A cylindrical slicing algorithm for four-axis non-planar bioprinting of complex geometries

Additive manufacturing, particularly in bioprinting, relies on precise slicing algorithms to define printing paths. While traditional planar slicing methods impose geometric limitations, non-planar and multi-axis approaches have emerged to enhance surface quality and manufacturing efficiency. Among these, cylindrical slicing algorithms offer a novel strategy for optimizing material deposition on rotating mandrels. This study aims to implement a novel non-planar slicing algorithm capable of planning extrusion-based printing processes on a rotating mandrel. The algorithm partitions the initial volume into concentric cylindrical layers, each defined by an increasing radius around the mandrel’s core. In the first step, the geometry is sectioned with a plane passing through the mandrel’s axis and then unrolled to produce a volume lying on a planar face. This transformation, applicable to geometries regardless of axial symmetry, facilitates the application of conventional or custom planar/non-planar slicing algorithms. Subsequently, the calculated trajectories are rewrapped, transforming the planar layers into a series of coaxial cylindrical layers aligned around the mandrel. To validate the slicer’s functionality, a rotating spindle was developed and integrated as a fourth motion axis into a previously designed multi-material, multi-scale 3D bioprinter. This system incorporates both an extrusion-based bioprinting unit and a fused filament fabrication unit. The algorithm enables full control over key printing parameters, such as layer thickness, layer width, and infill patterns. Testing on multiple 3D models relevant to biomedical applications demonstrated the algorithm’s robust performance.

- Mohan Pandey P, Venkata Reddy N, Dhande SG. Slicing procedures in layered manufacturing: a review. Rapid Prototyp J. 2003;9(5):274-288. doi: 10.1108/13552540310502185
- Chua CK, Leong KF, Lim CS. Rapid Prototyping: Principles and Applications. World scientific; 2010. doi: 10.1142/6665
- Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
- Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg. 2016;51(1):8-12. doi: 10.1016/j.jpedsurg.2015.10.022
- Sathies T, Senthil P, Anoop MS. A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J. 2020;26(4):669-687. doi: 10.1108/RPJ-08-2018-0199
- Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng. 2014;136(6): 061016. doi: 10.1115/1.4028512
- Naghieh S, Chen X. Printability–a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
- Ng WL, Shkolnikov V. Jetting-based bioprinting: process, dispense physics, and applications. Biodes Manuf. 2024;7(5):771-799. doi: 10.1007/s42242-024-00285-3
- Lu Z, Gao W, Liu F, et al. Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: key parameters and perspective. Addit Manuf. 2024;94:104443. doi: 10.1016/j.addma.2024.104443
- Sun SH, Chiang HW, Lee MI. Adaptive direct slicing of a commercial CAD model for use in rapid prototyping. Int J Adv Manuf Technol. 2007;34(7):689-701. doi: 10.1007/s00170-006-0651-y
- Zhao Z, Laperriere L. Adaptive direct slicing of the solid model for rapid prototyping. Int J Prod Res. 2000;38(1):69-83. doi: 10.1080/002075400189581
- Xu J, Gu X, Ding D, Pan Z, Chen K. A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyp J. 2018;24(6):1012-1025. doi: 10.1108/RPJ-10-2017-0196
- Minetto R, Volpato N, Stolfi J, Gregori RMMH, Da Silva MVG. An optimal algorithm for 3D triangle mesh slicing. Computer-Aided Design. 2017;92:1-10. https://doi.org/10.1016/j.cad.2017.07.001
- Tata K, Fadel G, Bagchi A, Aziz N. Efficient slicing for layered manufacturing. Rapid Prototyp J. 1998;4(4):151-167. doi: 10.1108/13552549810239003
- Tata K, Fadel G. Feature Extraction from Tessellated and Sliced Data in Layered Manufacturing; 1996. http://hdl.handle.net/2152/70294
- Kulkarni P, Dutta D. Adaptive slicing of parametrizable algebraic surfaces for layered manufacturing. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol 17162. American Society of Mechanical Engineers; 1995:211-217. doi: 10.1115/DETC1995-0028
- Suh YS, Wozny MJ. Adaptive Slicing Of Solid Freeform Fabrication Processes; 1994. http://hdl.handle.net/2152/68677
- Sreeram PN, Dutta D. Determination of optimal orientation based on variable slicing thickness in layered manufacturing. In: Proceedings of the 1995 ASME Winter Annual Conference; 1995.
- Dolenc A, Mäkelä I. Slicing procedures for layered manufacturing techniques. Computer-Aided Design. 1994;26(2):119-126. doi: 10.1016/0010-4485(94)90032-9
- Lee KH, Choi K. Generating optimal slice data for layered manufacturing. Int J Adv Manuf Technol. 2000;16(4):277-284. doi: 10.1007/s001700050157
- Sabourin E, Houser SA, Helge Bøhn J. Adaptive slicing using stepwise uniform refinement. Rapid Prototyp J. 1996;2(4):20-26. doi: 10.1108/13552549610153370
- Ahlers D, Wasserfall F, Hendrich N, Zhang J. 3D printing of nonplanar layers for smooth surface generation. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE; 2019:1737-1743. doi: 10.1109/COASE.2019.8843116
- Nisja GA, Cao A, Gao C. Short review of nonplanar fused deposition modeling printing. Mater Design Process Commun. 2021;3(4):e221. doi: 10.1002/mdp2.221
- Cendrero AM, Fortunato GM, Munoz-Guijosa JM, De Maria C, Díaz Lantada A. Benefits of non-planar printing strategies towards eco-efficient 3d printing. Sustainability. 2021;13(4):1599. doi: 10.3390/su13041599
- Shahid ST. Modeling of non-planar slicer for improved surface quality in material extrusion 3D printing. arXiv preprint arXiv:241107225; 2024. doi: 10.48550/arXiv.2411.07225
- Shembekar AV, Yoon YJ, Kanyuck A, Gupta SK. Trajectory planning for conformal 3d printing using non-planar layers. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol 51722. American Society of Mechanical Engineers; 2018:V01AT02A026. doi: 10.1115/DETC2018-85975
- Atarihuana S, Fernández F, Erazo J, Narváez M, Hidalgo V. Optimal strategies for filament orientation in non-planar 3D printing. Processes. 2024;12(12):2811. doi: 10.3390/pr12122811
- Chakraborty D, Reddy BA, Choudhury AR. Extruder path generation for curved layer fused deposition modeling. Computer-Aided Design. 2008;40(2):235-243. doi: 10.1016/j.cad.2007.10.014
- Llewellyn-Jones T, Allen R, Trask R. Curved layer fused filament fabrication using automated toolpath generation. 3D Print Addit Manuf. 2016;3(4):236-243. doi: 10.1089/3dp.2016.0033
- Rodriguez-Padilla C, Cuan-Urquizo E, Roman-Flores A, Gordillo JL, Vázquez-Hurtado C. Algorithm for the conformal 3D printing on non-planar tessellated surfaces: Applicability in patterns and lattices. Appl Sci. 2021;11(16):7509. doi: 10.3390/app11167509
- Yao Y, Cheng L, Li Z. A comparative review of multi-axis 3D printing. J Manuf Process. 2024;120:1002-1022. doi: 10.1016/j.jmapro.2024.04.084
- Patil AS. Fabrication of Nonplanar Surfaces Via 5-Axis 3D Printing. Rochester Institute of Technology; 2022.
- Dai C, Wang CCL, Wu C, Lefebvre S, Fang G, Liu YJ. Support-free volume printing by multi-axis motion. ACM Trans Graph. 2018;37(4):1-14. doi: 10.1145/3197517.3201342
- Keating S, Oxman N. Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robot Comput Integr Manuf. 2013;29(6):439-448. doi: 10.1016/j.rcim.2013.05.001
- Pan Y, Zhou C, Chen Y, Partanen J. Multitool and multi-axis computer numerically controlled accumulation for fabricating conformal features on curved surfaces. J Manuf Sci Eng. 2014;136(3):031007. doi: 10.1115/1.4026898
- Fortunato GM, Nicoletta M, Batoni E, Vozzi G, De Maria C. A fully automatic non-planar slicing algorithm for the additive manufacturing of complex geometries. Addit Manuf. 2023;69:103541. doi: 10.1016/j.addma.2023.103541
- Samandari M, Mostafavi A, Quint J, Memić A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009
- Fortunato GM, Rossi G, Bonatti AF, et al. Robotic platform and path planning algorithm for in situ bioprinting. Bioprinting. 2021;22:e00139. doi: 10.1016/j.bprint.2021.e00139
- McColl E, Groll J, Jungst T, Dalton PD. Design and fabrication of melt electrowritten tubes using intuitive software. Mater Des. 2018;155:46-58. doi: 10.1016/j.matdes.2018.05.036
- McColl E, Groll J, Jungst T, Dalton DP. MEWtubes; 2018. Accessed November 28, 2024. http://mewtubes.herokuapp.com/
- Dalton PD. Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng. 2017;2:49-57. doi: 10.1016/j.cobme.2017.05.007
- Saidy NT, Shabab T, Bas O, et al. Melt electrowriting of complex 3D anatomically relevant scaffolds. Front Bioeng Biotechnol. 2020;8:793. doi: 10.3389/fbioe.2020.00793
- Vandenberghe L. Angl3dprinting; 2020. Accessed November 28, 2024. https://github.com/vandenbergheluke/cylindrical-slicer/ tree/main
- Bonatti AF, Batoni E, Fortunato GM, Vitale-Brovarone C, Vozzi G, De Maria C. Robust design methodologies to engineer multimaterial and multiscale bioprinters. Bioprinting. 2024;44:e00372. doi: 10.1016/j.bprint.2024.e00372
- Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting. 2021;24:e00172. doi: 10.1016/j.bprint.2021.e00172
- Nascimento MHM, Franco MKKD, Yokaichyia F, de Paula E, Lombello CB, de Araujo DR. Hyaluronic acid in pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: influence on physico-chemical properties and structural requirements for sustained drug-release. Int J Biol Macromol. 2018;111:1245-1254. doi: 10.1016/j.ijbiomac.2018.01.064
- Boluk Y, Lan X, Adesida A. Additive manufacturing by Gel-in-Gel printing. Annu Trans Nordic Rheol Soc. 2024;32:157-161. doi: https://doi.org/10.31265/atnrs.778
- Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
- Chiesa I, De Maria C, Lapomarda A, et al. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication. 2020;12(2):025013. doi: 10.1088/1758-5090/ab6a1d
- De Maria C, Chiesa I, Morselli D, et al. Biomimetic tendrils by four dimensional printing bimorph springs with torsion and contraction properties based on bio‐compatible graphene/silk fibroin and poly (3‐hydroxybutyrate‐co‐3‐ hydroxyvalerate). Adv Funct Mater. 2021;31(52):2105665. https://doi.org/10.1002/adfm.202105665