AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025060050
REVIEW

3D printing technology: Driving pioneering innovations in anti-cancer drug delivery systems

Jiayi Ma1† Youlong Hai1† Kai Ni1* Xiaoyong Hu1*
Show Less
1 Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
†These authors contributed equally to this work.
Submitted: 9 February 2025 | Accepted: 5 March 2025 | Published: 10 March 2025
(This article belongs to the Special Issue Bioprinting of Nanomaterials for Biomedical Applications)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

With the rising global incidence of cancer and the limitations of traditional treatment methods, the integration of three-dimensional (3D) printing technology with drug delivery systems offers a promising solution for precision medicine. 3D printing, with its high flexibility and precise production control, allows for the accurate modulation of drug delivery systems, particularly in terms of targeted delivery and controlled drug release rates, thus significantly enhancing therapeutic efficacy and reducing side effects. This review focuses on the applications of various drug delivery forms, such as microneedle patches, implants, and tablets, in the treatment of cancers including breast cancer, melanoma, osteosarcoma, cervical cancer, colorectal cancer, and prostate cancer. Furthermore, the review explores the synergistic effects of combination therapies, such as photothermal therapy, chemotherapy, and immunotherapy, within 3D-printed drug delivery systems, and assesses their potential in addressing tumor recurrence, drug resistance, and treatment-related side effects. Despite the substantial promise of 3D printing technology in cancer treatment, challenges remain in material selection, process optimization, and production standardization. As technology continues to evolve and multidisciplinary collaborations deepen, 3D printing is expected to play an increasingly significant role in the future of precision medicine and personalized cancer therapy.  

Graphical abstract
Keywords
3D printing
Cancer treatment
Drug delivery
Personalized medicine
Funding
This work was supported by the Fundamental Research Funds for the Shanghai Sixth People’s Hospital (grant number: ynms202405 to X.H.); the National Natural Science Foundation of China (grant number 82103260 to K.N.); the Shanghai Rising-Star Program (grant number 22QA1407100 to K.N.); the Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital (grant number ynyq202204 to K.N.); and the Fundamental Research Funds for the Shanghai Sixth People’s Hospital (grant number: X-2490 to K.N.).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
  2. Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 2022;29(5):911-920. doi: 10.1038/s41418-022-00962-9
  3. Bhuskute H, Shende P, Prabhakar B. 3D printed personalized medicine for cancer: applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech. 2021;23(1):8. doi: 10.1208/s12249-021-02153-0
  4. de Lázaro I, Mooney DJ. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat Mater. 2021;20(11):1469-1479. doi: 10.1038/s41563-021-01047-7
  5. Qi L, Li Z, Liu J, Chen X. Omics-enhanced nanomedicine for cancer therapy. Adv Mater. 2024;36(50):e2409102. doi: 10.1002/adma.202409102
  6. Jain K, Shukla R, Yadav A, Ujjwal RR, Flora S. 3D printing in development of nanomedicines. Nanomaterials (Basel). 2021;11(2):420. doi: 10.3390/nano11020420
  7. Reddy CV, Veeranna B, Venkatesh MP, Kumar P. First FDA approved 3D printed drug paved new path for increased precision in patient care. Appl Clin Res Clin Trials Regul Aff. 2020;07:93-103. doi: 10.2174/2213476X07666191226145027
  8. Miao L, Jiang T, Lin S, et al. Asymmetric forward osmosis membranes from p-aramid nanofibers. Mater Des. 2020;191:108591. doi: 10.1016/j.matdes.2020.108591
  9. Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D printing technology as a promising tool to design nanomedicine-based solid dosage forms: contemporary research and future scope. Pharmaceutics. 2023; 15(5):1448. doi: 10.3390/pharmaceutics15051448
  10. Alqahtani AA, Ahmed MM, Mohammed AA, Ahmad J. 3D printed pharmaceutical systems for personalized treatment in metabolic syndrome. Pharmaceutics. 2023;15(4):1152. doi: 10.3390/pharmaceutics15041152
  11. Trenfield SJ, Awad A, Madla CM, et al. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081-1094. doi: 10.1080/17425247.2019.1660318
  12. Prajapati AR, Dave HK, Raval HK. Effect of fiber volume fraction on the impact strength of fiber reinforced polymer composites made by FDM process. Mater Today: Proc. 2021;44:2102-2106. doi: 10.1016/j.matpr.2020.12.262
  13. Cui M, Pan H, Su Y, et al. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B. 2021;11(8):2488-2504. doi: 10.1016/j.apsb.2021.03.015
  14. Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release. 2021;329:743-757. doi: 10.1016/j.jconrel.2020.10.008
  15. Yasin H, Al-Tabakha M, Chan SY. Fabrication of polypill pharmaceutical dosage forms using fused deposition modeling 3D printing: a systematic review. Pharmaceutics. 2024;16(10):1285. doi: 10.3390/pharmaceutics16101285
  16. Zhang Z, Feng S, Almotairy A, Bandari S, Repka MA. Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques. Eur J Pharm Biopharm. 2023;183:102-111. doi: 10.1016/j.ejpb.2023.01.004
  17. Shanmugam V, Pavan MV, Babu K, Karnan B. Fused deposition modeling based polymeric materials and their performance: a review. Polym Compos. 2021;42(11):5656-5677. doi: 10.1002/pc.26275
  18. Zhang P, Xu P, Chung S, Bandari S, Repka MA. Fabrication of bilayer tablets using hot melt extrusion-based dual-nozzle fused deposition modeling 3D printing. Int J Pharm. 2022;624:121972. doi: 10.1016/j.ijpharm.2022.121972
  19. He F, Khan M. Effects of printing parameters on the fatigue behaviour of 3D-printed ABS under dynamic thermo-mechanical loads. Polymers (Basel). 2021;13(14):2362. doi: 10.3390/polym13142362
  20. Ye B, Kim KJ, Sacks EP. Global and local defect detection for 3D printout surface based on geometric shape comparison. Precis Eng. 2023;82:324-337. doi: 10.1016/j.precisioneng.2023.04.005
  21. Kantaros A. 3D printing in regenerative medicine: technologies and resources utilized. Int J Mol Sci. 2022;23(23):14621. doi: 10.3390/ijms232314621
  22. Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Control Release. 2021;332:367-389. doi: 10.1016/j.jconrel.2021.02.027
  23. Zhu J, Wu PW, Chao YH, et al. Recent advances in 3D printing for catalytic applications. Chem Eng J. 2022;433:134341. doi: 10.1016/j.cej.2021.134341
  24. Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: a 3D printing technology for diverse materials. Adv Mater. 2022;34(28):e2108855. doi: 10.1002/adma.202108855
  25. Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules. 2022;27(9):2784. doi: 10.3390/molecules27092784
  26. Zhang B, Belton P, Teoh XY, Gleadall A, Bibb R, Qi S. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. J Mater Chem B. 2023;12(1):131-144. doi: 10.1039/d3tb01868g
  27. Mancilla-De-La-Cruz J, Rodriguez-Salvador M, An J, Chua CK. Three-dimensional printing technologies for drug delivery applications: processes, materials, and effects. Int J Bioprint. 2022;8(4):622. doi: 10.18063/ijb.v8i4.622
  28. Palo M, Holländer J, Suominen J, Yliruusi J, Sandler N. 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices. 2017;14(9):685-696. doi: 10.1080/17434440.2017.1363647
  29. Vitale A, Cabral JT. Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials (Basel). 2016;9(9):760. doi: 10.3390/ma9090760
  30. Cui J, Liu F, Lu Z, et al. Repeatedly recyclable 3D printing catalyst-free dynamic thermosetting photopolymers. Adv Mater. 2023;35(20):2211417. doi: 10.1002/adma.202211417
  31. Burke G, Devine DM, Major I. Effect of stereolithography 3D printing on the properties of PEGDMA hydrogels. Polymers (Basel). 2020;12(9):2015. doi: 10.3390/polym12092015
  32. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers (Basel). 2021;13(18):3101. doi: 10.3390/polym13183101
  33. Daikuara LY, Chen XF, Yue ZL, et al. 3D bioprinting constructs to facilitate skin regeneration. Adv Funct Mater. 2022;32(3):2105080. doi: 10.1002/adfm.202105080
  34. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60-67. doi: 10.1016/j.ejps.2019.05.008
  35. Jandyal A, Chaturvedi I, Wazir I, Raina A, Ul Haq MI. 3D printing – a review of processes, materials and applications in industry 4.0. Sust Operat Comput. 2022;3:33-42. doi: 10.1016/j.susoc.2021.09.004
  36. Yap YL, Toh W, Giam A, et al. Topology optimization and 3D printing of micro-drone: numerical design with experimental testing. Int J Mech Sci. 2023;237:107771. doi: 10.1016/j.ijmecsci.2022.107771
  37. Gueche YA, Sanchez-Ballester NM, Cailleaux S, Bataille B, Soulairol I. Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing. Pharmaceutics. 2021;13(8):1212. doi: 10.3390/pharmaceutics13081212
  38. Sood AK, Ohdar RK, Mahapatra SS. Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater Des. 2009;30(10): 4243-4252. doi: 10.1016/j.matdes.2009.04.030
  39. Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release. 2022;351:444-455. doi: 10.1016/j.jconrel.2022.09.032
  40. Samaro A, Janssens P, Vanhoorne V, et al. Screening of pharmaceutical polymers for extrusion-based additive manufacturing of patient-tailored tablets. Int J Pharm. 2020;586:119591. doi: 10.1016/j.ijpharm.2020.119591
  41. Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics. 2020; 12(9):795. doi: 10.3390/pharmaceutics12090795
  42. Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci. 2018;107(4):1076-1085. doi: 10.1016/j.xphs.2017.11.019
  43. Jamal MA, Shah OR, Ghafoor U, Qureshi Y, Bhutta MR. Additive manufacturing of continuous fiber-reinforced polymer composites via fused deposition modelling: a comprehensive review. Polymers (Basel). 2024;16(12):1622. doi: 10.3390/polym16121622
  44. Wang X, Liu J. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines (Basel). 2016;7(12):206. doi: 10.3390/mi7120206
  45. Zhang W, Ye WB, Yan YF. Advances in photocrosslinkable materials for 3D bioprinting. Adv Eng Mater. 2022;24(1):2100663. doi: 10.1002/adem.202100663
  46. Ziaee M, Crane NB. Binder jetting: a review of process, materials, and methods. Addit Manuf. 2019;28:781-801. doi: 10.1016/j.addma.2019.05.031
  47. Miyanaji H, Rahman KM, Da M, Williams CB. Effect of fine powder particles on quality of binder jetting parts. Addit Manuf. 2020;36:101587. doi: 10.1016/j.addma.2020.101587
  48. Jiang Q, Zhang M, Mujumdar AS. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Crit Rev Food Sci Nutr. 2022;62(17):4669-4683. doi: 10.1080/10408398.2021.1878099
  49. Mostafaei A, Elliott AM, Barnes JE, et al. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707. doi: 10.1016/j.pmatsci.2020.100707
  50. Patel SK, Khoder M, Peak M, Alhnan MA. Controlling drug release with additive manufacturing-based solutions. Adv Drug Deliv Rev. 2021;174:369-386. doi: 10.1016/j.addr.2021.04.020
  51. Karakurt I, Aydoğdu A, çıkrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int J Pharm. 2020;584:119428. doi: 10.1016/j.ijpharm.2020.119428
  52. Xu X, Goyanes A, Trenfield SJ, et al. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Mater Sci Eng C. 2021;120:111773. doi: 10.1016/j.msec.2020.111773
  53. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1):207-212. doi: 10.1016/j.ijpharm.2016.03.016
  54. Lee SJ, Zhu W, Heyburn L, et al. Development of novel 3-D printed scaffolds with core-shell nanoparticles for nerve regeneration. IEEE Trans Biomed Eng. 2017;64(2):408-418. doi: 10.1109/TBME.2016.2558493
  55. Nam J, Kim M. Advances in materials and technologies for digital light processing 3D printing. Nano Converg. 2024;11(1):45. doi: 10.1186/s40580-024-00452-3
  56. Kim J, Lee JK, Chae B, Ahn J, Lee S. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist. Nano Converg. 2022;9(1):53. doi: 10.1186/s40580-022-00345-3
  57. Chaudhary R, Fabbri P, Leoni E, Mazzanti F, Akbari R, Antonini C. Additive manufacturing by digital light processing: a review. Prog Addit Manuf. 2023;8(2):331-351.doi: 10.1007/s40964-022-00336-0
  58. Vrana NE, Gupta S, Mitra K, et al. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank. 2022;23(3):417-440. doi: 10.1007/s10561-021-09975-z
  59. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594
  60. Jabbarzare S, Abdellahi M, Ghayour H, Arpanahi A, Khandan A. A study on the synthesis and magnetic properties of the cerium ferrite ceramic. J Alloys Compd. 2017;694:800-807. doi: 10.1016/j.jallcom.2016.10.064
  61. Kazemi A, Abdellahi M, Khajeh-Sharafabadi A, Khandan A, Ozada N. Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. Mater Sci Eng C. 2017;71:604-610. doi: 10.1016/j.msec.2016.10.044
  62. Song Y, Ghafari Y, Asefnejad A, Toghraie D. An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: processes, materials, and applications. Opt Laser Technol. 2024;171:110459. doi: 10.1016/j.optlastec.2023.110459
  63. Wang N, Shi H, Yang S. 3D printed oral solid dosage form: modified release and improved solubility. J Control Release. 2022;351:407-431. doi: 10.1016/j.jconrel.2022.09.023
  64. Seoane-Viaño I, Ong JJ, Luzardo-álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110-119. doi: 10.1016/j.ajps.2020.06.003
  65. Jing H, Shi J, Guoab P, Guan S, Fu H, Cui W. Hydrogels based on physically cross-linked network with high mechanical property and recasting ability. Colloids Surf A: Physicochem Eng Aspects. 2021;611:125805. doi: 10.1016/j.colsurfa.2020.125805
  66. Zhu J, Zhang X, Qin Z, et al. Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol. Colloids Surf A: Physicochem Eng Aspects. 2021;611:125889. doi: 10.1016/j.colsurfa.2020.125889
  67. Joo SH, Kim J, Hong J, Fakhraei LS, Kim YH. Dissolvable self-locking microneedle patches integrated with immunomodulators for cancer immunotherapy. Adv Mater. 2023;35(10):e2209966. doi: 10.1002/adma.202209966
  68. Fang Y, Liu Z, Wang H, et al. Implantable sandwich-like scaffold/fiber composite spatiotemporally releasing combretastatin A4 and doxorubicin for efficient inhibition of postoperative tumor recurrence. ACS Appl Mater Interfaces. 2022;14(24):27525-27537. doi: 10.1021/acsami.2c02103
  69. Bunea AI, Taboryski R. Recent advances in microswimmers for biomedical applications. Micromachines (Basel). 2020;11(12):1048. doi: 10.3390/mi11121048
  70. Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies. Pharmaceutics. 2023;15(7):1877. doi: 10.3390/pharmaceutics15071877
  71. Lim SH, Kathuria H, Tan J, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139-168. doi: 10.1016/j.addr.2018.05.006
  72. Chakka L, Chede S. 3D printing of pharmaceuticals for disease treatment. Front Med Technol. 2022;4:1040052. doi: 10.3389/fmedt.2022.1040052
  73. Thanawuth K, Limmatvapirat S, Rojviriya C, Sriamornsak P. Controlled release of felodipine from 3D-printed tablets with constant surface area: influence of surface geometry. Pharmaceutics. 2023;15(2):467. doi: 10.3390/pharmaceutics15020467
  74. Mandati P, Dumpa N, Alzahrani A, et al. Hot-melt extrusion-based fused deposition modeling 3D printing of atorvastatin calcium tablets: impact of shape and infill density on printability and performance. AAPS PharmSciTech. 2022;24(1):13. doi: 10.1208/s12249-022-02470-y
  75. Zhao X, Wei W, Niu R, Li Q, Hu C, Jiang S. 3D printed intragastric floating and sustained-release tablets with air chambers. J Pharm Sci. 2022;111(1):116-123. doi: 10.1016/j.xphs.2021.07.010
  76. Beck RCR, Chaves PS, Goyanes A, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1):268-279. doi: 10.1016/j.ijpharm.2017.05.074
  77. Brüsewitz C, Schendler A, Funke A, Wagner T, Lipp R. Novel poloxamer-based nanoemulsions to enhance the intestinal absorption of active compounds. Int J Pharm. 2007;329(1):173-181. doi: 10.1016/j.ijpharm.2006.08.022
  78. Goyanes A, Madla CM, Umerji A, et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497. doi: 10.1016/j.ijpharm.2019.118497
  79. Januskaite P, Xu X, Ranmal SR, et al. I spy with my little eye: a paediatric visual preferences survey of 3D printed tablets. Pharmaceutics. 2020;12(11):1100. doi: 10.3390/pharmaceutics12111100
  80. Chatzitaki A, Tsongas K, Tzimtzimis EK, et al. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J Drug Deliv Sci Technol. 2021;61:102292. doi: 10.1016/j.jddst.2020.102292
  81. Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023;5:100165. doi: 10.1016/j.ijpx.2023.100165
  82. Chen D, Wu Z, Xia C, Yang H, Ding W, He Q. A sustained H(2)/fluorouracil-releasing suppository for high-efficacy and low-toxicity hydrogenochemotherapy of colon cancer. Adv Healthc Mater. 2025;14(7):e2404054. doi: 10.1002/adhm.202404054
  83. Wang X, Liu S, Guan Y, Ding J, Ma C, Xie Z. Vaginal drug delivery approaches for localized management of cervical cancer. Adv Drug Deliv Rev. 2021;174:114-126. doi: 10.1016/j.addr.2021.04.009
  84. Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544(2):415-424. doi: 10.1016/j.ijpharm.2018.01.031
  85. Rzhevskiy AS, Singh TRR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release. 2018;270:184-202. doi: 10.1016/j.jconrel.2017.11.048
  86. Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019; 49(6):575-585. doi: 10.1007/s40005-018-00414-y
  87. Olowe M, Parupelli SK, Desai S. A review of 3D-printing of microneedles. Pharmaceutics. 2022;14(12):2693. doi: 10.3390/pharmaceutics14122693
  88. Ganeson K, Alias AH, Murugaiyah V, Amirul AA, Ramakrishna S, Vigneswari S. Microneedles for efficient and precise drug delivery in cancer therapy. Pharmaceutics. 2023;15(3):744. doi: 10.3390/pharmaceutics15030744
  89. Han W, Liu F, Li Y, et al. Advances in natural polymer-based transdermal drug delivery systems for tumor therapy. Small. 2023;19(35):e2301670. doi: 10.1002/smll.202301670
  90. Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng C. 2020;107:110248. doi: 10.1016/j.msec.2019.110248
  91. Lin L, Wang YQ, Cai MK, et al. Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv Funct Mater. 2022;32(21):2109187. doi: 10.1002/adfm.202109187
  92. Wu Q, Pan C, Shi PH, et al. On-demand transdermal drug delivery platform based on wearable acoustic microneedle array. Chem Eng J. 2023;477:147124. doi: 10.1016/j.cej.2023.147124
  93. Wang T, Ren X, Bai Y, Liu L, Wu G. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor. Carbohydr Polym. 2021;254:117298. doi: 10.1016/j.carbpol.2020.117298
  94. Koch F, Tröndle K, Finkenzeller G, Zengerle R, Zimmermann S, Koltay P. Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting. 2020;20:e94. doi: 10.1016/j.bprint.2020.e00094
  95. Liu C, Wang Z, Wei X, Chen B, Luo Y. 3D printed hydrogel/ PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater. 2021;131:314-325. doi: 10.1016/j.actbio.2021.07.011
  96. Hu Y, Zhou L, Wang Z, et al. Assembled embedded 3D hydrogel system for asynchronous drug delivery to inhibit postoperative recurrence of malignant glioma and promote neurological recovery. Adv Funct Mater. 2024;34(30):2401383. doi: 10.1002/adfm.202401383
  97. Kuo C, Qin H, Cheng Y, Jiang X, Shi X. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocoll. 2021;111:106262. doi: 10.1016/j.foodhyd.2020.106262
  98. Phan VHG, Murugesan M, Huong H, et al. Cellulose nanocrystals-incorporated thermosensitive hydrogel for controlled release, 3D printing, and breast cancer treatment applications. ACS Appl Mater Interfaces. 2022;14(38):42812-42826. doi: 10.1021/acsami.2c05864
  99. Cheng Y, Qin H, Acevedo NC, Jiang X, Shi X. 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. Int J Pharm. 2020;591:119983. doi: 10.1016/j.ijpharm.2020.119983
  100. Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 2021;9(1):18. doi: 10.1038/s41413-021-00139-z
  101. Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent developments of biomaterials for additive manufacturing of bone scaffolds. Adv Healthc Mater. 2020;9(23):e2000724. doi: 10.1002/adhm.202000724
  102. Wang H, Liu Z, Fang Y, et al. Spatiotemporal release of non-nucleotide STING agonist and AKT inhibitor from implantable 3D-printed scaffold for amplified cancer immunotherapy. Biomaterials. 2024;311:122645.doi: 10.1016/j.biomaterials.2024.122645
  103. Zhang Y, Xu J, Fei Z, et al. 3D printing scaffold vaccine for antitumor immunity. Adv Mater. 2021;33(48):e2106768. doi: 10.1002/adma.202106768
  104. Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-7309. doi: 10.2147/IJN.S146315
  105. Montané X, Bajek A, Roszkowski K, et al. Encapsulation for cancer therapy. Molecules. 2020;25(7):1605. doi: 10.3390/molecules25071605
  106. Rupp H, Binder WH. 3D printing of core-shell capsule composites for post-reactive and damage sensing applications. Adv Mater Technol. 2020;5(11):2000509. doi: 10.1002/admt.202000509
  107. Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/ in vivo study. Int J Biol Macromol. 2022;205:90-109. doi: 10.1016/j.ijbiomac.2022.02.080
  108. Zhou Y, Liang Q, Wu X, et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv Mater. 2023;35(23):e2210691. doi: 10.1002/adma.202210691
  109. Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-triggered drug release from 3d-printed magnetic chitosan microswimmers. ACS Nano. 2018;12(9):9617-9625. doi: 10.1021/acsnano.8b05997
  110. Park J, Kim JY, Pané S, Nelson BJ, Choi H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv Healthc Mater. 2021;10(2):e2001096. doi: 10.1002/adhm.202001096
  111. Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3): 3353-3362. doi: 10.1021/acsnano.8b09233
  112. Amir E, Ocana A, Freedman O, Clemons M, Seruga B. Dose-dense treatment for triple-negative breast cancer. Nat Rev Clin Oncol. 2010;7(2):79-80. doi: 10.1038/nrclinonc.2009.231
  113. Wu J, Liang B, Lu S, et al. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater. 2023;19(1):012002. doi: 10.1088/1748-605X/ad08e1
  114. Perez A, Baumann DP, Viola GM. Reconstructive breast implant-related infections: Prevention, diagnosis, treatment, and pearls of wisdom. J Infect. 2024;89(2):106197. doi: 10.1016/j.jinf.2024.106197
  115. Yang Y, Qiao X, Huang R, et al. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials. 2020;230:119618. doi: 10.1016/j.biomaterials.2019.119618
  116. Hao W, Zheng Z, Zhu L, et al. 3D printing‐based drug-loaded implanted prosthesis to prevent breast cancer recurrence post‐conserving surgery. Asian J Pharm Sci. 2021;16(1):86-96. doi: 10.1016/j.ajps.2020.06.002
  117. Su Y, Liu Y, Hu X, et al. Caffeic acid-grafted chitosan/sodium alginate/nanoclay-based multifunctional 3D-printed hybrid scaffolds for local drug release therapy after breast cancer surgery. Carbohydr Polym. 2024;324:121441. doi: 10.1016/j.carbpol.2023.121441
  118. Zhang Q, Wang X, Kuang G, Yu Y, Zhao Y. Photopolymerized 3D printing scaffolds with Pt(IV) prodrug initiator for postsurgical tumor treatment. Research (Wash D C). 2022;2022:9784510. doi: 10.34133/2022/9784510
  119. Zaer M, Moeinzadeh A, Abolhassani H, et al. Doxorubicin-loaded niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: a 3D printing approach. Int J Biol Macromol. 2023;253:126808. doi: 10.1016/j.ijbiomac.2023.126808
  120. Hosseini F, Mirzaei Chegeni M, Bidaki A, et al. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol. 2023;242:124697. doi: 10.1016/j.ijbiomac.2023.124697
  121. Myung N, Kang H. Local dose-dense chemotherapy for triple-negative breast cancer via minimally invasive implantation of 3D printed devices. Asian J Pharm Sci. 2024;19(1):100884. doi: 10.1016/j.ajps.2024.100884
  122. He C, Yu L, Yao H, Chen Y, Hao Y. Combinatorial photothermal 3D-printing scaffold and checkpoint blockade inhibits growth/metastasis of breast cancer to bone and accelerates osteogenesis. Adv Funct Mater. 2021;31(10):2006214. doi: 10.1002/adfm.202006214
  123. Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. Int J Pharm. 2020;580:119219. doi: 10.1016/j.ijpharm.2020.119219
  124. Schadendorf D, van Akkooi A, Berking C, et al. Melanoma. Lancet. 2018;392(10151):971-984. doi: 10.1016/S0140-6736(18)31559-9
  125. Zhang X, Wang C, Wang J, et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv Mater. 2018;30(22):e1707112. doi: 10.1002/adma.201707112
  126. Man J, Millican J, Mulvey A, Gebski V, Hui R. Response rate and survival at key timepoints with PD-1 blockade vs chemotherapy in PD-L1 subgroups: meta-analysis of metastatic NSCLC trials. JNCI Cancer Spectr. 2021;5(3):pkab12. doi: 10.1093/jncics/pkab012
  127. Arnold M, Singh D, Laversanne M, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495-503. doi: 10.1001/jamadermatol.2022.0160
  128. Lopez-Ramirez MA, Soto F, Wang C, et al. Built-in active microneedle patch with enhanced autonomous drug delivery. Adv Mater. 2020;32(1):1905740. doi: 10.1002/adma.201905740
  129. Li Y, Chen K, Pang Y, et al. Multifunctional microneedle patches via direct ink drawing of nanocomposite inks for personalized transdermal drug delivery. ACS Nano. 2023;17(20):19925-19937. doi: 10.1021/acsnano.3c04758
  130. ćurić LČ, šuligoj M, Ibic M, et al. Development of a novel NiCu nanoparticle-loaded polysaccharide-based hydrogel for 3D printing of customizable dressings with promising cytotoxicity against melanoma cells. Mater Today Bio. 2023;22:100770. doi: 10.1016/j.mtbio.2023.100770
  131. Kumar S, Chatterjee N, Misra SK. Suitably incorporated hydrophobic, redox-active drug in poly lactic acid-graphene nanoplatelet composite generates 3D-printed medicinal patch for electrostimulatory therapeutics. Langmuir. 2024;40(23):11858-11872. doi: 10.1021/acs.langmuir.3c03338
  132. Xu L, Chen Y, Zhang P, et al. 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor photothermal-chemotherapy and wound healing. Biomater Sci. 2022;10(19):5648-5661. doi: 10.1039/d2bm00903j
  133. Verron E, Schmid-Antomarchi H, Pascal-Mousselard H, Schmid-Alliana A, Scimeca J, Bouler J. Therapeutic strategies for treating osteolytic bone metastases. Drug Discov Today. 2014;19(9):1419-1426. doi: 10.1016/j.drudis.2014.04.004
  134. Xiang H, Yang Q, Gao Y, et al. Cocrystal strategy toward multifunctional 3D-printing scaffolds enables nir-activated photonic osteosarcoma hyperthermia and enhanced bone defect regeneration. Adv Funct Mater. 2020;30(25):1909938. doi: 10.1002/adfm.201909938
  135. Bläsius F, Delbrück H, Hildebrand F, Hofmann UK. Surgical treatment of bone sarcoma. Cancers (Basel). 2022;14(11):2694. doi: 10.3390/cancers14112694
  136. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today (Kidlington). 2013;16(12):496-504. doi: 10.1016/j.mattod.2013.11.017
  137. Li D, Nie W, Chen L, et al. Self-assembled hydroxyapatite-graphene scaffold for photothermal cancer therapy and bone regeneration. J Biomed Nanotechnol. 2018;14(12):2003-2017.
  138. Wang Y, Sun L, Mei Z, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des. 2020;186:108336. doi: 10.1016/j.matdes.2019.108336
  139. Huang H, Qiang L, Fan M, et al. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2024;31:18-37. doi: 10.1016/j.bioactmat.2023.07.004
  140. Li C, Li C, Ma Z, et al. Regulated macrophage immune microenvironment in 3D printed scaffolds for bone tumor postoperative treatment. Bioact Mater. 2023;19:474-485. doi: 10.1016/j.bioactmat.2022.04.028
  141. Li C, Zhang W, Nie Y, et al. Time-sequential and multi-functional 3D printed MgO2/PLGA scaffold developed as a novel biodegradable and bioactive bone substitute for challenging postsurgical osteosarcoma treatment. Adv Mater. 2024;36(34):2308875. doi: 10.1002/adma.202308875
  142. Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184-17192. doi: 10.1021/acsami.9b01218
  143. Dahiya A, Chaudhari VS, Bose S. Bone healing via carvacrol and curcumin nanoparticle on 3D printed scaffolds. Small. 2024;20(50):e2405642. doi: 10.1002/smll.202405642
  144. Kushram P, Bose S. Improving biological performance of 3D-printed scaffolds with garlic-extract nanoemulsions. ACS Appl Mater Interfaces. 2024;16(37):48955-48968. doi: 10.1021/acsami.4c05588
  145. Chaudhari VS, White B, Dahiya A, Bose S. Gingerol-zinc complex loaded 3D-printed calcium phosphate for controlled release application. Drug Deliv Transl Res. 2024;15(4):1317-1329. doi: 10.1007/s13346-024-01677-9
  146. Bose S, Sarkar N, Majumdar U. Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties. Colloids Surf B Biointerfaces. 2023;231:113563. doi: 10.1016/j.colsurfb.2023.113563
  147. Ancély FDS, Daria RQDA, Leticia FT, Maurício SB, Leticia L. Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat. 2019;5:25. doi: 10.20517/2394-4722.2018.83
  148. Li J, Zhang W, Ji W, et al. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J Mater Chem B. 2021;9(38):7909-7926. doi: 10.1039/d1tb01310f
  149. Shangsi C, Yue W, Junzhi L, Haoran S, Ming-Fung FS, Shenglong T. 3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@ DOX particles for bone tumor therapy and bone tissue regeneration. IJB. 2024;10(5):3526. doi: 10.36922/ijb.3526
  150. Abie N, ünlü C, Pinho AR, et al. Designing of a multifunctional 3D-printed biomimetic theragenerative aerogel scaffold via mussel-inspired chemistry: bioactive glass nanofiber-incorporated self-assembled silk fibroin with antibacterial, antiosteosarcoma, and osteoinductive properties. ACS Appl Mater Interfaces. 2024;16(18):22809-22827. doi: 10.1021/acsami.4c00065
  151. Lin H, Shi S, Lan X, et al. Scaffold 3D-printed from metallic nanoparticles-containing ink simultaneously eradicates tumor and repairs tumor-associated bone defects. Small Methods. 2021;5(9):2100536. doi: 10.1002/smtd.202100536
  152. He C, Dong C, Hu H, Yu L, Chen Y, Hao Y. Photosynthetic oxygen-self-generated 3D-printing microbial scaffold enhances osteosarcoma elimination and prompts bone regeneration. Nano Today. 2021;41:101297. doi: 10.1016/j.nantod.2021.101297
  153. Yang C, Ma H, Wang Z, et al. 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv Sci (Weinh). 2021;8(20):2100894. doi: 10.1002/advs.202100894
  154. He C, Dong C, Yu L, Chen Y, Hao Y. Ultrathin 2D inorganic ancient pigment decorated 3D-printing scaffold enables photonic hyperthermia of osteosarcoma in NIR-II biowindow and concurrently augments bone regeneration. Adv Sci (Weinh). 2021;8(19):2101739. doi: 10.1002/advs.202101739
  155. Yin J, Pan S, Guo X, et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nanomicro Lett. 2021;13(1):30. doi: 10.1007/s40820-020-00547-6
  156. Dang W, Yi K, Ju E, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces. 2021;13(16):18488-18499. doi: 10.1021/acsami.1c00553
  157. Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13(40):47327-47340. doi: 10.1021/acsami.1c10898
  158. Dang W, Jin Y, Yi K, et al. Hemin particles-functionalized 3D printed scaffolds for combined photothermal and chemotherapy of osteosarcoma. Chem Eng J. 2021;422:129919. doi: 10.1016/j.cej.2021.129919
  159. Huang B, Li G, Cao L, et al. Nanoengineered 3D-printing scaffolds prepared by metal-coordination self-assembly for hyperthermia-catalytic osteosarcoma therapy and bone regeneration. J Colloid Interface Sci. 2024;672:724-735. doi: 10.1016/j.jcis.2024.06.055
  160. Xu C, Xia Y, Zhuang P, et al. FePSe(3) -nanosheets-integrated cryogenic-3D-printed multifunctional calcium phosphate scaffolds for synergistic therapy of osteosarcoma. Small. 2023;19(38):e2303636. doi: 10.1002/smll.202303636
  161. Liang Y, Wang C, Yu S, et al. IOX1 epigenetically enhanced photothermal therapy of 3D-printing silicene scaffolds against osteosarcoma with favorable bone regeneration. Mater Today Bio. 2023;23:100887. doi: 10.1016/j.mtbio.2023.100887
  162. Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater. 2021;33(31):2100150. doi: 10.1002/adma.202100150
  163. Haixia X, Peng Z, Jiezhao L, et al. 3D-printed magnesium peroxide-incorporated scaffolds with sustained oxygen release and enhanced photothermal performance for osteosarcoma multimodal treatments. ACS Appl Mater Interfaces. 2024;16(8):9626-9639. doi: 10.1021/acsami.3c10807
  164. Zhuang H, Qin C, Zhang M, et al. 3D-printed bioceramic scaffolds with Fe(3)S(4)microflowers for magnetothermal and chemodynamic therapy of bone tumor and regeneration of bone defects. Biofabrication. 2021;13(4):045010. doi: 10.1088/1758-5090/ac19c7
  165. Wang Z, Liu C, Chen B, Luo Y. Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds. Int J Biol Macromol. 2021;168:38-45. doi: 10.1016/j.ijbiomac.2020.12.023
  166. Diaz-Padilla I, Monk BJ, Mackay HJ, Oaknin A. Treatment of metastatic cervical cancer: future directions involving targeted agents. Crit Rev Oncol/Hematol. 2013;85(3):303-314. doi: 10.1016/j.critrevonc.2012.07.006
  167. Federico C, Sun J, Muz B, et al. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile. Int J Radiat Oncol Biol Phys. 2021;109(5):1483-1494. doi: 10.1016/j.ijrobp.2020.11.052
  168. Zhao C, Wang Z, Hua C, et al. Design, modeling and 3D printing of a personalized cervix tissue implant with protein release function. Biomed Mater. 2020;15(4):45005. doi: 10.1088/1748-605X/ab7b3b

 

  1. Ji J, Zhao C, Hua C, Lu L, Pang Y, Sun W. 3D printing cervical implant scaffolds incorporated with drug-loaded carboxylated chitosan microspheres for long-term anti-HPV protein delivery. ACS Biomater Sci Eng. 2024;10(3):1544-1553. doi: 10.1021/acsbiomaterials.3c01594
  2. Kiseleva M, Omar MM, Boisselier É, Selivanova SV, Fortin MA. A three-dimensional printable hydrogel formulation for the local delivery of therapeutic nanoparticles to cervical cancer. ACS Biomater Sci Eng. 2022;8(3):1200-1214. doi: 10.1021/acsbiomaterials.1c01399
  3. Almotairy A, Alyahya M, Althobaiti A, et al. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm. 2023;635:122709. doi: 10.1016/j.ijpharm.2023.122709
  4. Varan C, şen M, Sandler N, Aktaş Y, Bilensoy E. Mechanical characterization and ex vivo evaluation of anticancer and antiviral drug printed bioadhesive film for the treatment of cervical cancer. Eur J Pharm Sci. 2019;130:114-123. doi: 10.1016/j.ejps.2019.01.030
  5. Ji G, Zhang Y, Si X, et al. Biopolymer immune implants’ sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv Mater. 2021;33(3):e2004559. doi: 10.1002/adma.202004559
  6. Omer AB, Fatima F, Ahmed MM, et al. Enhanced apigenin dissolution and effectiveness using glycyrrhizin spray-dried solid dispersions filled in 3D-printed tablets. Biomedicines. 2023;11(12):3341. doi: 10.3390/biomedicines11123341
  7. Lin C, Huang Z, Wang Q, et al. 3D printed bioinspired stents with photothermal effects for malignant colorectal obstruction. Research (Wash D C). 2022;2022:9825656. doi: 10.34133/2022/9825656
  8. Yang Y, Tong C, Zhong J, Huang R, Tan W, Tan Z. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats. J Biomed Mater Res B: Appl Biomater. 2018;106(5):1827-1841. doi: 10.1002/jbm.b.33992
  9. Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet. 2021;398(10305):1075-1090. doi: 10.1016/S0140-6736(21)00950-8
  10. Jaworska J, Orchel A, Kaps A, et al. Bioresorbable nonwoven patches as taxane delivery systems for prostate cancer treatment. Pharmaceutics. 2022;14(12):2835. doi: 10.3390/pharmaceutics14122835
  11. Demartis S, Picco CJ, Larrañeta E, et al. Evaluating the efficacy of Rose Bengal-PVA combinations within PCL/PLA implants for sustained cancer treatment. Drug Deliv Transl Res. 2024;23. doi: 10.1007/s13346-024-01711-w
  12. Jaworska J, Stojko M, Wlodarczyk J, et al. Docetaxel-loaded scaffolds manufactured by 3D printing as model, biodegradable prostatic stents. J Appl Polym Sci. 2022;139(23):52283. doi: 10.1002/app.52283
  13. Lim D, Yoon D, Kim J, et al. Development of a biocompatible radiotherapy spacer using 3D printing and microcellular foaming process for enhanced prostate cancer treatment. Int J Bioprint. 2024;10(5):477-486. doi: 10.36922/ijb.4252
  14. Hagan CT, Bloomquist C, Kim I, et al. Continuous liquid interface production of 3D printed drug-loaded spacers to improve prostate cancer brachytherapy treatment. Acta Biomater. 2022;148:163-170. doi: 10.1016/j.actbio.2022.06.023
  15. Talebian S, Shim IK, Foroughi J, et al. 3D-printed coaxial hydrogel patches with mussel-inspired elements for prolonged release of gemcitabine. Polymers (Basel). 2021;13(24):4367. doi: 10.3390/polym13244367
  16. Yi HG, Choi YJ, Kang KS, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231-241. doi: 10.1016/j.jconrel.2016.06.015
  17. Lin M, Firoozi N, Tsai C, Wallace MB, Kang Y. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater. 2019;83:119-129. doi: 10.1016/j.actbio.2018.10.035
  18. Dang W, Chen W, Ju E, et al. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. J Nanobiotechnology. 2022;20(1):266. doi: 10.1186/s12951-022-01454-1
  19. Wang Y, Qiao X, Yang X, et al. The role of a drug-loaded poly (lactic co-glycolic acid) (PLGA) copolymer stent in the treatment of ovarian cancer. Cancer Biol Med. 2020;17(1):237-250. doi: 10.20892/j.issn.2095-3941.2019.0169
  20. Cho H, Jammalamadaka U, Tappa K, et al. 3D printing of poloxamer 407 nanogel discs and their applications in adjuvant ovarian cancer therapy. Mol Pharm. 2019;16(2):552-560. doi: 10.1021/acs.molpharmaceut.8b00836
  21. Dhavalikar P, Lan Z, Kar R, Salhadar K, Gaharwar AK, Cosgriff-Hernandez E. 1.4.8 - Biomedical applications of additive manufacturing. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, eds. Biomaterials Science (Fourth edition). Academic Press; 2020:623-639. doi: 10.1016/B978-0-12-816137-1.00040-4
  22. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):22001. doi: 10.1088/1758-5090/ab6034
  23. Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release. 2024;373:463-480. doi: 10.1016/j.jconrel.2024.07.035
  24. Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. doi: 10.1016/j.addr.2021.05.003
  25. Morrison RJ, Kashlan KN, Flanangan CL, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8(5):594-600. doi: 10.1111/cts.12315
  26. Yuan X, Wang Z, Che L, et al. Recent developments and challenges of 3D bioprinting technologies. IJB. 2024;10(2):1752. doi: 10.36922/ijb.1752
  27. Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater. 2016;2(1):16075. doi: 10.1038/natrevmats.2016.75
  28. Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv Mater. 2022;34(20):2109198. doi: 10.1002/adma.202109198
  29. Spiegel CA, Hippler M, Münchinger A, et al. 4D printing at the microscale. Adv Funct Mater. 2020;30(26):1907615. doi: 10.1002/adfm.201907615
  30. Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D printing for biomedical applications. Adv Mater. 2024;36(31):e2402301. doi: 10.1002/adma.202402301
  31. Yang GH, Yeo M, Koo YW, Kim GH. 4D bioprinting: technological advances in biofabrication. Macromol Biosci. 2019;19(5):e1800441. doi: 10.1002/mabi.201800441
  32. Pfau MR, Grunlan MA. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering. J Mater Chem B. 2021;9(21):4287-4297. doi: 10.1039/d1tb00607j
  33. Hu X, Ge Z, Wang X, Jiao N, Tung S, Liu L. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Compos B: Eng. 2022;228:109451. doi: 10.1016/j.compositesb.2021.109451
  34. Mohapatra S, Kar RK, Biswal PK, Bindhani S. Approaches of 3D printing in current drug delivery. Sens Int. 2022;3:100146. doi: 10.1016/j.sintl.2021.100146
  35. Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm. 2018;553(1):97-108. doi: 10.1016/j.ijpharm.2018.10.030
  36. Trenfield SJ, Tan HX, Goyanes A, et al. Non-destructive dose verification of two drugs within 3D printed polyprintlets. Int J Pharm. 2020;577:119066. doi: 10.1016/j.ijpharm.2020.119066
  37. Trenfield SJ, Xian Tan H, Awad A, et al. Track-and-trace: novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Int J Pharm. 2019;567:118443. doi: 10.1016/j.ijpharm.2019.06.034

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing