871
  18. Schinhammer M, Haenzi AC, Loeffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6:1705-1713. doi: 10.1016/j.actbio.2009.07.039
  19. Li JL, Zhao MC, Zhao YC, et al. Customization and prospects of friction stirprocessing for improving the biomedicalproperties of metallic implants fororthopedic applications. J Mater Res Technol. 2025;34:2133-2149. doi: 10.1016/j.jmrt.2024.12.191
  20. Mandal S, Viraj, Nandi SK, Roy M. Effects of multiscale porosity and pore interconnectivity on in vitro and in vivo degradation and biocompatibility of Fe–Mn–Cu scaffolds. J Mater Chem B. 2021;9:4340-4354. doi: 10.1039/D1TB00641J
  21. Zhao Y, Tang Y, Zhao M, et al. Graphene oxide reinforced iron matrix composite with enhanced biodegradation rate prepared by selective laser melting. Adv Eng Mater. 2019;21:1900314. doi: 10.1002/adem.201900314
  22. Zhao YC, Tang Y, Zhao MC, et al. Study on Fe-xGO composites prepared by selective laser melting: microstructure, hardness, biodegradation and cytocompatibility. JOM 2020;72: 1163-1174 (2020). doi: 10.1007/s11837-019-03814-z
  23. Zhao, MC., Zhao, YC., Yin, DF. et al. Biodegradation behavior of coated as-extruded Mg–Sr alloy in simulated body fluid. Acta Metall Sin. (Engl Lett.) 2019;32:1195-1206. doi: 10.1007/s40195-019-00892-5
  24. Cherqaoui A, Cao QN, Gatto ML, Paternoster C, Mengucci P, Mantovani D. Degradation behavior of austenite, ferrite, and martensite present in biodegradable Fe-based alloys in three protein-rich pseudo-physiological solutions. Bioact Mater. 2024;41:96-107. doi: 10.1016/j.bioactmat.2024.06.025
  25. Dargusch MS, Venezuela J, Dehghan-Manshadi A, et al. In vivo evaluation of bioabsorbable Fe-35Mn-1Ag: first reports on in vivo hydrogen gas evolution in Fe-based implants. Adv Healthc Mater. 2021;10(2):e2000667. doi: 10.1002/adhm.202000667
  26. Ren G, Huang L, Hu K, et al. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. J Mater Sci Technol. 2022;117:158-166. doi: 10.1016/j.jmst.2022.02.001
  27. Yan X, Wan P, Tan L, Zao M, Shuai C, Yang K. Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1Cu alloy. Mater Sci Eng: B. 2018;229:105-117. doi: 10.1016/j.mseb.2017.12.033
  28. Goudarzi P, Moazami-Goudarzi M, Masoudi A. Sintering, microstructure and properties of absorbable Fe–Mn-xCu alloys. Mater Chem Phys. 2022;287:126368. doi: 10.1016/j.matchemphys.2022.126368
  29. Zhao Y, Cao Y, Wen W, et al. Effects of Mn content on austenite stability and mechanical properties of low Ni alumina-forming austenitic heat-resistant steel: a first-principles study. Sci Rep. 2023;13(1):5769. doi: 10.1038/s41598-023-32968-9
  30. Martínez J, Cotes SM, Cabrera AF, Desimoni J, Fernández Guillermet A. On the relative fraction of ε martensite in γ-Fe–Mn alloys. Mater Sci Eng A. 2005;408:26-32. doi: 10.1016/j.msea.2005.06.019
  31. Dargusch MS, Dehghan-Manshadi A, Shahbazi M, et al. Exploring the role of manganese on the microstructure, mechanical properties, biodegradability, and biocompatibility of porous iron-based scaffolds. ACS Biomater Sci Eng. 2019;5(4):1686-1702. doi: 10.1021/acsbiomaterials.8b01497
  32. Xie B, Zhao M-C, Tao J-X, et al. Comparison of the biodegradation of ZK30 subjected to solid solution treating and selective laser melting. J Mater Res Technol. 2021;10:722-729. doi: 10.1016/j.jmrt.2020.12.041
  33. Ji H, Zhao M-C, Xie B, et al. Corrosion and antibacterial performance of novel selective-laser-melted (SLMed) Ti-xCu biomedical alloys. J Alloys Compd. 2021;864:158415. doi: 10.1016/j.jallcom.2020.158415
  34. Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng Rep. 2014;80:1–36. doi: 10.1016/j.mser.2014.04.001
  35. Wu M, Zhao M, Cai Y, Yao J, Wang P, Atrens A. Recent advances in bio-functional Ta-based bone materials: materials design and bioactivity. Int J Extrem Manuf. 2024;6:062010. doi: 10.1088/2631-7990/ad7b03
  36. Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651-2670. doi: 10.1016/j.biomaterials.2005.12.002
  37. Zhang W, Tan L, Ni D, et al. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy. J Mater Sci Technol. 2019;35(5):777-783. doi: 10.1016/j.jmst.2018.11.025
  38. Song Z, Cai Y, Li X, et al. Fresh insights into structure– function-integrated self-antibacterial Cu-containing Al alloys: giving Al alloys a new function. Mater Horiz. 2025;12:814-832. doi: 10.1039/D4MH00770K
  39. Wang KX, Yin D, Zhao Y, Atrens A, Zhao M. Microstructural evolution upon heat treatments and its effect on corrosion in Al-Zn-Mg alloys containing Sc and Zr. J Mater Res Technol. 2020;9:5077-5089. doi: 10.1016/j.jallcom.2022.168001
  40. Liu P, Wu H, Liang L, et al. Microstructure, mechanical properties and corrosion behavior of additively-manufactured Fe–Mn alloys. Mater Sci Eng A. 2022;852:143585. doi: 10.1016/j.msea.2022.143585
  41. Bhadeshia H, Honeycombe R. Chapter 4 - Solutes that substitute for iron. In: Bhadeshia H, Honeycombe R (eds.). Steels: Microstructure and Properties, Fourth Edition, Butterworth-Heinemann; 2017:101-134. doi: 10.1016/B978-0-08-100270-4.00004-4
  42. Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects. J Magn Alloys. 2022;10:627-669. doi: 10.1016/j.jma.2021.09.005
  43. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127-141. doi: 10.1016/j.biomaterials.2016.01.012
  44. Heiden M, Nauman E, Stanciu L. Bioresorbable Fe-Mn and Fe-Mn-HA materials for orthopedic implantation: enhancing degradation through porosity control. Adv Healthc Mater. 2017;6(13):1700120. doi: 10.1002/adhm.201700120
  45. Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application. Adv Mater Res. 2006;15–17:107-112. doi: 10.4028/www.scientific.net/AMR.15-17.107
  46. Mandal S, Kishore AV, Mandal S, et al. Controlled nano Cu precipitation through age treatment: a method to enhance the biodegradation, mechanical, antimicrobial properties and biocompatibility of Fe-20Mn-3Cu alloys. Acta Biomater. 2023;168:650-669. doi: 10.1016/j.actbio.2023.07.004
  47. Lu X, Zhang D, Xu W, et al. The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo- Cu alloy for load-bearing bone implants. Corros Sci. 2020;177:109007. doi: 10.1016/j.corsci.2020.109007
  48. Lintzen S, von Appen J, Hallstedt B, Dronskowski R. The Fe–Mn enthalpy phase diagram from first principles. J Alloys Compd. 2013;577:370-375. doi: 10.1016/j.jallcom.2013.06.006
  49. Jurgeleit T, Quandt E, Zamponi C. Magnetron sputtering as a fabrication method for a biodegradable Fe32Mn alloy. Materials (Basel). 2017;10(10):1196. doi: 10.3390/ma10101196
  50. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23:815-850. doi: 10.1118/1.597854
  51. Lee MK, Lee H, Park C, et al. Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioact Mater. 2021;9:239-250. doi: 10.1016/j.bioactmat.2021.07.003
  52. Wang P, Wang Q, Wu D, et al. Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration. Nano Res. 2024;17:6430-6442. doi: 10.1007/s12274-024-6656-8
  53. Gao YN, Yang HT, Qiu ZF, et al. Long-term efficacy, safety and biocompatibility of a novel sirolimus eluting iron bioresorbable scaffold in a porcine model. Bioact Mater. 2024;39:135-146. doi: 10.1016/j.bioactmat.2024.05.027
  54. Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as a potential biodegradable metallic material. Mater Lett. 2011; 65:540-543. doi: 10.1016/j.matlet.2010.10.068
  55. Zhang W, Zao MC, Wang Z, et al. Enhanced initial biodegradation resistance of the biomedical Mg-Cu alloy by surface nanomodification. J Magnes Alloys. 2023;11:2776-2788. doi: 10.1016/j.jma.2021.12.013
  56. Venezuela J, Dargusch MS. Addressing the slow corrosion rate of biodegradable Fe-Mn: current approaches and future trends. Curr Opin Solid State Mater Sci. 2020; 24:100822. doi: 10.1016/j.cossms.2020.100822
  57. Godoy-Gallardo M, Eckhard U, Delgado LM, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater. 2021;6:4470-4490. doi: 10.1016/j.bioactmat.2021.04.033
  58. Zhang E, Zao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6:2569-2612. doi: 10.1016/j.bioactmat.2021.01.033
  59. Nan L, Liu Y, Lü M, Yang K. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci Matern Med. 2008;19:3057-3062. doi: 10.1016/j.bioactmat.2021.01.030
  60. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R: Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001
  61. Yuan Y, Jin S, Qi X, et al. Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. J Mater Sci Technol. 2019;35:2727-2733. doi: 10.1016/j.jmst.2019.04.028

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing