3D-printed GelMA/SA/CMCS hydrogel scaffolds containing Cynomorium songaricum polysaccharide for critical bone defect repair

Critical bone defect repair remains a major challenge in orthopedics. Cynomorium songaricum polysaccharide (CSP), derived from the traditional medicinal plant Cynomorium songaricum Rupr. in China, demonstrates excellent anti-inflammatory and osteogenic properties. Given these promising biological activities, we developed a novel therapeutic approach using a hydrogel composite scaffold incorporating CSP (GAC-C) for treating critical-sized bone defects. The composite scaffold was fabricated by embedding CSP into a methacrylated gelatin (GelMA)/sodium alginate (SA)/carboxymethyl chitosan (CMCS) blend via three-dimensional (3D) printing technology. The structural, mechanical, and biological properties of GAC-C were characterized, and osteogenic performance was evaluated both in vitro with rat bone marrow stromal cells (rBMSCs) and in vivo using a critical-sized bone defect model. Results indicated that the GAC-C scaffold demonstrated excellent biocompatibility, promoted osteogenic differentiation of rBMSCs, and enhanced bone integration and repair. Thus, the GAC-C scaffold has the potential for effectively repairing critical-sized bone defects.

- Shineh G, Patel K, Mobaraki M, Tayebi L. Functional approaches in promoting vascularization and angiogenesis in bone critical-sized defects via delivery of cells, growth factors, drugs, and particles. J Funct Biomater. 2023;14(2):99. doi: 10.3390/jfb14020099
- Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
- Huang Y, Zhang L, Ji Y, et al. A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater. 2023;19:499-510. doi: 10.1016/j.bioactmat.2022.04.034
- Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
- Yuan X, Zhu W, Yang Z, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024;36(34):e2403641. doi: 10.1002/adma.202403641
- Fu JN, Wang X, Yang M, et al. Scaffold-based tissue engineering strategies for osteochondral repair. Front Bioeng Biotechnol. 2021;9:812383. doi: 10.3389/fbioe.2021.812383
- Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12(9):e2202766. doi: 10.1002/adhm.202202766
- Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 2016;34(5):394-407. doi: 10.1016/j.tibtech.2016.01.002
- Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6
- Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration. J Mater Chem B. 2023;11(6): 1288-1301. doi: 10.1039/d2tb01979e
- Qi J, Wu H, Liu G. Novel strategies for spatiotemporal and controlled BMP-2 delivery in bone tissue engineering. Cell Transplant. 2024;33:9636897241276733. doi: 10.1177/09636897241276733
- Wang T, Yi W, Zhang Y, et al. Sodium alginate hydrogel containing platelet-rich plasma for wound healing. Colloids Surf B Biointerfaces. 2023;222:113096. doi: 10.1016/j.colsurfb.2022.113096
- Chen Q, Yang ZR, Du S, Chen S, Zhang L, Zhu J. Polyphenol-sodium alginate supramolecular injectable hydrogel with antibacterial and anti-inflammatory capabilities for infected wound healing. Int J Biol Macromol. 2024;257(Pt 1):128636. doi: 10.1016/j.ijbiomac.2023.128636
- Hu X, Zhang Z, Wu H, et al. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Biomater Adv. 2023;152:213501. doi: 10.1016/j.bioadv.2023.213501
- Wang Y, Zhou X, Jiang J, et al. Carboxymethyl chitosan-enhanced multi-level microstructured composite hydrogel scaffolds for bone defect repair. Carbohydr Polym. 2025;348(Pt B):122847. doi: 10.1016/j.carbpol.2024.122847
- Shi Z, Yang Q, Pang Y, et al. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol. 2023;224:533-543. doi: 10.1016/j.ijbiomac.2022.10.142
- Paek K, Woo S, Song SJ, et al. A well plate-based GelMA photo-crosslinking system with tunable hydrogel mechanical properties to regulate the PTH-mediated osteogenic fate. Biofabrication. 2024;16(2):025022. doi: 10.1088/1758-5090/ad2a7e
- Liying Q, Yining Y, Yongjian S, et al. Incorporation of carboxymethyl chitosan (CMCS) for the modulation of physio-chemical characteristics and cell proliferation environment of the composite hydrogel microspheres. Biomed Mater. 2024;19(6):065003. doi: 10.1088/1748-605X/ad7565
- Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530-544. doi: 10.1016/j.biotechadv.2017.05.006
- Jin J, Yang Y, Yang J, et al. Macrophage metabolic reprogramming-based diabetic infected bone defect/bone reconstruction though multi-function silk hydrogel with exosome release. Int J Biol Macromol. 2024;278(Pt 4):134830. doi: 10.1016/j.ijbiomac.2024.134830
- Amrita, Arora A, Sharma P, Katti DS. Pullulan-based composite scaffolds for bone tissue engineering: improved osteoconductivity by pore wall mineralization. Carbohydr Polym. 2015;123:180-189. doi: 10.1016/j.carbpol.2015.01.038
- Xue C, Chen L, Wang N, et al. Stimuli-responsive hydrogels for bone tissue engineering. Biomater Transl. 2024;5(3):257-273. doi: 10.12336/biomatertransl.2024.03.004
- Mpuhwe NA, Kim GN, Koh YH. Vat photopolymerization of CeO(2)-incorporated hydrogel scaffolds with antimicrobial efficacy. Materials (Basel). 2025;18(5):1125. doi: 10.3390/ma18051125
- Ji S, Zhao Y, Zhai X, et al. A dual-crosslinked hydrogel based on gelatin methacryloyl and sulfhydrylated chitosan for promoting wound healing. Int J Mol Sci. 2023;24(3):2447. doi: 10.3390/ijms24032447
- Meng HC, Wang S, Li Y, Kuang YY, Ma CM. Chemical constituents and pharmacologic actions of Cynomorium plants. Chin J Nat Med. 2013;11(4):321-329. doi: 10.1016/S1875-5364(13)60049-7
- Wang J, Zhang J, Zhao B, Wu Y, Wang C, Wang Y. Structural features and hypoglycaemic effects of Cynomorium songaricum polysaccharides on STZ-induced rats. Food Chem. 2010;120(2):443-451. doi: 10.1016/j.foodchem.2009.10.034
- You WL, Xu ZL. Curculigoside promotes osteogenic differentiation of ADSCs to prevent ovariectomized-induced osteoporosis. J Orthop Surg Res. 2021;16(1):279. doi: 10.1186/s13018-021-02389-3
- Wang C, Liu C, Liang C, et al. Role of berberine thermosensitive hydrogel in periodontitis via PI3K/AKT pathway in vitro. Int J Mol Sci. 2023;24(7):6364. doi: 10.3390/ijms25105104
- Meng J, Zhang W, Wang C, et al. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem Pharmacol. 2020;171:113715. doi: 10.1016/j.bcp.2019.113715
- Zhang J, Chen X, Han L, et al. Research progress in traditional applications, phytochemistry, pharmacology, and safety evaluation of Cynomorium songaricum. Molecules. 2024;29(5):941. doi: 10.3390/molecules29050941
- Negut I, Bita B, Groza A. Polymeric coatings and antimicrobial peptides as efficient systems for treating implantable medical devices associated-infections. Polymers. 2022;14(8):1611. doi: 10.3390/polym14081611
- Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197: 207-219. doi: 10.1016/j.biomaterials.2019.01.013
- Lai Y, Cao H, Wang X, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials. 2018;153:1-13. doi: 10.1016/j.biomaterials.2017.10.025
- Fang J, Zhao X, Li S, et al. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90(rsk)-CREB pathway. Stem Cell Res Ther. 2019;10(1):312. doi: 10.1186/s13287-019-1419-2
- Cui Z, Zhou L, Huang J, et al. Dual-model biomanufacturing of porous biomimetic scaffolds with concentrated growth factors and embedded endothelial vascular channels for bone defect regeneration. Chem Eng J. 2024;483:148933. doi: 10.1016/j.cej.2024.148933
- Eufinger H, Rasche C, Lehmbrock J, et al. Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty. Biomaterials. 2007;28(3):475-485. doi: 10.1016/j.biomaterials.2006.08.055
- Mao Q, Wang Y, Li Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng: C. 2020;109:110625. doi: https://doi.org/10.1016/j.msec.2020.110625
- Qiao Y, Liu X, Zhou X, et al. Gelatin templated polypeptide co-cross-linked hydrogel for bone regeneration. Adv Healthc Mater. 2020;9(1):e1901239. doi: 10.1002/adhm.201901239
- Jin J, Wang D, Qian H, et al. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: a proof-of-concept study. Biomaterials. 2025;313:122756. doi: 10.1016/j.biomaterials.2024.122756
- Ma D, Wang J, Zheng M, et al. Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioact Mater. 2023;26:128-141. doi: 10.1016/j.bioactmat.2023.02.021
- Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595-9606. doi: 10.1021/acsnano.9b04723
- Zhang X, Li Y, Ma Z, He D, Li H. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact Mater. 2021;6(11):3692-3704. doi: 10.1016/j.bioactmat.2021.03.038
- Trujillo S, Gonzalez-Garcia C, Rico P, et al. Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials. 2020;252:120104. doi: 10.1016/j.biomaterials.2020.120104
- Jiang Q, Zhou L, Yang Y, et al. Injectable NGF-loaded double crosslinked collagen/hyaluronic acid hydrogels for irregular bone defect repair via neuro-guided osteogenic process. Chem Eng J. 2024;497:154627. doi: 10.1016/j.cej.2024.154627
- Huang W, Liu C, Liu F, Liu Z, Lai G, Yi J. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Cell Biochem Funct. 2020;38(3):249-256. doi: 10.1002/cbf.3443
- Zhou Y, Liu X, She H, Wang R, Bai F, Xiang B. A silk fibroin/ chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Regen Ther. 2022;21:307-321. doi: 10.1016/j.reth.2022.08.006
- Hu H, Wang D, Li L, Yin H, He G, Zhang Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis. 2021;12(2):156. doi: 10.1038/s41419-021-03430-3
- Zhong X, Xiu LL, Wei GH, et al. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation. Acta Pharmacol Sin. 2011;32(5):591-600. doi: 10.1038/aps.2011.15
- Wang J, Sun Y, Liu Y, et al. Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus. Cell Commun Signal. 2022;20(1):88. doi: 10.1186/s12964-022-00844-0
- Ma X, Liu J, Yang L, Zhang B, Dong Y, Zhao Q. Cynomorium songaricum prevents bone resorption in ovariectomized rats through RANKL/RANK/TRAF6 mediated suppression of PI3K/AKT and NF-κB pathways. Life Sci. 2018;209:140-148. doi: https://doi.org/10.1016/j.lfs.2018.08.008
- Fili S, Karalaki M, Schaller B. Therapeutic implications of osteoprotegerin. Cancer Cell Int. 2009;9:26. doi: 10.1186/1475-2867-9-26
- Yan K, Wu C, Ye Y, et al. A20 inhibits osteoclastogenesis via TRAF6-dependent autophagy in human periodontal ligament cells under hypoxia. Cell Prolif. 2020;53(3): e12778. doi: 10.1111/cpr.12778
- Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918-1929. doi: 10.1038/nprot.2012.113
- Luo T, Tan B, Zhu L, Wang Y, Liao J. A review on the design of hydrogels with different stiffness and their effects on tissue repair. Front Bioeng Biotechnol. 2022;10:817391. doi: 10.3389/fbioe.2022.817391
- Xu FF, Zhu H, Li XM, et al. Intercellular adhesion molecule-1 inhibits osteogenic differentiation of mesenchymal stem cells and impairs bio-scaffold-mediated bone regeneration in vivo. Tissue Eng Part A. 2014;20(19-20):2768-2782. doi: 10.1089/ten.TEA.2014.0007
- Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and polycystins in bone mechanotransduction: challenges for therapeutic opportunities. Int J Mol Sci. 2024;25(10):5291. doi: 10.3390/ijms25105291
- Blair HC, Larrouture QC, Li Y, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev. 2017;23(3):268-280. doi: 10.1089/ten.TEB.2016.0454