An experimental workflow for bioprinting optimization: Application to a custom-made biomaterial ink

Bioprinting is an emerging technology with significant potential in biomedical fields, enabling the creation of highly customized, cell-laden constructs. Despite the promise, achieving high-quality, reproducible prints remains challenging due to the lack of standardized protocols, which has hindered the widespread adoption of the technique. In this study, we present a systematic bioprinting protocol designed to optimize the performance of an in-house photo-curable biomaterial ink composed of gelatin methacryloyl and egg white protein. Printing quality was evaluated through the following three key assessments: extrusion, deposition, and printability. To facilitate accurate image analysis, we developed a custom three-dimensional (3D)-printed lens support specifically designed for a USB microscope. Additionally, we implemented a Python script to quantitatively assess bioprinting quality. Our results indicate that a pressure range of 70–80 kPa, combined with speeds between 300 and 900 mm/min, yields reliable extrusion flow, with 75 kPa and 600 mm/min emerging as optimal parameters for bioprinting 3D constructs. These findings underscore the importance of carefully tuning parameters—including pressure and speed—to achieve stable, high-resolution extrusions. Such optimization mitigates common printing issues, including tip clogging, filament dragging, and unintended merging of adjacent filaments, thereby enhancing structural accuracy. This work provides a comprehensive framework for evaluating and optimizing bioprinting parameters, offering a reproducible methodology to enhance print quality. It contributes to ongoing efforts to standardize bioprinting processes and advance their applications in tissue engineering and regenerative medicine.

- Halper J. Narrative review and guide: state of the art and emerging opportunities of bioprinting in tissue regeneration and medical instrumentation. Bioengineering. 2025;12(1):71. doi: 10.3390/bioengineering12010071
- Wilson WC, Boland T. Cell and organ printing 1: Protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):491-496. doi: 10.1002/ar.a.10057
- Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536
- Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. 2019;6(11):1900344. doi: 10.1002/advs.201900344
- Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021;13(9):1373. doi: 10.3390/pharmaceutics13091373
- Sousa AC, Alvites R, Lopes B, et al. Three-dimensional printing/bioprinting and cellular therapies for regenerative medicine: current advances. J Funct Biomater. 2025; 16(1):28. doi: 10.3390/jfb16010028
- Zimmerling A, Chen X. Bioprinting for combating infectious diseases. Bioprinting. 2020;20:e00104. doi: 10.1016/j.bprint.2020.e00104
- Kantaros A, Ganetsos T, Petrescu FIT, Alysandratou E. Bioprinting and intellectual property: challenges, opportunities, and the road ahead. Bioengineering. 2025;12(1):76. doi: 10.3390/bioengineering12010076
- Kinjoll Dey. 3D Bioprinting Market Size, Share & Trends Analysis Report by Technology (Magnetic Levitation, Inkjet-Based), By Application (Medical, Dental, Biosensors, Bioinks), By Region, And Segment Forecasts, 2023 - 2030; 2024. https://www.grandviewresearch.com/horizon/outlook/3d-bioprinting-
- Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR. An overview on materials and techniques in 3D bioprinting toward biomedical application. Engin Regenerat. 2021;2:1-18. doi: 10.1016/j.engreg.2020.12.001
- Skardal A. Perspective: “Universal” bioink technology for advancing extrusion bioprinting-based biomanufacturing. Bioprinting. 2018;10:e00026. doi: 10.1016/j.bprint.2018.e00026
- Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
- Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16: 20417314241308022. doi: 10.1177/20417314241308022
- Vijayavenkataraman S. 3D bioprinting: challenges in commercialization and clinical translation. J 3D Print Med. 2023;7(3). doi: 10.2217/3dp-2022-0026
- Simon A, Grohens Y, Vandanjon L, Bourseau P, Balnois E, Levesque G. A comparative study of the rheological and structural properties of gelatin gels of mammalian and fish origins. In: Macromolecular Symposia, Vol. 203; 2003:331-338. doi: 10.1002/masy.200351337
- Michelini L, Probo L, Farè S, Contessi Negrini N. Characterization of gelatin hydrogels derived from different animal sources. Mater Lett. 2020;272;127865. doi: 10.1016/j.matlet.2020.127865
- Sompie M, Triatmojo S, Pertiwiningrum A, Pranoto Y. The effects of animal age and acetic acid concentration on pigskin gelatin characteristics. J Indones Trop Anim Agric. 2012;37(3):176-182. doi: 10.14710/jitaa.37.3.176-182
- Netter AB, Goudoulas TB, Germann N. Effects of Bloom number on phase transition of gelatin determined by means of rheological characterization. LWT. 2020;132:109813. doi: 10.1016/j.lwt.2020.109813
- Gaglio CG, Baruffaldi D, Pirri CF, Napione L, Frascella F. GelMA synthesis and sources comparison for 3D multimaterial bioprinting. Front Bioeng Biotechnol. 2024;12:1383010. doi: 10.3389/fbioe.2024.1383010
- Standard Guide for Bioinks Used in Bioprinting; 2024. doi: 10.1520/F3659-24
- Standards Coordinating Body. Project: Specifications for Bioinks and Bioprinters. Accessed November 25, 2024. https://www.standardscoordinatingbody.org/project-specification-printability-bioink
- Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
- Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107. doi: 10.1088/1758-5090/aa8dd8
- Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. 2018;10(3):034106. doi: 10.1088/1758-5090/aacdc7
- Ribeiro A, Blokzijl MM, Levato R, et al. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication. 2018;10(1):014102. doi: 10.1088/1758-5090/aa90e2
- Therriault D, White SR, Lewis JA. Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol. 2007;17(1):10112-1–10112-8. doi: 10.1515/arh-2007-0001
- Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
- Li Z, Ramos A, Li MC, et al. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Biomed Phys Eng Express. 2020;6(4):045009. doi: 10.1088/2057-1976/ab8fc6
- Rodríguez-Rego JM, Mendoza-Cerezo L, Macías-García A, Carrasco-Amador JP, Marcos-Romero AC. Methodology for characterizing the printability of hydrogels. Int J Bioprint. 2022;9(2):280-291. doi: 10.18063/IJB.V9I2.667
- Xu J, Yang S, Su Y, et al. A 3D bioprinted tumor model fabricated with gelatin/sodium alginate/decellularized extracellular matrix bioink. Int J Bioprint. 2023;9(1):109-130. doi: 10.18063/ijb.v9i1.630
- Esser TU, Anspach A, Muenzebrock KA, et al. Direct 3D-bioprinting of hiPSC-derived cardiomyocytes to generate functional cardiac tissues. Adv Mater. 2023;35(52): e2305911. doi: 10.1002/adma.202305911
- Perin F, Spessot E, Famà A, et al. Modeling a dynamic printability window on polysaccharide blend inks for extrusion bioprinting. ACS Biomater Sci Eng. 2023;9(3):1320-1331. doi: 10.1021/acsbiomaterials.2c01143
- Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting. 2021;24:e00156. doi: 10.1016/j.bprint.2021.e00172
- Galocha-León C, Antich C, Voltes-Martínez A, et al. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res. 2025;15(1):291-311. doi: 10.1007/s13346-024-01596-9
- O’Connell C, Ren J, Pope L, et al. Characterizing bioinks for extrusion bioprinting: printability and rheology. In: Methods in Molecular Biology. Vol. 2140. Humana Press Inc.; 2020:111-133. doi: 10.1007/978-1-0716-0520-2_7
- Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914. doi: 10.1016/j.apmt.2020.100914
- Lai Y, Xiao X, Huang Z, et al. Photocrosslinkable biomaterials for 3D bioprinting: mechanisms, recent advances, and future prospects. Int J Mol Sci. 2024;25(23):12567. doi: 10.3390/ijms252312567
- Balaji KV, Bhutoria S, Nayak S, Anil Kumar P, Velayudhan S. Printability assessment of modified filament deposition modelling three dimensional bioprinter printer using polymeric formulations. Biomed Eng Adv. 2023;5:100083. doi: 10.1016/j.bea.2023.100083
- Webb B, Doyle BJ. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting. 2017;8:8-12. doi: 10.1016/j.bprint.2017.09.001
- Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
- Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi: 10.1016/j.slast.2023.02.003
- Razi SM, Fahim H, Amirabadi S, Rashidinejad A. An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll. 2023;135: 108183. doi: 10.1016/j.foodhyd.2022.108183
- Jalili-Firoozinezhad S, Filippi M, Mohabatpour F, Letourneur D, Scherberich A. Chicken egg white: hatching of a new old biomaterial. Mater Today. 2020;40:193-214. doi: 10.1016/j.mattod.2020.05.022
- Mousseau Y, Mollard S, Qiu H, et al. In vitro 3D angiogenesis assay in egg white matrix: comparison to Matrigel, compatibility to various species, and suitability for drug testing. Lab Investig. 2014;94(3):340-349. doi: 10.1038/labinvest.2013.150
- Mahmoodi M, Darabi MA, Mohaghegh N, et al. Egg white photocrosslinkable hydrogels as versatile bioinks for advanced tissue engineering applications. Adv Funct Mater. 2024;34(32):2315040. doi: 10.1002/adfm.202315040
- Pele KG, Amaveda H, Mora M, et al. Hydrocolloids of egg white and gelatin as a platform for hydrogel-based tissue engineering. Gels. 2023;9(6):505. doi: 10.3390/gels9060505
- Van Der Plancken I, Van Loey A, Hendrickx ME. Effect of heat-treatment on the physico-chemical properties of egg white proteins: a kinetic study. J Food Eng. 2006;75(3):316-326. doi: 10.1016/j.jfoodeng.2005.04.019
- Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021;7(4):255. doi: 10.3390/gels7040255
- Irgens F. Rheology and Non-Newtonian Fluids. Springer International Publishing; 2014. doi: 10.1007/978-3-319-01053-3
- Guo R, Tang W. Optimizing printhead design for enhanced temperature control in extrusion-based bioprinting. Micromachines (Basel). 2024;15(8):943. doi: 10.3390/mi15080943
- Shao MH, Cui B, Zheng TF, Wang CH. Ultrasonic manipulation of cells for alleviating the clogging of extrusion-based bioprinting nozzles. J Phys Conf Ser. 2021;1798:012009. doi: 10.1088/1742-6596/1798/1/012009
- Xu H, Liu J, Zhang Z, Xu C. Cell sedimentation during 3D bioprinting: a mini review. Biodes Manuf. 2022; 5(3):617-626. doi: 10.1007/s42242-022-00183-6
- Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability in extrusion bioprinting. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/abe7ab
- Ren Y, Liu Z, Shum HC. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem. Lab Chip. 2015;15(1):121-134. doi: 10.1039/c4lc00798k
- Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002. doi: 10.1088/1758-5090/8/4/045002
- Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185(1):67-75. doi: 10.1046/j.1365-2818.1997.1340694.x
- Dahl VA, Dahl AB. Fast local thickness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops; 2023:4335-4343.
- Suzuki S. Topological structural analysis of digitized binary images by border following. Comp Vis Graphics Image Process 1985;30(1):32-46.
- Arjoca S, Bojin F, Neagu M, Păunescu A, Neagu A, Păunescu V. Hydrogel extrusion speed measurements for the optimization of bioprinting parameters. Gels. 2024;10(2):103. doi: 10.3390/gels10020103
- Rastin H, Zhang B, Bi J, Hassan K, Tung TT, Losic D. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J Mater Chem B. 2020;8(27):5862-5876. doi: 10.1039/d0tb00627k
- Zhou K, Dey M, Ayan B, et al. Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink. Biomed Mater (Bristol). 2021;16(4): 045005. doi: 10.1088/1748-605X/abe55e
- Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep. 2017;7(1):17042. doi: 10.1038/s41598-017-17286-1
- Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116(3):1496-1539. doi: 10.1021/acs.chemrev.5b00303
- Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater. 2025;193:20-48. doi: 10.1016/j.actbio.2025.01.006
- Wu CA, Zhu Y, Woo YJ. Advances in 3D bioprinting: techniques, applications, and future directions for cardiac tissue engineering. Bioengineering. 2023;10(7):842. doi: 10.3390/bioengineering10070842
- Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules. 2023;28(6):2766. doi: 10.3390/molecules28062766
- Reina-Romo E, Mandal S, Amorim P, Bloemen V, Ferraris E, Geris L. Towards the experimentally-informed in silico nozzle design optimization for extrusion-based bioprinting of shear-thinning hydrogels. Front Bioeng Biotechnol. 2021;9:701778. doi: 10.3389/fbioe.2021.701778
- Oyinloye TM, Yoon WB. Application of computational fluid dynamics (CFD) in the deposition process and printability assessment of 3D printing using rice paste. Processes. 2022;10(1):68. doi: 10.3390/pr10010068
- Lucas L, Aravind A, Emma P, Christophe M, Edwin- Joffrey C. Rheology, simulation and data analysis toward bioprinting cell viability awareness. Bioprinting. 2021;21. doi: 10.1016/j.bprint.2020.e00119
- Landerneau S, Lemarié L, Marquette C, Petiot E. Green 3D bioprinting of plant cells: a new scope for 3D bioprinting. Bioprinting. 2022;27:e00216. doi: 10.1016/j.bprint.2022.e00216
- Chua CK, An J, Fan S, et al. A perspective on transformative bioprinting. Int J Bioprint. 2024;11(1):3525. doi: 10.36922/ijb.3525
- Lai G, Meagher L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication. 2024;16(3). doi: 10.1088/1758-5090/ad39a8
- Ding H, Chang RC. Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath. Appl Sci. 2018;8(3):403. doi: 10.3390/app8030403