AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8557
RESEARCH ARTICLE

3D-printed GelMA/SA/CMCS hydrogel scaffolds containing Cynomorium songaricum polysaccharide for critical bone defect repair

Dongdong Li1,2† Chengxin Ruan3† Zhiyuan Luo3† Jiale Jin3 Dongyu Wang3 Yiqi Yang3 Shenghu Zhou1,2* Shuai Li3* Pengfei Lei3*
Show Less
1 Department of Joint Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China.
2 First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
3 Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
†These authors contributed equally to this work.
Received: 16 January 2025 | Accepted: 14 April 2025 | Published online: 14 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Critical bone defect repair remains a major challenge in orthopedics. Cynomorium songaricum polysaccharide (CSP), derived from the traditional medicinal plant Cynomorium songaricum Rupr. in China, demonstrates excellent anti-inflammatory and osteogenic properties. Given these promising biological activities, we developed a novel therapeutic approach using a hydrogel composite scaffold incorporating CSP (GAC-C) for treating critical-sized bone defects. The composite scaffold was fabricated by embedding CSP into a methacrylated gelatin (GelMA)/sodium alginate (SA)/carboxymethyl chitosan (CMCS) blend via three-dimensional (3D) printing technology. The structural, mechanical, and biological properties of GAC-C were characterized, and osteogenic performance was evaluated both in vitro with rat bone marrow stromal cells (rBMSCs) and in vivo using a critical-sized bone defect model. Results indicated that the GAC-C scaffold demonstrated excellent biocompatibility, promoted osteogenic differentiation of rBMSCs, and enhanced bone integration and repair. Thus, the GAC-C scaffold has the potential for effectively repairing critical-sized bone defects.

Graphical abstract
Keywords
3D-printed hydrogel
Critical bone defect
Cynomorium songaricum polysaccharide
Osteogenic differentiation
Funding
This work was financially supported by the Key Research and Development Program - Social Development Field(25YFFA064) the Natural Science Foundation Exploration Project of Zhejiang Province (LY23H060012), and the Zhejiang Provincial Medical and Health Science and Technology Plan (2024KY986).
Conflict of interest
The authors declared no competing interests.
References
  1. Shineh G, Patel K, Mobaraki M, Tayebi L. Functional approaches in promoting vascularization and angiogenesis in bone critical-sized defects via delivery of cells, growth factors, drugs, and particles. J Funct Biomater. 2023;14(2):99. doi: 10.3390/jfb14020099
  2. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
  3. Huang Y, Zhang L, Ji Y, et al. A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater. 2023;19:499-510. doi: 10.1016/j.bioactmat.2022.04.034
  4. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
  5. Yuan X, Zhu W, Yang Z, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024;36(34):e2403641. doi: 10.1002/adma.202403641
  6. Fu JN, Wang X, Yang M, et al. Scaffold-based tissue engineering strategies for osteochondral repair. Front Bioeng Biotechnol. 2021;9:812383. doi: 10.3389/fbioe.2021.812383
  7. Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12(9):e2202766. doi: 10.1002/adhm.202202766
  8. Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 2016;34(5):394-407. doi: 10.1016/j.tibtech.2016.01.002
  9. Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6
  10. Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration. J Mater Chem B. 2023;11(6): 1288-1301. doi: 10.1039/d2tb01979e
  11. Qi J, Wu H, Liu G. Novel strategies for spatiotemporal and controlled BMP-2 delivery in bone tissue engineering. Cell Transplant. 2024;33:9636897241276733. doi: 10.1177/09636897241276733
  12. Wang T, Yi W, Zhang Y, et al. Sodium alginate hydrogel containing platelet-rich plasma for wound healing. Colloids Surf B Biointerfaces. 2023;222:113096. doi: 10.1016/j.colsurfb.2022.113096
  13. Chen Q, Yang ZR, Du S, Chen S, Zhang L, Zhu J. Polyphenol-sodium alginate supramolecular injectable hydrogel with antibacterial and anti-inflammatory capabilities for infected wound healing. Int J Biol Macromol. 2024;257(Pt 1):128636. doi: 10.1016/j.ijbiomac.2023.128636
  14. Hu X, Zhang Z, Wu H, et al. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Biomater Adv. 2023;152:213501. doi: 10.1016/j.bioadv.2023.213501
  15. Wang Y, Zhou X, Jiang J, et al. Carboxymethyl chitosan-enhanced multi-level microstructured composite hydrogel scaffolds for bone defect repair. Carbohydr Polym. 2025;348(Pt B):122847. doi: 10.1016/j.carbpol.2024.122847
  16. Shi Z, Yang Q, Pang Y, et al. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol. 2023;224:533-543. doi: 10.1016/j.ijbiomac.2022.10.142
  17. Paek K, Woo S, Song SJ, et al. A well plate-based GelMA photo-crosslinking system with tunable hydrogel mechanical properties to regulate the PTH-mediated osteogenic fate. Biofabrication. 2024;16(2):025022. doi: 10.1088/1758-5090/ad2a7e
  18. Liying Q, Yining Y, Yongjian S, et al. Incorporation of carboxymethyl chitosan (CMCS) for the modulation of physio-chemical characteristics and cell proliferation environment of the composite hydrogel microspheres. Biomed Mater. 2024;19(6):065003. doi: 10.1088/1748-605X/ad7565
  19. Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530-544. doi: 10.1016/j.biotechadv.2017.05.006
  20. Jin J, Yang Y, Yang J, et al. Macrophage metabolic reprogramming-based diabetic infected bone defect/bone reconstruction though multi-function silk hydrogel with exosome release. Int J Biol Macromol. 2024;278(Pt 4):134830. doi: 10.1016/j.ijbiomac.2024.134830
  21. Amrita, Arora A, Sharma P, Katti DS. Pullulan-based composite scaffolds for bone tissue engineering: improved osteoconductivity by pore wall mineralization. Carbohydr Polym. 2015;123:180-189. doi: 10.1016/j.carbpol.2015.01.038
  22. Xue C, Chen L, Wang N, et al. Stimuli-responsive hydrogels for bone tissue engineering. Biomater Transl. 2024;5(3):257-273. doi: 10.12336/biomatertransl.2024.03.004
  23. Mpuhwe NA, Kim GN, Koh YH. Vat photopolymerization of CeO(2)-incorporated hydrogel scaffolds with antimicrobial efficacy. Materials (Basel). 2025;18(5):1125. doi: 10.3390/ma18051125
  24. Ji S, Zhao Y, Zhai X, et al. A dual-crosslinked hydrogel based on gelatin methacryloyl and sulfhydrylated chitosan for promoting wound healing. Int J Mol Sci. 2023;24(3):2447. doi: 10.3390/ijms24032447
  25. Meng HC, Wang S, Li Y, Kuang YY, Ma CM. Chemical constituents and pharmacologic actions of Cynomorium plants. Chin J Nat Med. 2013;11(4):321-329. doi: 10.1016/S1875-5364(13)60049-7
  26. Wang J, Zhang J, Zhao B, Wu Y, Wang C, Wang Y. Structural features and hypoglycaemic effects of Cynomorium songaricum polysaccharides on STZ-induced rats. Food Chem. 2010;120(2):443-451. doi: 10.1016/j.foodchem.2009.10.034
  27. You WL, Xu ZL. Curculigoside promotes osteogenic differentiation of ADSCs to prevent ovariectomized-induced osteoporosis. J Orthop Surg Res. 2021;16(1):279. doi: 10.1186/s13018-021-02389-3
  28. Wang C, Liu C, Liang C, et al. Role of berberine thermosensitive hydrogel in periodontitis via PI3K/AKT pathway in vitro. Int J Mol Sci. 2023;24(7):6364. doi: 10.3390/ijms25105104
  29. Meng J, Zhang W, Wang C, et al. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem Pharmacol. 2020;171:113715. doi: 10.1016/j.bcp.2019.113715
  30. Zhang J, Chen X, Han L, et al. Research progress in traditional applications, phytochemistry, pharmacology, and safety evaluation of Cynomorium songaricum. Molecules. 2024;29(5):941. doi: 10.3390/molecules29050941
  31. Negut I, Bita B, Groza A. Polymeric coatings and antimicrobial peptides as efficient systems for treating implantable medical devices associated-infections. Polymers. 2022;14(8):1611. doi: 10.3390/polym14081611
  32. Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197: 207-219. doi: 10.1016/j.biomaterials.2019.01.013
  33. Lai Y, Cao H, Wang X, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials. 2018;153:1-13. doi: 10.1016/j.biomaterials.2017.10.025
  34. Fang J, Zhao X, Li S, et al. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90(rsk)-CREB pathway. Stem Cell Res Ther. 2019;10(1):312. doi: 10.1186/s13287-019-1419-2
  35. Cui Z, Zhou L, Huang J, et al. Dual-model biomanufacturing of porous biomimetic scaffolds with concentrated growth factors and embedded endothelial vascular channels for bone defect regeneration. Chem Eng J. 2024;483:148933. doi: 10.1016/j.cej.2024.148933
  36. Eufinger H, Rasche C, Lehmbrock J, et al. Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty. Biomaterials. 2007;28(3):475-485. doi: 10.1016/j.biomaterials.2006.08.055
  37. Mao Q, Wang Y, Li Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng: C. 2020;109:110625. doi: https://doi.org/10.1016/j.msec.2020.110625
  38. Qiao Y, Liu X, Zhou X, et al. Gelatin templated polypeptide co-cross-linked hydrogel for bone regeneration. Adv Healthc Mater. 2020;9(1):e1901239. doi: 10.1002/adhm.201901239
  39. Jin J, Wang D, Qian H, et al. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: a proof-of-concept study. Biomaterials. 2025;313:122756. doi: 10.1016/j.biomaterials.2024.122756
  40. Ma D, Wang J, Zheng M, et al. Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioact Mater. 2023;26:128-141. doi: 10.1016/j.bioactmat.2023.02.021
  41. Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595-9606. doi: 10.1021/acsnano.9b04723
  42. Zhang X, Li Y, Ma Z, He D, Li H. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact Mater. 2021;6(11):3692-3704. doi: 10.1016/j.bioactmat.2021.03.038
  43. Trujillo S, Gonzalez-Garcia C, Rico P, et al. Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials. 2020;252:120104. doi: 10.1016/j.biomaterials.2020.120104
  44. Jiang Q, Zhou L, Yang Y, et al. Injectable NGF-loaded double crosslinked collagen/hyaluronic acid hydrogels for irregular bone defect repair via neuro-guided osteogenic process. Chem Eng J. 2024;497:154627. doi: 10.1016/j.cej.2024.154627
  45. Huang W, Liu C, Liu F, Liu Z, Lai G, Yi J. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Cell Biochem Funct. 2020;38(3):249-256. doi: 10.1002/cbf.3443
  46. Zhou Y, Liu X, She H, Wang R, Bai F, Xiang B. A silk fibroin/ chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Regen Ther. 2022;21:307-321. doi: 10.1016/j.reth.2022.08.006
  47. Hu H, Wang D, Li L, Yin H, He G, Zhang Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis. 2021;12(2):156. doi: 10.1038/s41419-021-03430-3
  48. Zhong X, Xiu LL, Wei GH, et al. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation. Acta Pharmacol Sin. 2011;32(5):591-600. doi: 10.1038/aps.2011.15
  49. Wang J, Sun Y, Liu Y, et al. Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus. Cell Commun Signal. 2022;20(1):88. doi: 10.1186/s12964-022-00844-0
  50. Ma X, Liu J, Yang L, Zhang B, Dong Y, Zhao Q. Cynomorium songaricum prevents bone resorption in ovariectomized rats through RANKL/RANK/TRAF6 mediated suppression of PI3K/AKT and NF-κB pathways. Life Sci. 2018;209:140-148. doi: https://doi.org/10.1016/j.lfs.2018.08.008
  51. Fili S, Karalaki M, Schaller B. Therapeutic implications of osteoprotegerin. Cancer Cell Int. 2009;9:26. doi: 10.1186/1475-2867-9-26
  52. Yan K, Wu C, Ye Y, et al. A20 inhibits osteoclastogenesis via TRAF6-dependent autophagy in human periodontal ligament cells under hypoxia. Cell Prolif. 2020;53(3): e12778. doi: 10.1111/cpr.12778
  53. Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918-1929. doi: 10.1038/nprot.2012.113
  54. Luo T, Tan B, Zhu L, Wang Y, Liao J. A review on the design of hydrogels with different stiffness and their effects on tissue repair. Front Bioeng Biotechnol. 2022;10:817391. doi: 10.3389/fbioe.2022.817391
  55. Xu FF, Zhu H, Li XM, et al. Intercellular adhesion molecule-1 inhibits osteogenic differentiation of mesenchymal stem cells and impairs bio-scaffold-mediated bone regeneration in vivo. Tissue Eng Part A. 2014;20(19-20):2768-2782. doi: 10.1089/ten.TEA.2014.0007
  56. Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and polycystins in bone mechanotransduction: challenges for therapeutic opportunities. Int J Mol Sci. 2024;25(10):5291. doi: 10.3390/ijms25105291
  57. Blair HC, Larrouture QC, Li Y, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev. 2017;23(3):268-280. doi: 10.1089/ten.TEB.2016.0454

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing