Construction and application of a novel 3D bioprinting-based in vitro nasopharyngeal carcinoma model for drug screening and mechanistic research

Nasopharyngeal carcinoma (NPC) is a prominent head and neck malignancy, yet the mechanisms underlying its occurrence, progression, recurrence, metastasis, drug resistance, and radiation resistance have not been fully understood. This knowledge gap is partly due to the lack of preclinical NPC models for research. Compared to traditional 2D cell cultures, 3D bioprinting (3DP) offers significant advantages in replicating the tumor microenvironment. However, no studies to date have used 3DP technology to model NPC. In this study, we used extrusion-based 3DP to develop a new preclinical NPC model (3DP-HK1) using the emerging bio-ink gelatin methacryloyl. The model successfully demonstrated the ability to sustain long-term tumor cell activity. Immunohistochemistry and immunofluorescence analyses demonstrated that 3DP-HK1 largely retained the histopathological features and tumor-related protein expression of NPC. In addition, we conducted a wound healing experiment, which indicated that tumor cells in 3DP-HK1 have stronger migration ability than 2D-cultured cells (2D-HK1), highlighting differences in cellular phenotype. The different responses of 3DP-HK1 and 2D-HK1 to various anti-tumor drugs and radiation reflect the advantages of 3DP-HK1 for preclinical drug screening and exploring mechanisms of radiotherapy in NPC. Transcriptome sequencing revealed that 3DP-HK1 has a distinct gene expression profile compared to 2D-HK1, with significantly upregulated expression of malignant genes, such as keratin 6B (KRT6B), S100 calcium-binding protein A8 (S100A8), and crystallin alpha B (CRYAB). Meanwhile, genes associated with drug resistance (e.g., lysine demethylase 5B [KDM5B]) and radiation resistance (e.g., carnitine palmitoyltransferase 1A [CPT1A]) were also upregulated, confirming findings from other experimental analyses at the RNA level. In conclusion, this study successfully constructed a 3DP-based preclinical model for NPC research and proved its reliability and significant potential for advancing drug screening and mechanistic studies.

- Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet (London, England). 2019;394(10192):64-80. doi: 10.1016/S0140-6736(19)30956-0
- Zhu H, Qu S, Deng Y, et al. Application of organoids in otolaryngology: head and neck surgery. Eur Arch Otorhinolaryngol. 2024;281(4):1643-1649. doi: 10.1007/s00405-023-08348-4
- Tang L, Chen Y, Chen C, et al. The Chinese society of clinical oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun. 2021;41(11):1195-1227. doi: 10.1002/cac2.12218
- Hong X, Xu Y, Pang SW. Enhanced motility and interaction of nasopharyngeal carcinoma with epithelial cells in confined microwells. Lab Chip. 2023;23(3):511-524. doi: 10.1039/d2lc00616b
- Muniandy K, Sankar PS, Xiang BLS, Soo-Beng AK, Balakrishnan V, Mohana-Kumaran N. Establishment and analysis of the 3-dimensional (3D) spheroids generated from the nasopharyngeal carcinoma cell line HK1. Trop Life Sci Res. 2016;27(suppl 1):125-130. doi: 10.21315/tlsr2016.27.3.17
- Yi C, Lai SL, Tsang CM, et al. A three-dimensional spheroid-specific role for wnt-β-catenin and eph-ephrin signaling in nasopharyngeal carcinoma cells. J Cell Sci. 2021;134(16):jcs256461. doi: 10.1242/jcs.256461
- Wang XW, Xia TL, Tang HC, et al. Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma. Ann Transl Med. 2022; 10(9):526. doi: 10.21037/atm-22-1076
- Teh JL, Abdul Rahman SF, Domnic G, et al. Rapid spheroid assays in a 3-dimensional cell culture chip. BMC Res Notes. 2021;14(1):310. doi: 10.1186/s13104-021-05727-0
- Fang Y, Liang S, Gao J, et al. Extracellular matrix stiffness mediates radiosensitivity in a 3D nasopharyngeal carcinoma model. Cancer Cell Int. 2022;22(1):364. doi: 10.1186/s12935-022-02787-5
- Ngaokrajang U, Janvilisri T, Sae-Ueng U, Prungsak A, Kiatwuthinon P. Integrin α5 mediates intrinsic cisplatin resistance in three-dimensional nasopharyngeal carcinoma spheroids via the inhibition of phosphorylated ERK /caspase-3 induced apoptosis. Exp Cell Res. 2021;406(2):112765. doi: 10.1016/j.yexcr.2021.112765
- Wu RWK, Chu ESM, Yuen JWM, Huang Z. Comparative study of FosPeg® photodynamic effect on nasopharyngeal carcinoma cells in 2D and 3D models. J Photochem Photobiol B. 2020;210:111987. doi: 10.1016/j.jphotobiol.2020.111987
- Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A. The hope and the hype of organoid research. Development (Cambridge, England). 2017;144(6):938-941. doi: 10.1242/dev.150201
- Kim J, Kim J, Gao G, et al. Bioprinted organoids platform with tumor vasculature for implementing precision personalized medicine targeted towards gastric cancer. Adv Funct Mater. 2024;34(11):2306676. doi: 10.1002/adfm.202306676
- Chen H, Cheng Y, Wang X, et al. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics. 2020;10(26):12127-12143. doi: 10.7150/thno.52450
- Burkholder-Wenger AC, Golzar H, Wu Y, Tang XS. Development of a hybrid Nanoink for 3D bioprinting of heterogeneous tumor models. ACS Biomater Sci Eng. 2022;8(2):777-785. doi: 10.1021/acsbiomaterials.1c01265
- Li S, Liu S, Wang X. Advances of 3D printing in vascularized organ construction. Int J Bioprint. 2022;8(3):588. doi: 10.18063/ijb.v8i3.588
- Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Delivery Rev. 2018;132:235-251. doi: 10.1016/j.addr.2018.06.011
- Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials. 2018;185:310-321. doi: 10.1016/j.biomaterials.2018.09.026
- Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials. 2020; 226:119536. doi: 10.1016/j.biomaterials.2019.119536
- Sbirkov Y, Molander D, Milet C, et al. A colorectal cancer 3D bioprinting workflow as a platform for disease modeling and chemotherapeutic screening. Front Bioeng Biotechnol. 2021;9:755563. doi: 10.3389/fbioe.2021.755563
- Xu J, Yang S, Su Y, et al. A 3D bioprinted tumor model fabricated with gelatin/sodium alginate/decellularized extracellular matrix bioink. Int J Bioprint. 2023;9(1):630. doi: 10.18063/ijb.v9i1.630
- Strong MJ, Baddoo M, Nanbo A, Xu M, Puetter A, Lin Z. Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes. J Virol. 2014;88(18):10696-10704. doi: 10.1128/JVI.01457-14
- Makowska A, Kontny U, Weiskirchen R. HeLa cells cross-contaminated nasopharyngeal carcinoma cell lines: Still a common problem. Br J Cancer. 2024;130(12):1885-1886. doi: 10.1038/s41416-024-02675-x
- Fan Z, Wei X, Chen K, Wang L, Xu M. 3D bioprinting of an endothelialized liver lobule-like construct as a tumor-scale drug screening platform. Micromachines. 2023;14(4):878. doi: 10.3390/mi14040878
- Li Y, Zhang T, Pang Y, Li L, Chen ZN, Sun W. 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of metuzumab. Biofabrication. 2019;11(3):034102. doi: 10.1088/1758-5090/ab256c
- McGuckin C, Forraz N, Milet C, et al. World’s first long-term colorectal cancer model by 3D bioprinting as a mechanism for screening oncolytic viruses. Cancers. 2023;15(19):4724. doi: 10.3390/cancers15194724
- Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: a comprehensive review on processing, properties, and therapeutic implications. Biointerphases. 2023;18(2):020801. doi: 10.1116/6.0002372
- Sun H, Sun L, Ke X, et al. Prediction of clinical precision chemotherapy by patient‐derived 3D bioprinting models of colorectal cancer and its liver metastases. Adv Sci. 2024;11(2):2304460. doi: 10.1002/advs.202304460
- Sun H, Wang Y, Yang H. Revolutionizing preclinical research for pancreatic cancer: the potential of 3D bioprinting technology for personalized therapy. Hepatobiliary Surg Nutr. 2023;12(4):616-618. doi: 10.21037/hbsn-23-248
- Li C, Jin B, Sun H, et al. Exploring the function of stromal cells in cholangiocarcinoma by three-dimensional bioprinting immune microenvironment model. Front Immunol. 2022;13:941289. doi: 10.3389/fimmu.2022.941289
- Yue K, Santiago GT de, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
- Nikkhah M, Eshak N, Zorlutuna P, et al. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials. 2012;33(35):9009-9018. doi: 10.1016/j.biomaterials.2012.08.068
- Kaemmerer E, Melchels FPW, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater. 2014;10(6):2551-2562. doi: 10.1016/j.actbio.2014.02.035
- Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6(2):024105. doi: 10.1088/1758-5082/6/2/024105
- Chen MB, Srigunapalan S, Wheeler AR, Simmons CA. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions. Lab Chip. 2013;13(13):2591-2598. doi: 10.1039/c3lc00051f
- Janisiewicz AM, Shin JH, Murillo-Sauca O, et al. CD44(+) cells have cancer stem cell-like properties in nasopharyngeal carcinoma. Int Forum Allergy Rhinol. 2012;2(6):465-470. doi: 10.1002/alr.21068
- Liu SX, Wang C, Lin RB, et al. Super-enhancer driven SOX2 promotes tumor formation by chromatin re-organization in nasopharyngeal carcinoma. EBioMedicine. 2023; 98:104870. doi: 10.1016/j.ebiom.2023.104870
- Tang J, Zhong G, Wu J, Chen H, Jia Y. SOX2 recruits KLF4 to regulate nasopharyngeal carcinoma proliferation via PI3K/ AKT signaling. Oncogenesis. 2018;7(8):61. doi: 10.1038/s41389-018-0074-2
- Chen L, Chiang YC, Chan LS, et al. The CBP/β-catenin antagonist, ICG-001, inhibits tumor metastasis via blocking of the miR-134/ITGB1 axis-mediated cell adhesion in nasopharyngeal carcinoma. Cancers (Basel). 2022;14(13):3125. doi: 10.3390/cancers14133125
- Jin S, Li R, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res. 2020;30(11):950-965. doi: 10.1038/s41422-020-00402-8
- Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med. 2023;21(1):787. doi: 10.1186/s12967-023-04696-1
- Urien S, Lokiec F. Population pharmacokinetics of total and unbound plasma cisplatin in adult patients. Br J Clin Pharmacol. 2004;57(6):756-763. doi: 10.1111/j.1365-2125.2004.02082.x
- Joerger M, von Pawel J, Kraff S, et al. Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2016;27(10):1895-1902. doi: 10.1093/annonc/mdw290
- Casale F, Canaparo R, Serpe L, et al. Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients. Pharmacol Res. 2004;50(2):173-179. doi: 10.1016/j.phrs.2004.01.006
- Bossi P, Chan AT, Licitra L, et al. Nasopharyngeal carcinoma: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2021;32(4):452-465. doi: 10.1016/j.annonc.2020.12.007
- Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 2020;30(11):1024-1042. doi: 10.1038/s41422-020-0374-x
- Tang XR, Li YQ, Liang SB, et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. Lancet Oncol. 2018;19(3):382-393. doi: 10.1016/S1470-2045(18)30080-9
- Weichselbaum RR, Ishwaran H, Yoon T, et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci U S A. 2008;105(47):18490-18495. doi: 10.1073/pnas.0809242105
- Tan Z, Xiao L, Tang M, et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics. 2018;8(9):2329-2347. doi: 10.7150/thno.21451
- Sun Z, Wang X, Wang J, et al. Key radioresistance regulation models and marker genes identified by integrated transcriptome analysis in nasopharyngeal carcinoma. Cancer Med. 2021;10(20):7404-7417. doi: 10.1002/cam4.4228
- Zhang B, Li J, Wang Y, et al. Deubiquitinase USP7 stabilizes KDM5B and promotes tumor progression and cisplatin resistance in nasopharyngeal carcinoma through the ZBTB16/TOP2A axis. Cell Death Differ. 2024;31(3):309-321. doi: 10.1038/s41418-024-01257-x