3D printing technology: Driving pioneering innovations in anti-cancer drug delivery systems

With the rising global incidence of cancer and the limitations of traditional treatment methods, the integration of three-dimensional (3D) printing technology with drug delivery systems offers a promising solution for precision medicine. 3D printing, with its high flexibility and precise production control, allows for the accurate modulation of drug delivery systems, particularly in terms of targeted delivery and controlled drug release rates, thus significantly enhancing therapeutic efficacy and reducing side effects. This review focuses on the applications of various drug delivery forms, such as microneedle patches, implants, and tablets, in the treatment of cancers including breast cancer, melanoma, osteosarcoma, cervical cancer, colorectal cancer, and prostate cancer. Furthermore, the review explores the synergistic effects of combination therapies, such as photothermal therapy, chemotherapy, and immunotherapy, within 3D-printed drug delivery systems, and assesses their potential in addressing tumor recurrence, drug resistance, and treatment-related side effects. Despite the substantial promise of 3D printing technology in cancer treatment, challenges remain in material selection, process optimization, and production standardization. As technology continues to evolve and multidisciplinary collaborations deepen, 3D printing is expected to play an increasingly significant role in the future of precision medicine and personalized cancer therapy.

- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
- Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 2022;29(5):911-920. doi: 10.1038/s41418-022-00962-9
- Bhuskute H, Shende P, Prabhakar B. 3D printed personalized medicine for cancer: applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech. 2021;23(1):8. doi: 10.1208/s12249-021-02153-0
- de Lázaro I, Mooney DJ. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat Mater. 2021;20(11):1469-1479. doi: 10.1038/s41563-021-01047-7
- Qi L, Li Z, Liu J, Chen X. Omics-enhanced nanomedicine for cancer therapy. Adv Mater. 2024;36(50):e2409102. doi: 10.1002/adma.202409102
- Jain K, Shukla R, Yadav A, Ujjwal RR, Flora S. 3D printing in development of nanomedicines. Nanomaterials (Basel). 2021;11(2):420. doi: 10.3390/nano11020420
- Reddy CV, Veeranna B, Venkatesh MP, Kumar P. First FDA approved 3D printed drug paved new path for increased precision in patient care. Appl Clin Res Clin Trials Regul Aff. 2020;07:93-103. doi: 10.2174/2213476X07666191226145027
- Miao L, Jiang T, Lin S, et al. Asymmetric forward osmosis membranes from p-aramid nanofibers. Mater Des. 2020;191:108591. doi: 10.1016/j.matdes.2020.108591
- Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D printing technology as a promising tool to design nanomedicine-based solid dosage forms: contemporary research and future scope. Pharmaceutics. 2023; 15(5):1448. doi: 10.3390/pharmaceutics15051448
- Alqahtani AA, Ahmed MM, Mohammed AA, Ahmad J. 3D printed pharmaceutical systems for personalized treatment in metabolic syndrome. Pharmaceutics. 2023;15(4):1152. doi: 10.3390/pharmaceutics15041152
- Trenfield SJ, Awad A, Madla CM, et al. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081-1094. doi: 10.1080/17425247.2019.1660318
- Prajapati AR, Dave HK, Raval HK. Effect of fiber volume fraction on the impact strength of fiber reinforced polymer composites made by FDM process. Mater Today: Proc. 2021;44:2102-2106. doi: 10.1016/j.matpr.2020.12.262
- Cui M, Pan H, Su Y, et al. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B. 2021;11(8):2488-2504. doi: 10.1016/j.apsb.2021.03.015
- Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release. 2021;329:743-757. doi: 10.1016/j.jconrel.2020.10.008
- Yasin H, Al-Tabakha M, Chan SY. Fabrication of polypill pharmaceutical dosage forms using fused deposition modeling 3D printing: a systematic review. Pharmaceutics. 2024;16(10):1285. doi: 10.3390/pharmaceutics16101285
- Zhang Z, Feng S, Almotairy A, Bandari S, Repka MA. Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques. Eur J Pharm Biopharm. 2023;183:102-111. doi: 10.1016/j.ejpb.2023.01.004
- Shanmugam V, Pavan MV, Babu K, Karnan B. Fused deposition modeling based polymeric materials and their performance: a review. Polym Compos. 2021;42(11):5656-5677. doi: 10.1002/pc.26275
- Zhang P, Xu P, Chung S, Bandari S, Repka MA. Fabrication of bilayer tablets using hot melt extrusion-based dual-nozzle fused deposition modeling 3D printing. Int J Pharm. 2022;624:121972. doi: 10.1016/j.ijpharm.2022.121972
- He F, Khan M. Effects of printing parameters on the fatigue behaviour of 3D-printed ABS under dynamic thermo-mechanical loads. Polymers (Basel). 2021;13(14):2362. doi: 10.3390/polym13142362
- Ye B, Kim KJ, Sacks EP. Global and local defect detection for 3D printout surface based on geometric shape comparison. Precis Eng. 2023;82:324-337. doi: 10.1016/j.precisioneng.2023.04.005
- Kantaros A. 3D printing in regenerative medicine: technologies and resources utilized. Int J Mol Sci. 2022;23(23):14621. doi: 10.3390/ijms232314621
- Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Control Release. 2021;332:367-389. doi: 10.1016/j.jconrel.2021.02.027
- Zhu J, Wu PW, Chao YH, et al. Recent advances in 3D printing for catalytic applications. Chem Eng J. 2022;433:134341. doi: 10.1016/j.cej.2021.134341
- Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: a 3D printing technology for diverse materials. Adv Mater. 2022;34(28):e2108855. doi: 10.1002/adma.202108855
- Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules. 2022;27(9):2784. doi: 10.3390/molecules27092784
- Zhang B, Belton P, Teoh XY, Gleadall A, Bibb R, Qi S. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. J Mater Chem B. 2023;12(1):131-144. doi: 10.1039/d3tb01868g
- Mancilla-De-La-Cruz J, Rodriguez-Salvador M, An J, Chua CK. Three-dimensional printing technologies for drug delivery applications: processes, materials, and effects. Int J Bioprint. 2022;8(4):622. doi: 10.18063/ijb.v8i4.622
- Palo M, Holländer J, Suominen J, Yliruusi J, Sandler N. 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices. 2017;14(9):685-696. doi: 10.1080/17434440.2017.1363647
- Vitale A, Cabral JT. Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials (Basel). 2016;9(9):760. doi: 10.3390/ma9090760
- Cui J, Liu F, Lu Z, et al. Repeatedly recyclable 3D printing catalyst-free dynamic thermosetting photopolymers. Adv Mater. 2023;35(20):2211417. doi: 10.1002/adma.202211417
- Burke G, Devine DM, Major I. Effect of stereolithography 3D printing on the properties of PEGDMA hydrogels. Polymers (Basel). 2020;12(9):2015. doi: 10.3390/polym12092015
- Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers (Basel). 2021;13(18):3101. doi: 10.3390/polym13183101
- Daikuara LY, Chen XF, Yue ZL, et al. 3D bioprinting constructs to facilitate skin regeneration. Adv Funct Mater. 2022;32(3):2105080. doi: 10.1002/adfm.202105080
- Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60-67. doi: 10.1016/j.ejps.2019.05.008
- Jandyal A, Chaturvedi I, Wazir I, Raina A, Ul Haq MI. 3D printing – a review of processes, materials and applications in industry 4.0. Sust Operat Comput. 2022;3:33-42. doi: 10.1016/j.susoc.2021.09.004
- Yap YL, Toh W, Giam A, et al. Topology optimization and 3D printing of micro-drone: numerical design with experimental testing. Int J Mech Sci. 2023;237:107771. doi: 10.1016/j.ijmecsci.2022.107771
- Gueche YA, Sanchez-Ballester NM, Cailleaux S, Bataille B, Soulairol I. Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing. Pharmaceutics. 2021;13(8):1212. doi: 10.3390/pharmaceutics13081212
- Sood AK, Ohdar RK, Mahapatra SS. Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater Des. 2009;30(10): 4243-4252. doi: 10.1016/j.matdes.2009.04.030
- Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release. 2022;351:444-455. doi: 10.1016/j.jconrel.2022.09.032
- Samaro A, Janssens P, Vanhoorne V, et al. Screening of pharmaceutical polymers for extrusion-based additive manufacturing of patient-tailored tablets. Int J Pharm. 2020;586:119591. doi: 10.1016/j.ijpharm.2020.119591
- Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics. 2020; 12(9):795. doi: 10.3390/pharmaceutics12090795
- Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci. 2018;107(4):1076-1085. doi: 10.1016/j.xphs.2017.11.019
- Jamal MA, Shah OR, Ghafoor U, Qureshi Y, Bhutta MR. Additive manufacturing of continuous fiber-reinforced polymer composites via fused deposition modelling: a comprehensive review. Polymers (Basel). 2024;16(12):1622. doi: 10.3390/polym16121622
- Wang X, Liu J. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines (Basel). 2016;7(12):206. doi: 10.3390/mi7120206
- Zhang W, Ye WB, Yan YF. Advances in photocrosslinkable materials for 3D bioprinting. Adv Eng Mater. 2022;24(1):2100663. doi: 10.1002/adem.202100663
- Ziaee M, Crane NB. Binder jetting: a review of process, materials, and methods. Addit Manuf. 2019;28:781-801. doi: 10.1016/j.addma.2019.05.031
- Miyanaji H, Rahman KM, Da M, Williams CB. Effect of fine powder particles on quality of binder jetting parts. Addit Manuf. 2020;36:101587. doi: 10.1016/j.addma.2020.101587
- Jiang Q, Zhang M, Mujumdar AS. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Crit Rev Food Sci Nutr. 2022;62(17):4669-4683. doi: 10.1080/10408398.2021.1878099
- Mostafaei A, Elliott AM, Barnes JE, et al. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707. doi: 10.1016/j.pmatsci.2020.100707
- Patel SK, Khoder M, Peak M, Alhnan MA. Controlling drug release with additive manufacturing-based solutions. Adv Drug Deliv Rev. 2021;174:369-386. doi: 10.1016/j.addr.2021.04.020
- Karakurt I, Aydoğdu A, çıkrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int J Pharm. 2020;584:119428. doi: 10.1016/j.ijpharm.2020.119428
- Xu X, Goyanes A, Trenfield SJ, et al. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Mater Sci Eng C. 2021;120:111773. doi: 10.1016/j.msec.2020.111773
- Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1):207-212. doi: 10.1016/j.ijpharm.2016.03.016
- Lee SJ, Zhu W, Heyburn L, et al. Development of novel 3-D printed scaffolds with core-shell nanoparticles for nerve regeneration. IEEE Trans Biomed Eng. 2017;64(2):408-418. doi: 10.1109/TBME.2016.2558493
- Nam J, Kim M. Advances in materials and technologies for digital light processing 3D printing. Nano Converg. 2024;11(1):45. doi: 10.1186/s40580-024-00452-3
- Kim J, Lee JK, Chae B, Ahn J, Lee S. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist. Nano Converg. 2022;9(1):53. doi: 10.1186/s40580-022-00345-3
- Chaudhary R, Fabbri P, Leoni E, Mazzanti F, Akbari R, Antonini C. Additive manufacturing by digital light processing: a review. Prog Addit Manuf. 2023;8(2):331-351.doi: 10.1007/s40964-022-00336-0
- Vrana NE, Gupta S, Mitra K, et al. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank. 2022;23(3):417-440. doi: 10.1007/s10561-021-09975-z
- Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594
- Jabbarzare S, Abdellahi M, Ghayour H, Arpanahi A, Khandan A. A study on the synthesis and magnetic properties of the cerium ferrite ceramic. J Alloys Compd. 2017;694:800-807. doi: 10.1016/j.jallcom.2016.10.064
- Kazemi A, Abdellahi M, Khajeh-Sharafabadi A, Khandan A, Ozada N. Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. Mater Sci Eng C. 2017;71:604-610. doi: 10.1016/j.msec.2016.10.044
- Song Y, Ghafari Y, Asefnejad A, Toghraie D. An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: processes, materials, and applications. Opt Laser Technol. 2024;171:110459. doi: 10.1016/j.optlastec.2023.110459
- Wang N, Shi H, Yang S. 3D printed oral solid dosage form: modified release and improved solubility. J Control Release. 2022;351:407-431. doi: 10.1016/j.jconrel.2022.09.023
- Seoane-Viaño I, Ong JJ, Luzardo-álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110-119. doi: 10.1016/j.ajps.2020.06.003
- Jing H, Shi J, Guoab P, Guan S, Fu H, Cui W. Hydrogels based on physically cross-linked network with high mechanical property and recasting ability. Colloids Surf A: Physicochem Eng Aspects. 2021;611:125805. doi: 10.1016/j.colsurfa.2020.125805
- Zhu J, Zhang X, Qin Z, et al. Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol. Colloids Surf A: Physicochem Eng Aspects. 2021;611:125889. doi: 10.1016/j.colsurfa.2020.125889
- Joo SH, Kim J, Hong J, Fakhraei LS, Kim YH. Dissolvable self-locking microneedle patches integrated with immunomodulators for cancer immunotherapy. Adv Mater. 2023;35(10):e2209966. doi: 10.1002/adma.202209966
- Fang Y, Liu Z, Wang H, et al. Implantable sandwich-like scaffold/fiber composite spatiotemporally releasing combretastatin A4 and doxorubicin for efficient inhibition of postoperative tumor recurrence. ACS Appl Mater Interfaces. 2022;14(24):27525-27537. doi: 10.1021/acsami.2c02103
- Bunea AI, Taboryski R. Recent advances in microswimmers for biomedical applications. Micromachines (Basel). 2020;11(12):1048. doi: 10.3390/mi11121048
- Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies. Pharmaceutics. 2023;15(7):1877. doi: 10.3390/pharmaceutics15071877
- Lim SH, Kathuria H, Tan J, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139-168. doi: 10.1016/j.addr.2018.05.006
- Chakka L, Chede S. 3D printing of pharmaceuticals for disease treatment. Front Med Technol. 2022;4:1040052. doi: 10.3389/fmedt.2022.1040052
- Thanawuth K, Limmatvapirat S, Rojviriya C, Sriamornsak P. Controlled release of felodipine from 3D-printed tablets with constant surface area: influence of surface geometry. Pharmaceutics. 2023;15(2):467. doi: 10.3390/pharmaceutics15020467
- Mandati P, Dumpa N, Alzahrani A, et al. Hot-melt extrusion-based fused deposition modeling 3D printing of atorvastatin calcium tablets: impact of shape and infill density on printability and performance. AAPS PharmSciTech. 2022;24(1):13. doi: 10.1208/s12249-022-02470-y
- Zhao X, Wei W, Niu R, Li Q, Hu C, Jiang S. 3D printed intragastric floating and sustained-release tablets with air chambers. J Pharm Sci. 2022;111(1):116-123. doi: 10.1016/j.xphs.2021.07.010
- Beck RCR, Chaves PS, Goyanes A, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1):268-279. doi: 10.1016/j.ijpharm.2017.05.074
- Brüsewitz C, Schendler A, Funke A, Wagner T, Lipp R. Novel poloxamer-based nanoemulsions to enhance the intestinal absorption of active compounds. Int J Pharm. 2007;329(1):173-181. doi: 10.1016/j.ijpharm.2006.08.022
- Goyanes A, Madla CM, Umerji A, et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497. doi: 10.1016/j.ijpharm.2019.118497
- Januskaite P, Xu X, Ranmal SR, et al. I spy with my little eye: a paediatric visual preferences survey of 3D printed tablets. Pharmaceutics. 2020;12(11):1100. doi: 10.3390/pharmaceutics12111100
- Chatzitaki A, Tsongas K, Tzimtzimis EK, et al. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J Drug Deliv Sci Technol. 2021;61:102292. doi: 10.1016/j.jddst.2020.102292
- Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023;5:100165. doi: 10.1016/j.ijpx.2023.100165
- Chen D, Wu Z, Xia C, Yang H, Ding W, He Q. A sustained H(2)/fluorouracil-releasing suppository for high-efficacy and low-toxicity hydrogenochemotherapy of colon cancer. Adv Healthc Mater. 2025;14(7):e2404054. doi: 10.1002/adhm.202404054
- Wang X, Liu S, Guan Y, Ding J, Ma C, Xie Z. Vaginal drug delivery approaches for localized management of cervical cancer. Adv Drug Deliv Rev. 2021;174:114-126. doi: 10.1016/j.addr.2021.04.009
- Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544(2):415-424. doi: 10.1016/j.ijpharm.2018.01.031
- Rzhevskiy AS, Singh TRR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release. 2018;270:184-202. doi: 10.1016/j.jconrel.2017.11.048
- Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019; 49(6):575-585. doi: 10.1007/s40005-018-00414-y
- Olowe M, Parupelli SK, Desai S. A review of 3D-printing of microneedles. Pharmaceutics. 2022;14(12):2693. doi: 10.3390/pharmaceutics14122693
- Ganeson K, Alias AH, Murugaiyah V, Amirul AA, Ramakrishna S, Vigneswari S. Microneedles for efficient and precise drug delivery in cancer therapy. Pharmaceutics. 2023;15(3):744. doi: 10.3390/pharmaceutics15030744
- Han W, Liu F, Li Y, et al. Advances in natural polymer-based transdermal drug delivery systems for tumor therapy. Small. 2023;19(35):e2301670. doi: 10.1002/smll.202301670
- Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng C. 2020;107:110248. doi: 10.1016/j.msec.2019.110248
- Lin L, Wang YQ, Cai MK, et al. Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv Funct Mater. 2022;32(21):2109187. doi: 10.1002/adfm.202109187
- Wu Q, Pan C, Shi PH, et al. On-demand transdermal drug delivery platform based on wearable acoustic microneedle array. Chem Eng J. 2023;477:147124. doi: 10.1016/j.cej.2023.147124
- Wang T, Ren X, Bai Y, Liu L, Wu G. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor. Carbohydr Polym. 2021;254:117298. doi: 10.1016/j.carbpol.2020.117298
- Koch F, Tröndle K, Finkenzeller G, Zengerle R, Zimmermann S, Koltay P. Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting. 2020;20:e94. doi: 10.1016/j.bprint.2020.e00094
- Liu C, Wang Z, Wei X, Chen B, Luo Y. 3D printed hydrogel/ PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater. 2021;131:314-325. doi: 10.1016/j.actbio.2021.07.011
- Hu Y, Zhou L, Wang Z, et al. Assembled embedded 3D hydrogel system for asynchronous drug delivery to inhibit postoperative recurrence of malignant glioma and promote neurological recovery. Adv Funct Mater. 2024;34(30):2401383. doi: 10.1002/adfm.202401383
- Kuo C, Qin H, Cheng Y, Jiang X, Shi X. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocoll. 2021;111:106262. doi: 10.1016/j.foodhyd.2020.106262
- Phan VHG, Murugesan M, Huong H, et al. Cellulose nanocrystals-incorporated thermosensitive hydrogel for controlled release, 3D printing, and breast cancer treatment applications. ACS Appl Mater Interfaces. 2022;14(38):42812-42826. doi: 10.1021/acsami.2c05864
- Cheng Y, Qin H, Acevedo NC, Jiang X, Shi X. 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. Int J Pharm. 2020;591:119983. doi: 10.1016/j.ijpharm.2020.119983
- Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 2021;9(1):18. doi: 10.1038/s41413-021-00139-z
- Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent developments of biomaterials for additive manufacturing of bone scaffolds. Adv Healthc Mater. 2020;9(23):e2000724. doi: 10.1002/adhm.202000724
- Wang H, Liu Z, Fang Y, et al. Spatiotemporal release of non-nucleotide STING agonist and AKT inhibitor from implantable 3D-printed scaffold for amplified cancer immunotherapy. Biomaterials. 2024;311:122645.doi: 10.1016/j.biomaterials.2024.122645
- Zhang Y, Xu J, Fei Z, et al. 3D printing scaffold vaccine for antitumor immunity. Adv Mater. 2021;33(48):e2106768. doi: 10.1002/adma.202106768
- Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-7309. doi: 10.2147/IJN.S146315
- Montané X, Bajek A, Roszkowski K, et al. Encapsulation for cancer therapy. Molecules. 2020;25(7):1605. doi: 10.3390/molecules25071605
- Rupp H, Binder WH. 3D printing of core-shell capsule composites for post-reactive and damage sensing applications. Adv Mater Technol. 2020;5(11):2000509. doi: 10.1002/admt.202000509
- Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/ in vivo study. Int J Biol Macromol. 2022;205:90-109. doi: 10.1016/j.ijbiomac.2022.02.080
- Zhou Y, Liang Q, Wu X, et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv Mater. 2023;35(23):e2210691. doi: 10.1002/adma.202210691
- Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-triggered drug release from 3d-printed magnetic chitosan microswimmers. ACS Nano. 2018;12(9):9617-9625. doi: 10.1021/acsnano.8b05997
- Park J, Kim JY, Pané S, Nelson BJ, Choi H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv Healthc Mater. 2021;10(2):e2001096. doi: 10.1002/adhm.202001096
- Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3): 3353-3362. doi: 10.1021/acsnano.8b09233
- Amir E, Ocana A, Freedman O, Clemons M, Seruga B. Dose-dense treatment for triple-negative breast cancer. Nat Rev Clin Oncol. 2010;7(2):79-80. doi: 10.1038/nrclinonc.2009.231
- Wu J, Liang B, Lu S, et al. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater. 2023;19(1):012002. doi: 10.1088/1748-605X/ad08e1
- Perez A, Baumann DP, Viola GM. Reconstructive breast implant-related infections: Prevention, diagnosis, treatment, and pearls of wisdom. J Infect. 2024;89(2):106197. doi: 10.1016/j.jinf.2024.106197
- Yang Y, Qiao X, Huang R, et al. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials. 2020;230:119618. doi: 10.1016/j.biomaterials.2019.119618
- Hao W, Zheng Z, Zhu L, et al. 3D printing‐based drug-loaded implanted prosthesis to prevent breast cancer recurrence post‐conserving surgery. Asian J Pharm Sci. 2021;16(1):86-96. doi: 10.1016/j.ajps.2020.06.002
- Su Y, Liu Y, Hu X, et al. Caffeic acid-grafted chitosan/sodium alginate/nanoclay-based multifunctional 3D-printed hybrid scaffolds for local drug release therapy after breast cancer surgery. Carbohydr Polym. 2024;324:121441. doi: 10.1016/j.carbpol.2023.121441
- Zhang Q, Wang X, Kuang G, Yu Y, Zhao Y. Photopolymerized 3D printing scaffolds with Pt(IV) prodrug initiator for postsurgical tumor treatment. Research (Wash D C). 2022;2022:9784510. doi: 10.34133/2022/9784510
- Zaer M, Moeinzadeh A, Abolhassani H, et al. Doxorubicin-loaded niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: a 3D printing approach. Int J Biol Macromol. 2023;253:126808. doi: 10.1016/j.ijbiomac.2023.126808
- Hosseini F, Mirzaei Chegeni M, Bidaki A, et al. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol. 2023;242:124697. doi: 10.1016/j.ijbiomac.2023.124697
- Myung N, Kang H. Local dose-dense chemotherapy for triple-negative breast cancer via minimally invasive implantation of 3D printed devices. Asian J Pharm Sci. 2024;19(1):100884. doi: 10.1016/j.ajps.2024.100884
- He C, Yu L, Yao H, Chen Y, Hao Y. Combinatorial photothermal 3D-printing scaffold and checkpoint blockade inhibits growth/metastasis of breast cancer to bone and accelerates osteogenesis. Adv Funct Mater. 2021;31(10):2006214. doi: 10.1002/adfm.202006214
- Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. Int J Pharm. 2020;580:119219. doi: 10.1016/j.ijpharm.2020.119219
- Schadendorf D, van Akkooi A, Berking C, et al. Melanoma. Lancet. 2018;392(10151):971-984. doi: 10.1016/S0140-6736(18)31559-9
- Zhang X, Wang C, Wang J, et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv Mater. 2018;30(22):e1707112. doi: 10.1002/adma.201707112
- Man J, Millican J, Mulvey A, Gebski V, Hui R. Response rate and survival at key timepoints with PD-1 blockade vs chemotherapy in PD-L1 subgroups: meta-analysis of metastatic NSCLC trials. JNCI Cancer Spectr. 2021;5(3):pkab12. doi: 10.1093/jncics/pkab012
- Arnold M, Singh D, Laversanne M, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495-503. doi: 10.1001/jamadermatol.2022.0160
- Lopez-Ramirez MA, Soto F, Wang C, et al. Built-in active microneedle patch with enhanced autonomous drug delivery. Adv Mater. 2020;32(1):1905740. doi: 10.1002/adma.201905740
- Li Y, Chen K, Pang Y, et al. Multifunctional microneedle patches via direct ink drawing of nanocomposite inks for personalized transdermal drug delivery. ACS Nano. 2023;17(20):19925-19937. doi: 10.1021/acsnano.3c04758
- ćurić LČ, šuligoj M, Ibic M, et al. Development of a novel NiCu nanoparticle-loaded polysaccharide-based hydrogel for 3D printing of customizable dressings with promising cytotoxicity against melanoma cells. Mater Today Bio. 2023;22:100770. doi: 10.1016/j.mtbio.2023.100770
- Kumar S, Chatterjee N, Misra SK. Suitably incorporated hydrophobic, redox-active drug in poly lactic acid-graphene nanoplatelet composite generates 3D-printed medicinal patch for electrostimulatory therapeutics. Langmuir. 2024;40(23):11858-11872. doi: 10.1021/acs.langmuir.3c03338
- Xu L, Chen Y, Zhang P, et al. 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor photothermal-chemotherapy and wound healing. Biomater Sci. 2022;10(19):5648-5661. doi: 10.1039/d2bm00903j
- Verron E, Schmid-Antomarchi H, Pascal-Mousselard H, Schmid-Alliana A, Scimeca J, Bouler J. Therapeutic strategies for treating osteolytic bone metastases. Drug Discov Today. 2014;19(9):1419-1426. doi: 10.1016/j.drudis.2014.04.004
- Xiang H, Yang Q, Gao Y, et al. Cocrystal strategy toward multifunctional 3D-printing scaffolds enables nir-activated photonic osteosarcoma hyperthermia and enhanced bone defect regeneration. Adv Funct Mater. 2020;30(25):1909938. doi: 10.1002/adfm.201909938
- Bläsius F, Delbrück H, Hildebrand F, Hofmann UK. Surgical treatment of bone sarcoma. Cancers (Basel). 2022;14(11):2694. doi: 10.3390/cancers14112694
- Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today (Kidlington). 2013;16(12):496-504. doi: 10.1016/j.mattod.2013.11.017
- Li D, Nie W, Chen L, et al. Self-assembled hydroxyapatite-graphene scaffold for photothermal cancer therapy and bone regeneration. J Biomed Nanotechnol. 2018;14(12):2003-2017.
- Wang Y, Sun L, Mei Z, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des. 2020;186:108336. doi: 10.1016/j.matdes.2019.108336
- Huang H, Qiang L, Fan M, et al. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2024;31:18-37. doi: 10.1016/j.bioactmat.2023.07.004
- Li C, Li C, Ma Z, et al. Regulated macrophage immune microenvironment in 3D printed scaffolds for bone tumor postoperative treatment. Bioact Mater. 2023;19:474-485. doi: 10.1016/j.bioactmat.2022.04.028
- Li C, Zhang W, Nie Y, et al. Time-sequential and multi-functional 3D printed MgO2/PLGA scaffold developed as a novel biodegradable and bioactive bone substitute for challenging postsurgical osteosarcoma treatment. Adv Mater. 2024;36(34):2308875. doi: 10.1002/adma.202308875
- Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184-17192. doi: 10.1021/acsami.9b01218
- Dahiya A, Chaudhari VS, Bose S. Bone healing via carvacrol and curcumin nanoparticle on 3D printed scaffolds. Small. 2024;20(50):e2405642. doi: 10.1002/smll.202405642
- Kushram P, Bose S. Improving biological performance of 3D-printed scaffolds with garlic-extract nanoemulsions. ACS Appl Mater Interfaces. 2024;16(37):48955-48968. doi: 10.1021/acsami.4c05588
- Chaudhari VS, White B, Dahiya A, Bose S. Gingerol-zinc complex loaded 3D-printed calcium phosphate for controlled release application. Drug Deliv Transl Res. 2024;15(4):1317-1329. doi: 10.1007/s13346-024-01677-9
- Bose S, Sarkar N, Majumdar U. Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties. Colloids Surf B Biointerfaces. 2023;231:113563. doi: 10.1016/j.colsurfb.2023.113563
- Ancély FDS, Daria RQDA, Leticia FT, Maurício SB, Leticia L. Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat. 2019;5:25. doi: 10.20517/2394-4722.2018.83
- Li J, Zhang W, Ji W, et al. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J Mater Chem B. 2021;9(38):7909-7926. doi: 10.1039/d1tb01310f
- Shangsi C, Yue W, Junzhi L, Haoran S, Ming-Fung FS, Shenglong T. 3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@ DOX particles for bone tumor therapy and bone tissue regeneration. IJB. 2024;10(5):3526. doi: 10.36922/ijb.3526
- Abie N, ünlü C, Pinho AR, et al. Designing of a multifunctional 3D-printed biomimetic theragenerative aerogel scaffold via mussel-inspired chemistry: bioactive glass nanofiber-incorporated self-assembled silk fibroin with antibacterial, antiosteosarcoma, and osteoinductive properties. ACS Appl Mater Interfaces. 2024;16(18):22809-22827. doi: 10.1021/acsami.4c00065
- Lin H, Shi S, Lan X, et al. Scaffold 3D-printed from metallic nanoparticles-containing ink simultaneously eradicates tumor and repairs tumor-associated bone defects. Small Methods. 2021;5(9):2100536. doi: 10.1002/smtd.202100536
- He C, Dong C, Hu H, Yu L, Chen Y, Hao Y. Photosynthetic oxygen-self-generated 3D-printing microbial scaffold enhances osteosarcoma elimination and prompts bone regeneration. Nano Today. 2021;41:101297. doi: 10.1016/j.nantod.2021.101297
- Yang C, Ma H, Wang Z, et al. 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv Sci (Weinh). 2021;8(20):2100894. doi: 10.1002/advs.202100894
- He C, Dong C, Yu L, Chen Y, Hao Y. Ultrathin 2D inorganic ancient pigment decorated 3D-printing scaffold enables photonic hyperthermia of osteosarcoma in NIR-II biowindow and concurrently augments bone regeneration. Adv Sci (Weinh). 2021;8(19):2101739. doi: 10.1002/advs.202101739
- Yin J, Pan S, Guo X, et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nanomicro Lett. 2021;13(1):30. doi: 10.1007/s40820-020-00547-6
- Dang W, Yi K, Ju E, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces. 2021;13(16):18488-18499. doi: 10.1021/acsami.1c00553
- Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13(40):47327-47340. doi: 10.1021/acsami.1c10898
- Dang W, Jin Y, Yi K, et al. Hemin particles-functionalized 3D printed scaffolds for combined photothermal and chemotherapy of osteosarcoma. Chem Eng J. 2021;422:129919. doi: 10.1016/j.cej.2021.129919
- Huang B, Li G, Cao L, et al. Nanoengineered 3D-printing scaffolds prepared by metal-coordination self-assembly for hyperthermia-catalytic osteosarcoma therapy and bone regeneration. J Colloid Interface Sci. 2024;672:724-735. doi: 10.1016/j.jcis.2024.06.055
- Xu C, Xia Y, Zhuang P, et al. FePSe(3) -nanosheets-integrated cryogenic-3D-printed multifunctional calcium phosphate scaffolds for synergistic therapy of osteosarcoma. Small. 2023;19(38):e2303636. doi: 10.1002/smll.202303636
- Liang Y, Wang C, Yu S, et al. IOX1 epigenetically enhanced photothermal therapy of 3D-printing silicene scaffolds against osteosarcoma with favorable bone regeneration. Mater Today Bio. 2023;23:100887. doi: 10.1016/j.mtbio.2023.100887
- Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater. 2021;33(31):2100150. doi: 10.1002/adma.202100150
- Haixia X, Peng Z, Jiezhao L, et al. 3D-printed magnesium peroxide-incorporated scaffolds with sustained oxygen release and enhanced photothermal performance for osteosarcoma multimodal treatments. ACS Appl Mater Interfaces. 2024;16(8):9626-9639. doi: 10.1021/acsami.3c10807
- Zhuang H, Qin C, Zhang M, et al. 3D-printed bioceramic scaffolds with Fe(3)S(4)microflowers for magnetothermal and chemodynamic therapy of bone tumor and regeneration of bone defects. Biofabrication. 2021;13(4):045010. doi: 10.1088/1758-5090/ac19c7
- Wang Z, Liu C, Chen B, Luo Y. Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds. Int J Biol Macromol. 2021;168:38-45. doi: 10.1016/j.ijbiomac.2020.12.023
- Diaz-Padilla I, Monk BJ, Mackay HJ, Oaknin A. Treatment of metastatic cervical cancer: future directions involving targeted agents. Crit Rev Oncol/Hematol. 2013;85(3):303-314. doi: 10.1016/j.critrevonc.2012.07.006
- Federico C, Sun J, Muz B, et al. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile. Int J Radiat Oncol Biol Phys. 2021;109(5):1483-1494. doi: 10.1016/j.ijrobp.2020.11.052
- Zhao C, Wang Z, Hua C, et al. Design, modeling and 3D printing of a personalized cervix tissue implant with protein release function. Biomed Mater. 2020;15(4):45005. doi: 10.1088/1748-605X/ab7b3b
- Ji J, Zhao C, Hua C, Lu L, Pang Y, Sun W. 3D printing cervical implant scaffolds incorporated with drug-loaded carboxylated chitosan microspheres for long-term anti-HPV protein delivery. ACS Biomater Sci Eng. 2024;10(3):1544-1553. doi: 10.1021/acsbiomaterials.3c01594
- Kiseleva M, Omar MM, Boisselier É, Selivanova SV, Fortin MA. A three-dimensional printable hydrogel formulation for the local delivery of therapeutic nanoparticles to cervical cancer. ACS Biomater Sci Eng. 2022;8(3):1200-1214. doi: 10.1021/acsbiomaterials.1c01399
- Almotairy A, Alyahya M, Althobaiti A, et al. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm. 2023;635:122709. doi: 10.1016/j.ijpharm.2023.122709
- Varan C, şen M, Sandler N, Aktaş Y, Bilensoy E. Mechanical characterization and ex vivo evaluation of anticancer and antiviral drug printed bioadhesive film for the treatment of cervical cancer. Eur J Pharm Sci. 2019;130:114-123. doi: 10.1016/j.ejps.2019.01.030
- Ji G, Zhang Y, Si X, et al. Biopolymer immune implants’ sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv Mater. 2021;33(3):e2004559. doi: 10.1002/adma.202004559
- Omer AB, Fatima F, Ahmed MM, et al. Enhanced apigenin dissolution and effectiveness using glycyrrhizin spray-dried solid dispersions filled in 3D-printed tablets. Biomedicines. 2023;11(12):3341. doi: 10.3390/biomedicines11123341
- Lin C, Huang Z, Wang Q, et al. 3D printed bioinspired stents with photothermal effects for malignant colorectal obstruction. Research (Wash D C). 2022;2022:9825656. doi: 10.34133/2022/9825656
- Yang Y, Tong C, Zhong J, Huang R, Tan W, Tan Z. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats. J Biomed Mater Res B: Appl Biomater. 2018;106(5):1827-1841. doi: 10.1002/jbm.b.33992
- Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet. 2021;398(10305):1075-1090. doi: 10.1016/S0140-6736(21)00950-8
- Jaworska J, Orchel A, Kaps A, et al. Bioresorbable nonwoven patches as taxane delivery systems for prostate cancer treatment. Pharmaceutics. 2022;14(12):2835. doi: 10.3390/pharmaceutics14122835
- Demartis S, Picco CJ, Larrañeta E, et al. Evaluating the efficacy of Rose Bengal-PVA combinations within PCL/PLA implants for sustained cancer treatment. Drug Deliv Transl Res. 2024;23. doi: 10.1007/s13346-024-01711-w
- Jaworska J, Stojko M, Wlodarczyk J, et al. Docetaxel-loaded scaffolds manufactured by 3D printing as model, biodegradable prostatic stents. J Appl Polym Sci. 2022;139(23):52283. doi: 10.1002/app.52283
- Lim D, Yoon D, Kim J, et al. Development of a biocompatible radiotherapy spacer using 3D printing and microcellular foaming process for enhanced prostate cancer treatment. Int J Bioprint. 2024;10(5):477-486. doi: 10.36922/ijb.4252
- Hagan CT, Bloomquist C, Kim I, et al. Continuous liquid interface production of 3D printed drug-loaded spacers to improve prostate cancer brachytherapy treatment. Acta Biomater. 2022;148:163-170. doi: 10.1016/j.actbio.2022.06.023
- Talebian S, Shim IK, Foroughi J, et al. 3D-printed coaxial hydrogel patches with mussel-inspired elements for prolonged release of gemcitabine. Polymers (Basel). 2021;13(24):4367. doi: 10.3390/polym13244367
- Yi HG, Choi YJ, Kang KS, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231-241. doi: 10.1016/j.jconrel.2016.06.015
- Lin M, Firoozi N, Tsai C, Wallace MB, Kang Y. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater. 2019;83:119-129. doi: 10.1016/j.actbio.2018.10.035
- Dang W, Chen W, Ju E, et al. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. J Nanobiotechnology. 2022;20(1):266. doi: 10.1186/s12951-022-01454-1
- Wang Y, Qiao X, Yang X, et al. The role of a drug-loaded poly (lactic co-glycolic acid) (PLGA) copolymer stent in the treatment of ovarian cancer. Cancer Biol Med. 2020;17(1):237-250. doi: 10.20892/j.issn.2095-3941.2019.0169
- Cho H, Jammalamadaka U, Tappa K, et al. 3D printing of poloxamer 407 nanogel discs and their applications in adjuvant ovarian cancer therapy. Mol Pharm. 2019;16(2):552-560. doi: 10.1021/acs.molpharmaceut.8b00836
- Dhavalikar P, Lan Z, Kar R, Salhadar K, Gaharwar AK, Cosgriff-Hernandez E. 1.4.8 - Biomedical applications of additive manufacturing. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, eds. Biomaterials Science (Fourth edition). Academic Press; 2020:623-639. doi: 10.1016/B978-0-12-816137-1.00040-4
- Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):22001. doi: 10.1088/1758-5090/ab6034
- Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release. 2024;373:463-480. doi: 10.1016/j.jconrel.2024.07.035
- Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. doi: 10.1016/j.addr.2021.05.003
- Morrison RJ, Kashlan KN, Flanangan CL, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8(5):594-600. doi: 10.1111/cts.12315
- Yuan X, Wang Z, Che L, et al. Recent developments and challenges of 3D bioprinting technologies. IJB. 2024;10(2):1752. doi: 10.36922/ijb.1752
- Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater. 2016;2(1):16075. doi: 10.1038/natrevmats.2016.75
- Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv Mater. 2022;34(20):2109198. doi: 10.1002/adma.202109198
- Spiegel CA, Hippler M, Münchinger A, et al. 4D printing at the microscale. Adv Funct Mater. 2020;30(26):1907615. doi: 10.1002/adfm.201907615
- Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D printing for biomedical applications. Adv Mater. 2024;36(31):e2402301. doi: 10.1002/adma.202402301
- Yang GH, Yeo M, Koo YW, Kim GH. 4D bioprinting: technological advances in biofabrication. Macromol Biosci. 2019;19(5):e1800441. doi: 10.1002/mabi.201800441
- Pfau MR, Grunlan MA. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering. J Mater Chem B. 2021;9(21):4287-4297. doi: 10.1039/d1tb00607j
- Hu X, Ge Z, Wang X, Jiao N, Tung S, Liu L. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Compos B: Eng. 2022;228:109451. doi: 10.1016/j.compositesb.2021.109451
- Mohapatra S, Kar RK, Biswal PK, Bindhani S. Approaches of 3D printing in current drug delivery. Sens Int. 2022;3:100146. doi: 10.1016/j.sintl.2021.100146
- Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm. 2018;553(1):97-108. doi: 10.1016/j.ijpharm.2018.10.030
- Trenfield SJ, Tan HX, Goyanes A, et al. Non-destructive dose verification of two drugs within 3D printed polyprintlets. Int J Pharm. 2020;577:119066. doi: 10.1016/j.ijpharm.2020.119066
- Trenfield SJ, Xian Tan H, Awad A, et al. Track-and-trace: novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Int J Pharm. 2019;567:118443. doi: 10.1016/j.ijpharm.2019.06.034