AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025120094
RESEARCH ARTICLE

An experimental workflow for bioprinting optimization: Application to a custom-made biomaterial ink

Pablo Martín Compaired1 Elena García-Gareta1,2,3 María Ángeles Pérez1,2*
Show Less
1 Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
2 Institute for Health Research Aragón (IIS), Zaragoza, Aragón, Spain
3 Division of Biomaterials & Tissue Engineering, University College London Eastman Dental Institute, University College London, London, United Kingdom
Received: 18 March 2025 | Revised: 21 March 2025 | Accepted: 1 April 2025 | Published online: 11 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bioprinting is an emerging technology with significant potential in biomedical fields, enabling the creation of highly customized, cell-laden constructs. Despite the promise, achieving high-quality, reproducible prints remains challenging due to the lack of standardized protocols, which has hindered the widespread adoption of the technique. In this study, we present a systematic bioprinting protocol designed to optimize the performance of an in-house photo-curable biomaterial ink composed of gelatin methacryloyl and egg white protein. Printing quality was evaluated through the following three key assessments: extrusion, deposition, and printability. To facilitate accurate image analysis, we developed a custom three-dimensional (3D)-printed lens support specifically designed for a USB microscope. Additionally, we implemented a Python script to quantitatively assess bioprinting quality. Our results indicate that a pressure range of 70–80 kPa, combined with speeds between 300 and 900 mm/min, yields reliable extrusion flow, with 75 kPa and 600 mm/min emerging as optimal parameters for bioprinting 3D constructs. These findings underscore the importance of carefully tuning parameters—including pressure and speed—to achieve stable, high-resolution extrusions. Such optimization mitigates common printing issues, including tip clogging, filament dragging, and unintended merging of adjacent filaments, thereby enhancing structural accuracy. This work provides a comprehensive framework for evaluating and optimizing bioprinting parameters, offering a reproducible methodology to enhance print quality. It contributes to ongoing efforts to standardize bioprinting processes and advance their applications in tissue engineering and regenerative medicine.

Graphical abstract
Keywords
3D bioprinting protocol
Deposition
Egg white proteins
Extrusion
Gelatin methacryloyl
Photo-curable biomaterial ink
Printability
Funding
This work has been financially supported by the Spanish Ministry of Science and Innovation (grant no. PID2023-146072OB-I00). P.M.C was funded by the Spanish Government through “Plan de Recuperación, Transformación y Resiliencia” and by the European Union through “NextGenerationEU” (Programa Investigo 076-16). E.G.G was funded by the Ramón & Cajal Fellowship (RYC2021-033490-I, funded by MCIN/AE/10.13039/501100011033 and the EU “NextGenerationEU/PRTR”). The Bio X bioprinter was adquired through Contrato Programa Plan de Inversiones e Investigación from the Aragón Government (2022).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Halper J. Narrative review and guide: state of the art and emerging opportunities of bioprinting in tissue regeneration and medical instrumentation. Bioengineering. 2025;12(1):71. doi: 10.3390/bioengineering12010071
  2. Wilson WC, Boland T. Cell and organ printing 1: Protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):491-496. doi: 10.1002/ar.a.10057
  3. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536
  4. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. 2019;6(11):1900344. doi: 10.1002/advs.201900344
  5. Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021;13(9):1373. doi: 10.3390/pharmaceutics13091373
  6. Sousa AC, Alvites R, Lopes B, et al. Three-dimensional printing/bioprinting and cellular therapies for regenerative medicine: current advances. J Funct Biomater. 2025; 16(1):28. doi: 10.3390/jfb16010028
  7. Zimmerling A, Chen X. Bioprinting for combating infectious diseases. Bioprinting. 2020;20:e00104. doi: 10.1016/j.bprint.2020.e00104
  8. Kantaros A, Ganetsos T, Petrescu FIT, Alysandratou E. Bioprinting and intellectual property: challenges, opportunities, and the road ahead. Bioengineering. 2025;12(1):76. doi: 10.3390/bioengineering12010076
  9. Kinjoll Dey. 3D Bioprinting Market Size, Share & Trends Analysis Report by Technology (Magnetic Levitation, Inkjet-Based), By Application (Medical, Dental, Biosensors, Bioinks), By Region, And Segment Forecasts, 2023 - 2030; 2024. https://www.grandviewresearch.com/horizon/outlook/3d-bioprinting-
  10. Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR. An overview on materials and techniques in 3D bioprinting toward biomedical application. Engin Regenerat. 2021;2:1-18. doi: 10.1016/j.engreg.2020.12.001
  11. Skardal A. Perspective: “Universal” bioink technology for advancing extrusion bioprinting-based biomanufacturing. Bioprinting. 2018;10:e00026. doi: 10.1016/j.bprint.2018.e00026
  12. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  13. Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16: 20417314241308022. doi: 10.1177/20417314241308022
  14. Vijayavenkataraman S. 3D bioprinting: challenges in commercialization and clinical translation. J 3D Print Med. 2023;7(3). doi: 10.2217/3dp-2022-0026
  15. Simon A, Grohens Y, Vandanjon L, Bourseau P, Balnois E, Levesque G. A comparative study of the rheological and structural properties of gelatin gels of mammalian and fish origins. In: Macromolecular Symposia, Vol. 203; 2003:331-338. doi: 10.1002/masy.200351337
  16. Michelini L, Probo L, Farè S, Contessi Negrini N. Characterization of gelatin hydrogels derived from different animal sources. Mater Lett. 2020;272;127865. doi: 10.1016/j.matlet.2020.127865
  17. Sompie M, Triatmojo S, Pertiwiningrum A, Pranoto Y. The effects of animal age and acetic acid concentration on pigskin gelatin characteristics. J Indones Trop Anim Agric. 2012;37(3):176-182. doi: 10.14710/jitaa.37.3.176-182
  18. Netter AB, Goudoulas TB, Germann N. Effects of Bloom number on phase transition of gelatin determined by means of rheological characterization. LWT. 2020;132:109813. doi: 10.1016/j.lwt.2020.109813
  19. Gaglio CG, Baruffaldi D, Pirri CF, Napione L, Frascella F. GelMA synthesis and sources comparison for 3D multimaterial bioprinting. Front Bioeng Biotechnol. 2024;12:1383010. doi: 10.3389/fbioe.2024.1383010
  20. Standard Guide for Bioinks Used in Bioprinting; 2024. doi: 10.1520/F3659-24
  21. Standards Coordinating Body. Project: Specifications for Bioinks and Bioprinters. Accessed November 25, 2024. https://www.standardscoordinatingbody.org/project-specification-printability-bioink
  22. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  23. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107. doi: 10.1088/1758-5090/aa8dd8
  24. Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. 2018;10(3):034106. doi: 10.1088/1758-5090/aacdc7
  25. Ribeiro A, Blokzijl MM, Levato R, et al. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication. 2018;10(1):014102. doi: 10.1088/1758-5090/aa90e2
  26. Therriault D, White SR, Lewis JA. Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol. 2007;17(1):10112-1–10112-8. doi: 10.1515/arh-2007-0001
  27. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  28. Li Z, Ramos A, Li MC, et al. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Biomed Phys Eng Express. 2020;6(4):045009. doi: 10.1088/2057-1976/ab8fc6
  29. Rodríguez-Rego JM, Mendoza-Cerezo L, Macías-García A, Carrasco-Amador JP, Marcos-Romero AC. Methodology for characterizing the printability of hydrogels. Int J Bioprint. 2022;9(2):280-291. doi: 10.18063/IJB.V9I2.667
  30. Xu J, Yang S, Su Y, et al. A 3D bioprinted tumor model fabricated with gelatin/sodium alginate/decellularized extracellular matrix bioink. Int J Bioprint. 2023;9(1):109-130. doi: 10.18063/ijb.v9i1.630
  31. Esser TU, Anspach A, Muenzebrock KA, et al. Direct 3D-bioprinting of hiPSC-derived cardiomyocytes to generate functional cardiac tissues. Adv Mater. 2023;35(52): e2305911. doi: 10.1002/adma.202305911
  32. Perin F, Spessot E, Famà A, et al. Modeling a dynamic printability window on polysaccharide blend inks for extrusion bioprinting. ACS Biomater Sci Eng. 2023;9(3):1320-1331. doi: 10.1021/acsbiomaterials.2c01143
  33. Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting. 2021;24:e00156. doi: 10.1016/j.bprint.2021.e00172
  34. Galocha-León C, Antich C, Voltes-Martínez A, et al. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res. 2025;15(1):291-311. doi: 10.1007/s13346-024-01596-9
  35. O’Connell C, Ren J, Pope L, et al. Characterizing bioinks for extrusion bioprinting: printability and rheology. In: Methods in Molecular Biology. Vol. 2140. Humana Press Inc.; 2020:111-133. doi: 10.1007/978-1-0716-0520-2_7
  36. Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914. doi: 10.1016/j.apmt.2020.100914
  37. Lai Y, Xiao X, Huang Z, et al. Photocrosslinkable biomaterials for 3D bioprinting: mechanisms, recent advances, and future prospects. Int J Mol Sci. 2024;25(23):12567. doi: 10.3390/ijms252312567
  38. Balaji KV, Bhutoria S, Nayak S, Anil Kumar P, Velayudhan S. Printability assessment of modified filament deposition modelling three dimensional bioprinter printer using polymeric formulations. Biomed Eng Adv. 2023;5:100083. doi: 10.1016/j.bea.2023.100083
  39. Webb B, Doyle BJ. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting. 2017;8:8-12. doi: 10.1016/j.bprint.2017.09.001
  40. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  41. Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi: 10.1016/j.slast.2023.02.003
  42. Razi SM, Fahim H, Amirabadi S, Rashidinejad A. An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll. 2023;135: 108183. doi: 10.1016/j.foodhyd.2022.108183
  43. Jalili-Firoozinezhad S, Filippi M, Mohabatpour F, Letourneur D, Scherberich A. Chicken egg white: hatching of a new old biomaterial. Mater Today. 2020;40:193-214. doi: 10.1016/j.mattod.2020.05.022
  44. Mousseau Y, Mollard S, Qiu H, et al. In vitro 3D angiogenesis assay in egg white matrix: comparison to Matrigel, compatibility to various species, and suitability for drug testing. Lab Investig. 2014;94(3):340-349. doi: 10.1038/labinvest.2013.150
  45. Mahmoodi M, Darabi MA, Mohaghegh N, et al. Egg white photocrosslinkable hydrogels as versatile bioinks for advanced tissue engineering applications. Adv Funct Mater. 2024;34(32):2315040. doi: 10.1002/adfm.202315040
  46. Pele KG, Amaveda H, Mora M, et al. Hydrocolloids of egg white and gelatin as a platform for hydrogel-based tissue engineering. Gels. 2023;9(6):505. doi: 10.3390/gels9060505
  47. Van Der Plancken I, Van Loey A, Hendrickx ME. Effect of heat-treatment on the physico-chemical properties of egg white proteins: a kinetic study. J Food Eng. 2006;75(3):316-326. doi: 10.1016/j.jfoodeng.2005.04.019
  48. Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021;7(4):255. doi: 10.3390/gels7040255
  49. Irgens F. Rheology and Non-Newtonian Fluids. Springer International Publishing; 2014. doi: 10.1007/978-3-319-01053-3
  50. Guo R, Tang W. Optimizing printhead design for enhanced temperature control in extrusion-based bioprinting. Micromachines (Basel). 2024;15(8):943. doi: 10.3390/mi15080943
  51. Shao MH, Cui B, Zheng TF, Wang CH. Ultrasonic manipulation of cells for alleviating the clogging of extrusion-based bioprinting nozzles. J Phys Conf Ser. 2021;1798:012009. doi: 10.1088/1742-6596/1798/1/012009
  52. Xu H, Liu J, Zhang Z, Xu C. Cell sedimentation during 3D bioprinting: a mini review. Biodes Manuf. 2022; 5(3):617-626. doi: 10.1007/s42242-022-00183-6
  53. Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability in extrusion bioprinting. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/abe7ab
  54. Ren Y, Liu Z, Shum HC. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem. Lab Chip. 2015;15(1):121-134. doi: 10.1039/c4lc00798k
  55. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002. doi: 10.1088/1758-5090/8/4/045002
  56. Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185(1):67-75. doi: 10.1046/j.1365-2818.1997.1340694.x
  57. Dahl VA, Dahl AB. Fast local thickness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops; 2023:4335-4343.
  58. Suzuki S. Topological structural analysis of digitized binary images by border following. Comp Vis Graphics Image Process 1985;30(1):32-46.
  59. Arjoca S, Bojin F, Neagu M, Păunescu A, Neagu A, Păunescu V. Hydrogel extrusion speed measurements for the optimization of bioprinting parameters. Gels. 2024;10(2):103. doi: 10.3390/gels10020103
  60. Rastin H, Zhang B, Bi J, Hassan K, Tung TT, Losic D. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J Mater Chem B. 2020;8(27):5862-5876. doi: 10.1039/d0tb00627k
  61. Zhou K, Dey M, Ayan B, et al. Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink. Biomed Mater (Bristol). 2021;16(4): 045005. doi: 10.1088/1748-605X/abe55e
  62. Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep. 2017;7(1):17042. doi: 10.1038/s41598-017-17286-1
  63. Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116(3):1496-1539. doi: 10.1021/acs.chemrev.5b00303
  64. Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater. 2025;193:20-48. doi: 10.1016/j.actbio.2025.01.006
  65. Wu CA, Zhu Y, Woo YJ. Advances in 3D bioprinting: techniques, applications, and future directions for cardiac tissue engineering. Bioengineering. 2023;10(7):842. doi: 10.3390/bioengineering10070842
  66. Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules. 2023;28(6):2766. doi: 10.3390/molecules28062766
  67. Reina-Romo E, Mandal S, Amorim P, Bloemen V, Ferraris E, Geris L. Towards the experimentally-informed in silico nozzle design optimization for extrusion-based bioprinting of shear-thinning hydrogels. Front Bioeng Biotechnol. 2021;9:701778. doi: 10.3389/fbioe.2021.701778
  68. Oyinloye TM, Yoon WB. Application of computational fluid dynamics (CFD) in the deposition process and printability assessment of 3D printing using rice paste. Processes. 2022;10(1):68. doi: 10.3390/pr10010068
  69. Lucas L, Aravind A, Emma P, Christophe M, Edwin- Joffrey C. Rheology, simulation and data analysis toward bioprinting cell viability awareness. Bioprinting. 2021;21. doi: 10.1016/j.bprint.2020.e00119
  70. Landerneau S, Lemarié L, Marquette C, Petiot E. Green 3D bioprinting of plant cells: a new scope for 3D bioprinting. Bioprinting. 2022;27:e00216. doi: 10.1016/j.bprint.2022.e00216
  71. Chua CK, An J, Fan S, et al. A perspective on transformative bioprinting. Int J Bioprint. 2024;11(1):3525. doi: 10.36922/ijb.3525
  72. Lai G, Meagher L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication. 2024;16(3). doi: 10.1088/1758-5090/ad39a8
  73. Ding H, Chang RC. Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath. Appl Sci. 2018;8(3):403. doi: 10.3390/app8030403
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing