AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025080060
RESEARCH ARTICLE

Development of a 3D-printed polycaprolactone/ magnesium phosphate composite scaffold functionalized with novel antimicrobial peptides for enhanced bone defect regeneration

Ling Zheng1 Miao Li1 Chen Liang1 Wei Zu2 Ying Zhao1*
Show Less
1 Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, China
2 Department of Stomatology, Xiongan Xuanwu Hospital, Xiongan, China
Submitted: 20 February 2025 | Accepted: 14 March 2025 | Published: 17 March 2025
(This article belongs to the Special Issue Emerging Bioprinting Techniques for Regenerative Medicine)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Treating large-sized infectious bone defects is currently one of the most urgent clinical challenges that need to be addressed in clinical practice. The clinical application of autologous and allogeneic bone grafts faces numerous persistent challenges that remain unresolved. Therefore, there is an urgent need to develop a bone repair scaffold capable of large-scale production, safe for in vivo use, and possessing robust bone repair and anti-infective properties. In this study, a 3D-printed bone repair scaffold was fabricated using a polycaprolactone (PCL) and magnesium phosphate (MgP) composite material. The scaffold subsequently underwent surface modification with the antimicrobial peptide Tet213 with a DOPA tail, ultimately leading to the development of a novel bone repair scaffold named DTet213@PCL/MgP. The experimental results demonstrated that the DTet213@PCL/ MgP scaffold exhibited outstanding antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), along with superior proliferation and osteogenesis capabilities for MC3T3-E1 preosteoblastic cells. In a rat radial defect model, the scaffold effectively induced new bone formation at the defect site, resulting in rapid bone regeneration. Furthermore, histopathological examination (HE staining) of major organs confirmed the excellent in vivo biocompatibility and safety profile of the DTet213@PCL/MgP scaffold. In the future, the DTet213@PCL/MgP scaffold represents a novel solution for the treatment of large-scale infected bone defects, capitalizing on its dual functionality in osteogenesis and infection control.

Graphical abstract
Keywords
3D printing
Bone repair
DOPA
Magnesium phosphate
Novel antimicrobial peptide
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Toosi S, Javid-Naderi MJ, Tamayol A, et al. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol. 2024;11:1252636. doi: 10.3389/fbioe.2023.1252636
  2. Arrington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;(329): 300-309. doi: 10.1097/00003086-199608000-00037
  3. Yuan X, Zhu W, Yang ZY, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024;36(34):e2403641. doi: 10.1002/adma.202403641
  4. Cao ZM, Qin ZD, Duns GJ, et al. Repair of infected bone defects with hydrogel materials. Polymers (Basel). 2024;16(2):281. doi: 10.3390/polym16020281
  5. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science.1999;284(5418):1318-1322. doi: 10.1126/science.284.5418.1318
  6. Yang C, Zhou L, Geng X, et al. New dual-function in situ bone repair scaffolds promote osteogenesis and reduce infection. J Biol Eng. 2022;16(1):23. doi: 10.1186/s13036-022-00302-y
  7. Wright GD. The Janus effect: the biochemical logic of antibiotic resistance. Biochemistry. 2025;64(2):301-311. doi: 10.1021/acs.biochem.4c00585
  8. Balasegaram M, Outterson K, Røttingen J-A. The time to address the antibiotic pipeline and access crisis is now. Lancet. 2024;404(10461):1385-1387. doi: 10.1016/S0140-6736(24)01940-8
  9. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel, Switzerland). 2013;6(12):1543-1575. doi: 10.3390/ph6121543
  10. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1): 27-55. doi: 10.1124/pr.55.1.2
  11. Ibrahim DM, Sani ES, Soliman AM, et al. Bioactive and elastic nanocomposites with antimicrobial properties for bone tissue regeneration. ACS Applied Bio Materi. 2020;3(5):3313-3325. doi: 10.1021/acsabm.0c00250
  12. Lei B, Gao X, Zhang R, et al. In situ magnesium phosphate/ polycaprolactone 3D-printed scaffold induce bone regeneration in rabbit maxillofacial bone defect model. Mater Design. 2022;215:110477. doi: 10.1016/j.matdes.2022.110477
  13. Zhan J, Xu H, Zhong Y, et al. Surface modification of patterned electrospun nanofibrous films via the adhesion of DOPA-bFGF and DOPA-ponericin G1 for skin wound healing. Mater Design. 2020;188:108432. doi: 10.1016/j.matdes.2019.108432
  14. Blair JMA, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. doi: 10.1038/nrmicro3380
  15. Chang DH, Lee M-R, Wang N, et al. Establishing quantifiable guidelines for antimicrobial α/β-peptide design: a partial least-squares approach to improve antimicrobial activity and reduce mammalian cell toxicity. Acs Infect Dis. 2023;9(12): 2632-2651. doi: 10.1021/acsinfecdis.3c00468
  16. Zhang H, Jin L, Wang Q. Activities of antimicrobial peptides and the reconstruction of the natural antimicrobial peptides. Chem Life. 2011;31(2):227-232. doi: 10.13488/j.smhx.2011.02.020
  17. Yang C, Yu Z, Qin D, et al. Research progress in structures, mechanisms, and modification of antimicrobial peptides. Acta Microbiol Sinica. 2024;64(7):2242-2259. doi: 10.13343/j.cnki.wsxb.20230812
  18. Wu D, Wang L. Research progress in molecular design and optimization strategies of fish-derived antimicrobial peptides and their applications. Chin J Anim Nutr. 2023;35(12):7541- 7551. doi: 10.12418/CJAN2023.684
  19. Ardhaoui M, Naciri M, Mullen T, et al. Evaluation of cell behaviour on atmospheric plasma deposited siloxane and fluorosiloxane coatings. J Adhesion Sci Technol. 2010;24(5):889-903. doi: 10.1163/016942409x12598231567943
  20. Dziadek M, Menaszek E, Zagrajczuk B, et al. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: part I. Material properties. Mater Sci Eng C Mater Biol Appl. 2015;56:9-21. doi: 10.1016/j.msec.2015.06.020
  21. Zhang Y, Xu T, Li T, et al. A three-phase strategy of bionic drug reservoir scaffold by 3D printing and layer-by-layer modification for chronic relapse management in traumatic osteomyelitis. Mater Today Bio. 2024;29:101356. doi: 10.1016/j.mtbio.2024.101356
  22. Zhang S, Xiao Z, Luo J, et al. Dose-dependent effects of Runx2 on bone development. J Bone Mineral Res. 2009;24(11): 1889-1904. doi: 10.1359/jbmr.090502
  23. Bai R, Miao MZ, Li H, et al. Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis. Arthritis Res Ther. 2022;24(1):165. doi: 10.1186/s13075-022-02848-0
  24. Xu C, Guan SQ, Hou WY, et al. Magnesium-organic framework modified biodegradable electrospun scaffolds for promoting osteogenic differentiation and bone regeneration. Eur Polym J. 2022;181:111692. doi: 10.1016/j.eurpolymj.2022.111692
  25. Liu L, Luo P, Wen PF, et al. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol (Lausanne). 2024;15:1406248. doi: 10.3389/fendo.2024.1406248
  26. Li L, Lu H, Zhao Y, et al. Functionalized cell-free scaffolds for bone defect repair inspired by self healing of bone fractures: a review and new perspectives. Mater Sci Eng C Mater Biol Appl. 2019;98:1241-1251. doi: 10.1016/j.msec.2019.01.075
  27. Golafshan N, Vorndran E, Zaharievski S, et al. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials. 2020;261:120302. doi: 10.1016/j.biomaterials.2020.120302
  28. Hung C-C, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 2019;98:246-255. doi: 10.1016/j.actbio.2019.06.001
  29. Khotib J, Gani MA, Budiatin AS, et al. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: direct involvement of hydroxyapatite as a biomaterial. Pharmaceuticals. 2021;14(7):615. doi: 10.3390/ph14070615

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing