AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025070053
RESEARCH ARTICLE

A cylindrical slicing algorithm for four-axis non-planar bioprinting of complex geometries

Andrea Guerra1,2 Gabriele Maria Fortunato1,2 Amedeo Franco Bonatti2 Giovanni Vozzi1,2 Carmelo De Maria1,2*
Show Less
1 Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
2 Research Centre “E. Piaggio,” University of Pisa, Pisa, Italy
Submitted: 10 February 2025 | Accepted: 25 February 2025 | Published: 27 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing, particularly in bioprinting, relies on precise slicing algorithms to define printing paths. While traditional planar slicing methods impose geometric limitations, non-planar and multi-axis approaches have emerged to enhance surface quality and manufacturing efficiency. Among these, cylindrical slicing algorithms offer a novel strategy for optimizing material deposition on rotating mandrels. This study aims to implement a novel non-planar slicing algorithm capable of planning extrusion-based printing processes on a rotating mandrel. The algorithm partitions the initial volume into concentric cylindrical layers, each defined by an increasing radius around the mandrel’s core. In the first step, the geometry is sectioned with a plane passing through the mandrel’s axis and then unrolled to produce a volume lying on a planar face. This transformation, applicable to geometries regardless of axial symmetry, facilitates the application of conventional or custom planar/non-planar slicing algorithms. Subsequently, the calculated trajectories are rewrapped, transforming the planar layers into a series of coaxial cylindrical layers aligned around the mandrel. To validate the slicer’s functionality, a rotating spindle was developed and integrated as a fourth motion axis into a previously designed multi-material, multi-scale 3D bioprinter. This system incorporates both an extrusion-based bioprinting unit and a fused filament fabrication unit. The algorithm enables full control over key printing parameters, such as layer thickness, layer width, and infill patterns. Testing on multiple 3D models relevant to biomedical applications demonstrated the algorithm’s robust performance.  

Graphical abstract
Keywords
Extrusion-based bioprinting
Four-axis bioprinter
Non-planar 3D Printing
Rotating mandrel
Slicing algorithm
Funding
The authors received funding from the European Union - Next Generation EU, Mission 4 - Component 1 (CUP I53D23002200006), through the Prin2022 Prometheus project, “4D printing self-deploying bio-enabled polymer scaffolds for the non-invasive treatment of bleeding intestinal ulcers” (grant no.: 2022BZLTTK). Additional funding was provided by the European Union - Next Generation EU, Mission 4 - Component 2, Investment 1.5 (CUP I53C22000780001) under the Tuscany Health Ecosystem, Spoke 4: Nanotechnologies for diagnosis and therapy. This work was also partially supported by the Italian Ministry of Education and Research (MUR) within the framework of the FoReLab and CrossLab projects (Departments of Excellence).
Conflict of interest
Gabriele Maria Fortunato, Giovanni Vozzi, and Carmelo De Maria serve as the Editorial Board Members of the journal, but were not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Mohan Pandey P, Venkata Reddy N, Dhande SG. Slicing procedures in layered manufacturing: a review. Rapid Prototyp J. 2003;9(5):274-288. doi: 10.1108/13552540310502185
  2. Chua CK, Leong KF, Lim CS. Rapid Prototyping: Principles and Applications. World scientific; 2010. doi: 10.1142/6665
  3. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  4. Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg. 2016;51(1):8-12. doi: 10.1016/j.jpedsurg.2015.10.022
  5. Sathies T, Senthil P, Anoop MS. A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J. 2020;26(4):669-687. doi: 10.1108/RPJ-08-2018-0199
  6. Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng. 2014;136(6): 061016. doi: 10.1115/1.4028512
  7. Naghieh S, Chen X. Printability–a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
  8. Ng WL, Shkolnikov V. Jetting-based bioprinting: process, dispense physics, and applications. Biodes Manuf. 2024;7(5):771-799. doi: 10.1007/s42242-024-00285-3
  9. Lu Z, Gao W, Liu F, et al. Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: key parameters and perspective. Addit Manuf. 2024;94:104443. doi: 10.1016/j.addma.2024.104443
  10. Sun SH, Chiang HW, Lee MI. Adaptive direct slicing of a commercial CAD model for use in rapid prototyping. Int J Adv Manuf Technol. 2007;34(7):689-701. doi: 10.1007/s00170-006-0651-y
  11. Zhao Z, Laperriere L. Adaptive direct slicing of the solid model for rapid prototyping. Int J Prod Res. 2000;38(1):69-83. doi: 10.1080/002075400189581
  12. Xu J, Gu X, Ding D, Pan Z, Chen K. A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyp J. 2018;24(6):1012-1025. doi: 10.1108/RPJ-10-2017-0196
  13. Minetto R, Volpato N, Stolfi J, Gregori RMMH, Da Silva MVG. An optimal algorithm for 3D triangle mesh slicing. Computer-Aided Design. 2017;92:1-10. https://doi.org/10.1016/j.cad.2017.07.001
  14. Tata K, Fadel G, Bagchi A, Aziz N. Efficient slicing for layered manufacturing. Rapid Prototyp J. 1998;4(4):151-167. doi: 10.1108/13552549810239003
  15. Tata K, Fadel G. Feature Extraction from Tessellated and Sliced Data in Layered Manufacturing; 1996. http://hdl.handle.net/2152/70294
  16. Kulkarni P, Dutta D. Adaptive slicing of parametrizable algebraic surfaces for layered manufacturing. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol 17162. American Society of Mechanical Engineers; 1995:211-217. doi: 10.1115/DETC1995-0028
  17. Suh YS, Wozny MJ. Adaptive Slicing Of Solid Freeform Fabrication Processes; 1994. http://hdl.handle.net/2152/68677
  18. Sreeram PN, Dutta D. Determination of optimal orientation based on variable slicing thickness in layered manufacturing. In: Proceedings of the 1995 ASME Winter Annual Conference; 1995.
  19. Dolenc A, Mäkelä I. Slicing procedures for layered manufacturing techniques. Computer-Aided Design. 1994;26(2):119-126. doi: 10.1016/0010-4485(94)90032-9
  20. Lee KH, Choi K. Generating optimal slice data for layered manufacturing. Int J Adv Manuf Technol. 2000;16(4):277-284. doi: 10.1007/s001700050157
  21. Sabourin E, Houser SA, Helge Bøhn J. Adaptive slicing using stepwise uniform refinement. Rapid Prototyp J. 1996;2(4):20-26. doi: 10.1108/13552549610153370
  22. Ahlers D, Wasserfall F, Hendrich N, Zhang J. 3D printing of nonplanar layers for smooth surface generation. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE; 2019:1737-1743. doi: 10.1109/COASE.2019.8843116
  23. Nisja GA, Cao A, Gao C. Short review of nonplanar fused deposition modeling printing. Mater Design Process Commun. 2021;3(4):e221. doi: 10.1002/mdp2.221
  24. Cendrero AM, Fortunato GM, Munoz-Guijosa JM, De Maria C, Díaz Lantada A. Benefits of non-planar printing strategies towards eco-efficient 3d printing. Sustainability. 2021;13(4):1599. doi: 10.3390/su13041599
  25. Shahid ST. Modeling of non-planar slicer for improved surface quality in material extrusion 3D printing. arXiv preprint arXiv:241107225; 2024. doi: 10.48550/arXiv.2411.07225
  26. Shembekar AV, Yoon YJ, Kanyuck A, Gupta SK. Trajectory planning for conformal 3d printing using non-planar layers. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol 51722. American Society of Mechanical Engineers; 2018:V01AT02A026. doi: 10.1115/DETC2018-85975
  27. Atarihuana S, Fernández F, Erazo J, Narváez M, Hidalgo V. Optimal strategies for filament orientation in non-planar 3D printing. Processes. 2024;12(12):2811. doi: 10.3390/pr12122811
  28. Chakraborty D, Reddy BA, Choudhury AR. Extruder path generation for curved layer fused deposition modeling. Computer-Aided Design. 2008;40(2):235-243. doi: 10.1016/j.cad.2007.10.014
  29. Llewellyn-Jones T, Allen R, Trask R. Curved layer fused filament fabrication using automated toolpath generation. 3D Print Addit Manuf. 2016;3(4):236-243. doi: 10.1089/3dp.2016.0033
  30. Rodriguez-Padilla C, Cuan-Urquizo E, Roman-Flores A, Gordillo JL, Vázquez-Hurtado C. Algorithm for the conformal 3D printing on non-planar tessellated surfaces: Applicability in patterns and lattices. Appl Sci. 2021;11(16):7509. doi: 10.3390/app11167509
  31. Yao Y, Cheng L, Li Z. A comparative review of multi-axis 3D printing. J Manuf Process. 2024;120:1002-1022. doi: 10.1016/j.jmapro.2024.04.084
  32. Patil AS. Fabrication of Nonplanar Surfaces Via 5-Axis 3D Printing. Rochester Institute of Technology; 2022.
  33. Dai C, Wang CCL, Wu C, Lefebvre S, Fang G, Liu YJ. Support-free volume printing by multi-axis motion. ACM Trans Graph. 2018;37(4):1-14. doi: 10.1145/3197517.3201342
  34. Keating S, Oxman N. Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robot Comput Integr Manuf. 2013;29(6):439-448. doi: 10.1016/j.rcim.2013.05.001
  35. Pan Y, Zhou C, Chen Y, Partanen J. Multitool and multi-axis computer numerically controlled accumulation for fabricating conformal features on curved surfaces. J Manuf Sci Eng. 2014;136(3):031007. doi: 10.1115/1.4026898
  36. Fortunato GM, Nicoletta M, Batoni E, Vozzi G, De Maria C. A fully automatic non-planar slicing algorithm for the additive manufacturing of complex geometries. Addit Manuf. 2023;69:103541. doi: 10.1016/j.addma.2023.103541
  37. Samandari M, Mostafavi A, Quint J, Memić A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009
  38. Fortunato GM, Rossi G, Bonatti AF, et al. Robotic platform and path planning algorithm for in situ bioprinting. Bioprinting. 2021;22:e00139. doi: 10.1016/j.bprint.2021.e00139
  39. McColl E, Groll J, Jungst T, Dalton PD. Design and fabrication of melt electrowritten tubes using intuitive software. Mater Des. 2018;155:46-58. doi: 10.1016/j.matdes.2018.05.036
  40. McColl E, Groll J, Jungst T, Dalton DP. MEWtubes; 2018. Accessed November 28, 2024. http://mewtubes.herokuapp.com/
  41. Dalton PD. Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng. 2017;2:49-57. doi: 10.1016/j.cobme.2017.05.007
  42. Saidy NT, Shabab T, Bas O, et al. Melt electrowriting of complex 3D anatomically relevant scaffolds. Front Bioeng Biotechnol. 2020;8:793. doi: 10.3389/fbioe.2020.00793
  43. Vandenberghe L. Angl3dprinting; 2020. Accessed November 28, 2024. https://github.com/vandenbergheluke/cylindrical-slicer/ tree/main
  44. Bonatti AF, Batoni E, Fortunato GM, Vitale-Brovarone C, Vozzi G, De Maria C. Robust design methodologies to engineer multimaterial and multiscale bioprinters. Bioprinting. 2024;44:e00372. doi: 10.1016/j.bprint.2024.e00372
  45. Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting. 2021;24:e00172. doi: 10.1016/j.bprint.2021.e00172
  46. Nascimento MHM, Franco MKKD, Yokaichyia F, de Paula E, Lombello CB, de Araujo DR. Hyaluronic acid in pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: influence on physico-chemical properties and structural requirements for sustained drug-release. Int J Biol Macromol. 2018;111:1245-1254. doi: 10.1016/j.ijbiomac.2018.01.064
  47. Boluk Y, Lan X, Adesida A. Additive manufacturing by Gel-in-Gel printing. Annu Trans Nordic Rheol Soc. 2024;32:157-161. doi: https://doi.org/10.31265/atnrs.778
  48. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  49. Chiesa I, De Maria C, Lapomarda A, et al. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication. 2020;12(2):025013. doi: 10.1088/1758-5090/ab6a1d
  50. De Maria C, Chiesa I, Morselli D, et al. Biomimetic tendrils by four dimensional printing bimorph springs with torsion and contraction properties based on bio‐compatible graphene/silk fibroin and poly (3‐hydroxybutyrate‐co‐3‐ hydroxyvalerate). Adv Funct Mater. 2021;31(52):2105665. https://doi.org/10.1002/adfm.202105665

 

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing