AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8514
REVIEW

 Advanced 3D-printed microneedle patches for smart drug delivery in wound care

Fowzul Islam Fahad1 Minjun Ahn2* Byoung Soo Kim1,2,3*
Show Less
1 Department of Information Convergence Engineering, School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
2 Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
3 Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
Submitted: 13 January 2025 | Accepted: 12 February 2025 | Published: 19 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microneedle (MN) patches have emerged as a promising drug delivery technology for wound healing treatments, offering several advantages over traditional administration methods, including minimal invasiveness, precise drug delivery, and minimal pain. This review explores the basic principles of MN patch technology, three-dimensional (3D) printing-assisted fabrication techniques, and the key considerations in designing effective MN patches for regenerative medicine. Moreover, the in vivo applications of the MN patches in wound healing, tissue regeneration, and drug delivery are discussed in detail. Finally, the challenges and future research directions of the MN patch technology are discussed, highlighting its potential to revolutionize personalized medication.

Graphical abstract
Keywords
3D printing
Bioinspired drug delivery
Microneedle patch
Responsive drug delivery
Wound healing
Funding
This work was supported by a 2-year Research Grant of Pusan National University.
Conflict of interest
Byoung Soo Kim is the Guest Editor for this Special Issue, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. The authors declare they have no competing interests.
References
  1. Dąbrowska A, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body‐dependent factors. Skin Res Technol. 2018;24(2):165-174. doi: 10.1111/srt.12424
  2. Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. The dynamic anatomy and patterning of skin. Exp Dermatol. 2016;25(2):92-98. doi: 10.1111/exd.12832
  3. Menon GK, Kligman AM. Barrier functions of human skin: a holistic view. Skin Pharmacol Physiol. 2009;22(4):178-189. doi: 10.1159/000231523
  4. Danso MO, Berkers T, Mieremet A, Hausil F, Bouwstra JA. An ex vivo human skin model for studying skin barrier repair. Exp Dermatol. 2015;24(1):48-54. doi: 10.1111/exd.12579
  5. Serrano-Castañeda P, Escobar-Chávez JJ, Rodríguez-Cruz IM, Melgoza LM, Martínez-Hernández J. Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Pharm Sci. 2018;21:73-93. doi: 10.18433/jpps29610
  6. Jepps OG, Dancik Y, Anissimov YG, Roberts MS. Modeling the human skin barrier--towards a better understanding of dermal absorption. Adv Drug Deliv Rev. 2013;65(2):152-168. doi: 10.1016/j.addr.2012.04.003
  7. Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7(3):90-105. doi: 10.3390/pharmaceutics7030090
  8. Javadzadeh Y, Bahari LA. Therapeutic nanostructures for dermal and transdermal drug delivery. In: Nano-and Microscale Drug Delivery Systems. Elsevier; 2017:131-146. doi: 10.1016/B978-0-323-52727-9.00008-X
  9. Larrañeta E, Lutton RE, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng Rep. 2016;104:1-32. doi: 10.1016/j.mser.2016.03.001
  10. Kermode M. Unsafe injections in low-income country health settings: need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot Int. 2004;19(1):95-103. doi: 10.1093/heapro/dah110
  11. Drucker E, Alcabes PG, Marx PA. The injection century: massive unsterile injections and the emergence of human pathogens. Lancet. 2001;358(9297):1989-1992. doi: 10.1016/S0140-6736(01)06967-7
  12. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165-169. doi: 10.1034/j.1600-0625.2000.009003165.x
  13. Seah BC, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine. 2018;13:7749-7763. doi: 10.2147/IJN.S174759
  14. Ita K. Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target. 2016;24(5):386-391. doi: 10.3109/1061186X.2015.1090442
  15. Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv. 2010;7(12):1415-1432. doi: 10.1517/17425247.2010.538679
  16. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922-925. doi: 10.1021/js980042+
  17. Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187-207. doi: 10.3109/10717541003667798
  18. Caffarel-Salvador E, Tuan-Mahmood TM, McElnay JC, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1-2):158-169. doi: 10.1016/j.ijpharm.2015.04.076
  19. Tuan-Mahmood TM, McCrudden MT, Torrisi BM, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623-637. doi: 10.1016/j.ejps.2013.05.005
  20. Le ZC, Yu JM, Quek YJ, et al. Design principles of microneedles for drug delivery and sampling applications. Materials Today. 2023;63:137-169. doi: 10.1016/j.mattod.2022.10.025
  21. Queiroz MLB, Shanmugam S, Santos LNS, et al. Microneedles as an alternative technology for transdermal drug delivery systems: a patent review. Exp Opin Therap Pat. 2020;30(6):433-452. doi: 10.1080/13543776.2020.1742324
  22. Moffatt K, Wang Y, Raj Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14-21. doi: 10.1016/j.coph.2017.07.007
  23. Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116-1127. doi: 10.1016/j.biopha.2017.07.019
  24. Yang D, Chen M, Sun Y, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119-133. doi: 10.1016/j.actbio.2020.12.004
  25. Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio. 2023;19:100579. doi: 10.1016/j.mtbio.2023.100579
  26. Peng T, Chen Y, Hu W, et al. Microneedles for enhanced topical treatment of skin disorders: applications, challenges, and prospects. Engineering. 2023;30:170-189. doi: 10.1016/j.eng.2023.05.009
  27. Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-1258. doi: 10.1016/j.biopha.2018.10.078
  28. Donnelly RF. How can microneedles overcome challenges facing transdermal drug delivery? Ther Deliv. 2017;8(9):725-728. doi: 10.4155/tde-2017-0028
  29. Gowda BJ, Ahmed MG, Sanjana A. Can microneedles replace hypodermic needles? Painless drug delivery. Resonance. 2022;27(1):63-85. doi: 10.1007/s12045-022-1294-5
  30. Gomaa Y, Prausnitz MR. Delivery of drugs, vaccines, and cosmeceuticals to skin using microneedle patches. Percutaneous Absorption. CRC Press; 2021:585-608.
  31. Avcil M, Celik A. Microneedles in drug delivery: progress and challenges. Micromachines (Basel). 2021;12(11):1321. doi: 10.3390/mi12111321
  32. Al-Nimry SS, Daghmash RM. Three dimensional printing and its applications focusing on microneedles for drug delivery. Pharmaceutics. 2023;15(6):1597. doi: 10.3390/pharmaceutics15061597
  33. Hong X, Wei L, Wu F, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945-952. doi: 10.2147/DDDT.S44401
  34. Wang M, Hu L, Xu C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip. 2017;17(8):1373-1387. doi: 10.1039/c7lc00016b
  35. Hwa KY, Chang VHS, Cheng YY, et al. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery. Biomed Microdevices. 2017;19(4):84. doi: 10.1007/s10544-017-0224-x
  36. Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;494(2):593-602. doi: 10.1016/j.ijpharm.2015.01.038
  37. Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019;9(3):469-483. doi: 10.1016/j.apsb.2019.03.007
  38. Iliescu F, Dumitrescu-Ionescu D, Petrescu M, Iliescu C. A review on transdermal drug delivery using microneedles: Current research and perspective. Ann Acad Rom Sci Ser Sci Technol Inf. 2014;7:7-34.
  39. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581-587. doi: 10.1016/j.addr.2003.10.023
  40. Wu Y, Tang Z, Ma S, Du L. The promising application of hydrogel microneedles in medical application. J Pharm Pharmacol. 2023;75(8):1011-1020. doi: 10.1093/jpp/rgad058
  41. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645-655. doi: 10.1016/j.jconrel.2012.01.042
  42. van der Maaden K, Sekerdag E, Jiskoot W, Bouwstra J. Impact-insertion applicator improves reliability of skin penetration by solid microneedle arrays. AAPS J. 2014;16(4):681-684. doi: 10.1208/s12248-014-9606-7
  43. Witting M, Obst K, Pietzsch M, Friess W, Hedtrich S. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array. Int J Pharm. 2015;486(1-2):52-58. doi: 10.1016/j.ijpharm.2015.03.046
  44. Ghosh P, Pinninti RR, Hammell DC, Paudel KS, Stinchcomb AL. Development of a codrug approach for sustained drug delivery across microneedle-treated skin. J Pharm Sci. 2013;102(5):1458-1467. doi: 10.1002/jps.23469
  45. Kalluri H, Banga AK. Formation and closure of microchannels in skin following microporation. Pharm Res. 2011;28(1):82-94. doi: 10.1007/s11095-010-0122-x
  46. Wei-Ze L, Mei-Rong H, Jian-Ping Z, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1-2):122-129. doi: 10.1016/j.ijpharm.2010.01.024
  47. Kulkarni D, Damiri F, Rojekar S, et al. Recent advancements in microneedle technology for multifaceted biomedical applications. Pharmaceutics. 2022;14(5):1097. doi: 10.3390/pharmaceutics14051097
  48. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-1568. doi: 10.1016/j.addr.2012.04.005
  49. Cheung K, Das DB. Microneedles for drug delivery: trends and progress. Drug Deliv. 2016;23(7):2338-2354. doi: 10.3109/10717544.2014.986309
  50. Karelin AM, Orekhov YD, Luchinin VV, Gareev KG, Khmelnitskiy IK, Testov DO. Development of a Modular Reconfigurable Mold for Prototyping of Hollow Microneedles. IEEE; 2022:1531-1533.
  51. Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1): 104-113. doi: 10.1007/s11095-005-8498-8
  52. Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16):2815. doi: 10.3390/polym13162815
  53. Zhu DD, Zhang XP, Zhang BL, Hao YY, Guo XD. Safety assessment of microneedle technology for transdermal drug delivery: a review. Adv Therap. 2020;3(8):2000033. doi: UNSP 200003310.1002/adtp.202000033
  54. Dang N, Liu T, Prow T. Nano-and microtechnology in skin delivery of vaccines. Micro and Nanotechnology in Vaccine Development. Elsevier; 2017:327-341. doi: 10.1016/B978-0-323-39981-4.00017-8
  55. Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi- Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: a brief review of two decades. Int J Pharm. 2021;597:120301. doi: 10.1016/j.ijpharm.2021.120301
  56. Zhang PY, Dalton CL, Jullien G. Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst Technol. 2009;15(7):1073-1082. doi: 10.1007/s00542-009-0883-5
  57. Chen Y, Chen BZ, Wang QL, Jin X, Guo XD. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release. 2017;265:14-21. doi: 10.1016/j.jconrel.2017.03.383
  58. Donnelly RF, Majithiya R, Singh TR, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41-57. doi: 10.1007/s11095-010-0169-8
  59. DeMuth PC, Moon JJ, Suh H, Hammond PT, Irvine DJ. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano. 2012;6(9):8041-8051. doi: 10.1021/nn302639r
  60. Duong HTT, Kim NW, Thambi T, et al. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release. 2018;269: 225-234. doi: 10.1016/j.jconrel.2017.11.025
  61. Jeong HR, Jun H, Cha HR, Lee JM, Park JH. Safe coated microneedles with reduced puncture occurrence after administration. Micromachines (Basel). 2020;11(8):710. doi: 10.3390/mi11080710
  62. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11-23. doi: 10.1016/j.jconrel.2017.02.011
  63. Miyano T, Tobinaga Y, Kanno T, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevices. 2005;7(3):185-188. doi: 10.1007/s10544-005-3024-7
  64. Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics. 2020;12(6):569. doi: 10.3390/pharmaceutics12060569
  65. Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. Med Devices (Auckl). 2019;12:379-398. doi: 10.2147/MDER.S198220
  66. Swathi HP, Anusha Matadh V, Paul Guin J, et al. Effect of gamma sterilization on the properties of microneedle array transdermal patch system. Drug Dev Ind Pharm. 2020;46(4):606-620. doi: 10.1080/03639045.2020.1742144
  67. Donnelly RF, McCrudden MTC, Alkilani AZ, et al. Hydrogel-forming microneedles prepared from “Super Swelling’’ polymers combined with lyophilised wafers for transdermal drug delivery. PLos One. 2014;9(10):e111547. doi: 10.1371/journal.pone.0111547
  68. Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48-56. doi: 10.1016/j.ijbiomac.2017.07.178
  69. Donnelly RF, Singh TR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22(23):4879-4890. doi: 10.1002/adfm.201200864
  70. Yang G, He M, Zhang S, Wu M, Gao Y. An acryl resin-based swellable microneedles for controlled release intradermal delivery of granisetron. Drug Dev Ind Pharm. 2018;44(5):808-816. doi: 10.1080/03639045.2017.1414230
  71. Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK. Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C Mater Biol Appl. 2019;103:109717. doi: 10.1016/j.msec.2019.05.002
  72. Gowda BHJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an emerging platform for transdermal delivery of phytochemicals. Mol Pharma. 2024;21(12):6007-6033. doi: 10.1021/acs.molpharmaceut.4c00894
  73. Sargioti N, Levingstone TJ, O’Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic microneedles for transdermal drug delivery: applications, fabrication techniques and the effect of geometrical characteristics. Bioengineering (Basel). 2022;10(1):24. doi: 10.3390/bioengineering10010024
  74. Liu G, Yang J, Zhang K, et al. Recent progress on the development of bioinspired surfaces with high aspect ratio microarray structures: from fabrication to applications. J Control Release. 2024;367:441-469. doi: 10.1016/j.jconrel.2024.01.054
  75. Singh TRR, McMillan H, Mooney K, Alkilani AZ, Donnelly RF. Fabrication of microneedles. In: Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. IEEE: Springer; 2017:305-323. doi: 10.1007/978-3-662-53273-7_19
  76. Makvandi P, Kirkby M, Hutton ARJ, et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nanomicro Lett. 2021;13(1):93. doi: 10.1007/s40820-021-00611-9
  77. Li W, Li S, Fan X, Prausnitz MR. Microneedle patch designs to increase dose administered to human subjects. J Control Release. 2021;339:350-360. doi: 10.1016/j.jconrel.2021.09.036
  78. Kochhar JS, Quek T, Soon WJ, Choi J, Zou S, Kang LF. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100-4108. doi: 10.1002/jps.23724
  79. Aldawood FK, Andar A, Desai S. Investigating laser ablation process parameters for the fabrication of customized microneedle arrays for therapeutic applications. Pharmaceutics. 2024;16(7):885. doi: 10.3390/pharmaceutics16070885
  80. Xiu X, Gao G, Liu Y, Ma F. Drug delivery with dissolving microneedles: skin puncture, its influencing factors and improvement strategies. J Drug Deliv Sci Technol. 2022;76:103653. doi: 10.1016/j.jddst.2022.103653
  81. Gittard SD, Chen B, Xu H, et al. The effects of geometry on skin penetration and failure of polymer microneedles. J Adhes Sci Technol. 2013;27(3):227-243. doi: 10.1080/01694243.2012.705101
  82. Ebrahiminejad V, Prewett PD, Davies GJ, Rad ZF. Microneedle arrays for drug delivery and diagnostics: toward an optimized design, reliable insertion, and penetration. Adv Mater Interfaces. 2022;9(6):2101856. doi: 10.1002/admi.202101856
  83. Romgens AM, Bader DL, Bouwstra JA, Baaijens FPT, Oomens CWJ. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater. 2014;40:397-405. doi: 10.1016/j.jmbbm.2014.09.015
  84. Huang D, Li JS, Li TY, Wang ZY, Wang QN, Li ZH. Recent advances on fabrication of microneedles on the flexible substrate. J Micromech Microeng. 2021;31(7):073001. doi: 10.1088/1361-6439/ac0513
  85. Zhang HF, Shao Y, Gao BB, Li JS. Spidroin-based multifunctional microneedles with controlled drug release for efficient wound management. Eur Polym J. 2023;198:112429. doi: 10.1016/j.eurpolymj.2023.112429
  86. Olatunji O, Das DB, Garland MJ, Belaid L, Donnelly RF. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharm Sci. 2013;102(4):1209-1221. doi: 10.1002/jps.23439
  87. Li Y, Hu X, Dong Z, et al. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur J Pharm Sci. 2020;151:105361. doi: 10.1016/j.ejps.2020.105361
  88. Loizidou EZ, Inoue NT, Ashton-Barnett J, Barrow DA, Allender CJ. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur J Pharm Biopharm. 2016;107:1-6. doi: 10.1016/j.ejpb.2016.06.023
  89. Kim MJ, Park SC, Rizal B, et al. Fabrication of circular obelisk-type multilayer microneedles using micro-milling and spray deposition. Front Bioeng Biotechnol. 2 018;6:54. doi: 10.3389/fbioe.2018.00054
  90. Lee J, Park SH, Seo IH, Lee KJ, Ryu W. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur J Pharm Biopharm. 2015;94:11-19. doi: 10.1016/j.ejpb.2015.04.024
  91. Gomaa YA, Morrow DI, Garland MJ, Donnelly RF, El- Khordagui LK, Meidan VM. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol In Vitro. 2010;24(7):1971-1978. doi: 10.1016/j.tiv.2010.08.012
  92. Lyu S, Dong Z, Xu X, et al. Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater. 2023;27:303-326. doi: 10.1016/j.bioactmat.2023.04.003
  93. Battisti EM. Novel procedures for the production of multi-compartmental biodegradable polymeric. Microneedles. 2017.
  94. Damiri F, Kommineni N, Ebhodaghe SO, et al. Microneedle-based natural polysaccharide for drug delivery systems (DDS): progress and challenges. Pharmaceuticals (Basel). 2022;15(2):190. doi: 10.3390/ph15020190
  95. Yuan M, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology. 2022;20(1):147. doi: 10.1186/s12951-022-01354-4
  96. Ita K. Reflections on the insertion and fracture forces of microneedles. Curr Drug Deliv. 2017;14(3):357-363. doi: 10.2174/1567201813666160630125636
  97. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16(3):333-343. doi: 10.1007/s10544-014-9836-6
  98. Watanabe T, Hagino K, Sato T. Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation. Biomed Microdevices. 2014;16(4):591-597. doi: 10.1007/s10544-014-9861-5
  99. Rajput A, Patil A, Kandhare P, Pawar A. Application of microneedle arrays in cosmetics: promises, advances, and challenges. Med Novel Technol Dev. 2024;24:100325. doi: 10.1016/j.medntd.2024.100325
  100. Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem. 2012;19(19):3070-3102. doi: 10.2174/092986712800784702
  101. Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. Anal Methods. 2021;13(30):3326-3347. doi: 10.1039/d1ay00954k
  102. Dabholkar N, Gorantla S, Waghule T, et al. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int J Biol Macromol. 2021;170:602-621. doi: 10.1016/j.ijbiomac.2020.12.177
  103. McCrudden MT, Alkilani AZ, Courtenay AJ, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. 2015;5(1):3-14. doi: 10.1007/s13346-014-0211-1
  104. Health UDo, Services H. Use of International Standard ISO 10993-1, Biological Evaluation of Medical Devices–Part 1: Evaluation and Testing Within a Risk Management Process. Silver Spring, MD: US Department of Health and Human Services. Food and Drug Administration, Center for Devices and Radiological Health; 2016.
  105. Lutton REM, Moore J, Larrañeta E, Ligett S, Woolfson AD, Donnelly RF. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res. 2015;5(4):313-331. doi: 10.1007/s13346-015-0237-z
  106. Ashique S, Khatun T, Upadhyay A, et al. Micro-needles as an effective drug delivery system and associated patents in pharmaceutical field: a review. Biol Sci. 2021;1(1):53-66. doi: 10.55006/biolsciences.2021.1106
  107. Rajesh NU, Coates I, Driskill MM, et al. 3D-printed microarray patches for transdermal applications. JACS Au. 2022;2(11):2426-2445. doi: 10.1021/jacsau.2c00432
  108. Raikar AS, Kalaskar DM, Bhilegaonkar S, Somnache SN, Bodaghi M. Revolutionizing drug delivery by bioinspired 4D transdermal microneedles: advances and future horizons. Eur Polym J. 2024;210:112952. doi: 10.1016/j.eurpolymj.2024.112952
  109. Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1):24. doi: 10.1186/s40824-021-00226-6
  110. Lin YH, Lee IC, Hsu WC, Hsu CH, Chang KP, Gao SS. Rapid fabrication method of a microneedle mold with controllable needle height and width. Biomed Microdevices. 2016;18(5):85. doi: 10.1007/s10544-016-0113-8
  111. Gerstel M, Place V. Drug delivery device. US Pat. 1976;964482:89.
  112. Fu XY, Gu J, Ma M, et al. Unique benefits and challenges of 3D-printed microneedles. Int J Bioprinting. 2024;10(4):1896. doi: 10.36922/ijb.1896
  113. Gibson I, Rosen D, Stucker B, Gibson I, Rosen D, Stucker B. Vat photopolymerization processes. In: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2015:63-106. doi: 10.1007/978-3-030-56127-7
  114. Subedi S, Liu S, Wang W, Naser Shovon SA, Chen X, Ware HOT. Multi-material vat photopolymerization 3D printing: a review of mechanisms and applications. NPJ Adv Manuf. 2024;1(1):9. doi: 10.1038/s44334-024-00005-w
  115. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers (Basel). 2021;13(18):3101. doi: 10.3390/polym13183101
  116. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5(1):42. doi: 10.1038/s41378-019-0088-8
  117. Choo S, Jin S, Jung J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics. 2022;14(4):766. doi: 10.3390/pharmaceutics14040766
  118. Oliveira C, Teixeira JA, Oliveira N, Ferreira S, Botelho CM. Microneedles’ device: design, fabrication, and applications. Macromol. 2024;4(2):320-355. doi: 10.3390/macromol4020019
  119. Economidou SN, Pissinato Pere CP, Okereke M, Douroumis D. Optimisation of design and manufacturing parameters of 3d printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines (Basel). 2021;12(2):117. doi: 10.3390/mi12020117
  120. Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C Mater Biol Appl. 2019;102:743-755. doi: 10.1016/j.msec.2019.04.063
  121. Economidou SN, Uddin MJ, Marques MJ, et al. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit Manuf. 2021;38:101815. doi: 10.1016/j.addma.2020.101815
  122. Hu Y, Luo Z, Bao Y. Trends in photopolymerization 3d printing for advanced drug delivery applications. Biomacromolecules. 2025;26(1):85-117. doi: 10.1021/acs.biomac.4c01004
  123. Gong J, Qian Y, Lu K, et al. Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives. Biomed Mater. 2022;17(6):062004. doi: 10.1088/1748-605X/ac96ba
  124. Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication. 2017;9(1):015010. doi: 10.1088/1758-5090/9/1/015010
  125. Lin L, Wang Y, Cai M, et al. Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv Funct Mater. 2022;32(21):2109187. doi: 10.1002/adfm.202109187
  126. Yao W, Li D, Zhao Y, et al. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines (Basel). 2019;11(1):17. doi: 10.3390/mi11010017
  127. El-Sayed N, Vaut L, Schneider M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur J Pharm Biopharm. 2020;154:166-174. doi: 10.1016/j.ejpb.2020.07.005
  128. Yang Q, Zhong W, Xu L, et al. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm. 2021;593:120106. doi: 10.1016/j.ijpharm.2020.120106
  129. Joshi A, Kaur T, Joshi A, Gugulothu SB, Choudhury S, Singh N. Light-mediated 3D printing of micro-pyramid-decorated tailorable wound dressings with endogenous growth factor sequestration for improved wound healing. ACS Appl Mater Interfaces. 2023;15(1):327-337. doi: 10.1021/acsami.2c16418
  130. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349-1352. doi: 10.1126/science.aaa2397
  131. Nadda R, Singh PK, Das DB. Revolutionizing microneedle array fabrication using additive manufacturing technologies: potential applications and clinical translation. J Drug Deliv Sci Technol. 2024;101:106288. doi: 10.1016/j.jddst.2024.106288
  132. Geng Q, Wang D, Chen P, Chen SC. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 2019;10(1):2179. doi: 10.1038/s41467-019-10249-2
  133. Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J. Biocompatible 3D printed magnetic micro needles. Biomed Phys Eng Express. 2017;3(2):025005. doi: 10.1088/2057-1976/aa5ccb
  134. Faraji Rad Z, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3(1):17034. doi: 10.1038/micronano.2017.34
  135. Holmes R, Yang XB, Dunne A, Florea L, Wood D, Tronci G. Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties. Polymers (Basel). 2017;9(6):226. doi: 10.3390/polym9060226
  136. Nazir A, Gokcekaya O, Billah KMM, et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Design. 2023;226:111661. doi: 10.1016/j.matdes.2023.111661
  137. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem. 2020;16:100248. doi: 10.1016/j.mtchem.2020.100248
  138. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021;330:821-841. doi: 10.1016/j.jconrel.2020.10.056
  139. Tang TO, Holmes S, Dean K, Simon GP. Design and fabrication of transdermal drug delivery patch with milliprojections using material extrusion 3D printing. J Appl Polym Sci. 2020;137(23):48777. doi: 10.1002/app.48777
  140. Derakhshandeh H, Aghabaglou F, McCarthy A, et al. A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv Funct Mater. 2020;30(13):1905544. doi: 10.1002/adfm.201905544
  141. Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C Mater Biol Appl. 2020;117:111299. doi: 10.1016/j.msec.2020.111299
  142. Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: a 3D printing technology for diverse materials. Adv Mater. 2022;34(28):2108855. doi: 10.1002/adma.202108855
  143. Li Y, Chen K, Pang Y, et al. Multifunctional microneedle patches via direct ink drawing of nanocomposite Inks for personalized transdermal drug delivery. ACS Nano. 2023;17(20):19925-19937. doi: 10.1021/acsnano.3c04758
  144. Gülcan O, Günaydın K, Tamer A. The state of the art of material jetting—a critical review. Polymers. 2021;13(16):2829. doi: 10.3390/polym13162829
  145. Allen EA, O’Mahony C, Cronin M, O’Mahony T, Moore AC, Crean AM. Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int J Pharm. 2016;500(1-2):1-10. doi: 10.1016/j.ijpharm.2015.12.052
  146. Barnum L, Quint J, Derakhshandeh H, et al. 3D-printed hydrogel-filled microneedle arrays. Adv Healthc Mater. 2021;10(13):e2001922. doi: 10.1002/adhm.202001922
  147. Joshua RJN, Raj SA, Hameed Sultan MT, et al. Powder bed fusion 3D printing in precision manufacturing for biomedical applications: a comprehensive review. Materials (Basel). 2024;17(3):769. doi: 10.3390/ma17030769
  148. Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24(1):102012. doi: 10.1016/j.isci.2020.102012
  149. Gieseke M, Senz V, Vehse M, et al. Additive manufacturing of drug delivery systems. Biomed Eng-Biomedizinische Technik. 2012;57(SI-1-Track-S):398-401. doi: 10.1515/bmt-2012-4109
  150. Konda Gokuldoss P, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials (Basel). 2017;10(6):672. doi: 10.3390/ma10060672
  151. Kumar MB, Sathiya P, Varatharajulu M. Selective laser sintering. In: Jeyaprakash N, Muralimohan C, Che-Hua Y, eds. Advances in Additive Manufacturing Processes. Beijing, China: China Bentham Books; 2021:28. doi: 10.2174/97898150363361210101
  152. Krieger KJ, Liegey J, Cahill EM, Bertollo N, Lowery MM, O’Cearbhaill ED. Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv Mater Technol. 2020;5(10):2000518. doi: 10.1002/admt.202000518
  153. Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-responsive microneedles as a transdermal drug delivery system: a demand-supply strategy. Biomacromolecules. 2022;23(4):1519-1544. doi: 10.1021/acs.biomac.1c01691
  154. Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc. 2011;133(44):17560-17563. doi: 10.1021/ja207150n
  155. Zhou Q, Hou Y, Zhang L, et al. Dual-pH sensitive charge-reversal nanocomplex for tumor-targeted drug delivery with enhanced anticancer activity. Theranostics. 2017;7(7):1806-1819. doi: 10.7150/thno.18607
  156. Bercea M, Lupu A. Recent insights into glucose-responsive concanavalin a-based smart hydrogels for controlled insulin delivery. Gels. 2024;10(4):260. doi: 10.3390/gels10040260
  157. Kost J, Horbett TA, Ratner BD, Singh M. Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. J Biomed Mater Res. 1985;19(9):1117-1133. doi: 10.1002/jbm.820190920
  158. Gao NL, You H. Recent applications of point-of-care devices for glucose detection on the basis of stimuli-responsive volume phase transition of hydrogel. Biochip J. 2021;15(1):23-41. doi: 10.1007/s13206-021-00001-8
  159. GhavamiNejad A, Li J, Lu B, et al. Glucose-responsive composite microneedle patch for hypoglycemia-triggered delivery of native glucagon. Adv Mater. 2019;31(30):e1901051. doi: 10.1002/adma.201901051
  160. Gao F, Xiong Z. Reactive oxygen species responsive polymers for drug delivery systems. Front Chem. 2021;9:649048. doi: 10.3389/fchem.2021.649048
  161. Tao W, He Z. ROS-responsive drug delivery systems for biomedical applications. Asian J Pharm Sci. 2018;13(2):101-112. doi: 10.1016/j.ajps.2017.11.002
  162. Bi D, Qu F, Xiao W, et al. Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano. 2023;17(5):4346-4357. doi: 10.1021/acsnano.2c08979
  163. Huang L, Guo Z, Yang X, et al. Advancements in GelMA bioactive hydrogels: strategies for infection control and bone tissue regeneration. Theranostics. 2025;15(2):460-493. doi: 10.7150/thno.103725
  164. Zhang Y, Yu J, Wang J, et al. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation. Adv Mater. 2017;29(4):10.1002/adma.201604043. doi: 10.1002/adma.201604043
  165. Xu Q, Li X, Zhang P, Wang Y. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B. 2020;8(19):4331-4339. doi: 10.1039/d0tb00105h
  166. Deng X, Shao Z, Zhao Y. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv Sci (Weinh). 2021;8(3):2002504. doi: 10.1002/advs.202002504
  167. Zhang Y, Chai DN, Gao MY, Xu B, Jiang GH. Thermal ablation of separable microneedles for transdermal delivery of metformin on diabetic rats. Int J Polym Mater Polym Biomater. 2019;68(14):850-858. doi: 10.1080/00914037.2018.1517347
  168. Liang M, Shang L, Yu Y, et al. Ultrasound activatable microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Acta Biomater. 2023;158:811-826. doi: 10.1016/j.actbio.2022.12.041
  169. Nanglu K, de Carle D, Cullen TM, et al. The nature of science: the fundamental role of natural history in ecology, evolution, conservation, and education. Ecol Evol. 2023;13(10): e10621. doi: 10.1002/ece3.10621
  170. Makvandi P, Maleki A, Shabani M, et al. Bioinspired microneedle patches: Biomimetic designs, fabrication, and biomedical applications. Matter. 2022;5(2):390-429. doi: 10.1016/j.matt.2021.11.021
  171. Guo M, Wang Y, Gao B, He B. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano. 2021;15(9):15316-15327. doi: 10.1021/acsnano.1c06279
  172. Zhang XX, Chen GP, Sun LY, Ye FF, Shen X, Zhao YJ. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem Eng J. 2021;406:126741. doi: 10.1016/j.cej.2020.126741
  173. Gan N, Li X, Wei M, Li ZJ, Zhou S, Gao BB. Tongue prick bionic angularly adjustable microneedles for enhanced scarless wound healing. Adv Funct Mater. 2025;35:2422602. doi: 10.1002/adfm.202422602
  174. Zhang XX, Chen GP, Cai LJ, Wang YT, Sun LY, Zhao YJ. Bioinspired pagoda-like microneedle patches with strong fixation and hemostasis capabilities. Chem Eng J. 2021;414:128905. doi: 10.1016/j.cej.2021.128905
  175. Zhang X, Wang F, Yu Y, et al. Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci Bull (Beijing). 2019;64(15):1110-1117. doi: 10.1016/j.scib.2019.06.016
  176. Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med. 2019;11(503):eaaw3329. doi: 10.1126/scitranslmed.aaw3329
  177. Yang JB, Zhang HX, Hu TL, et al. Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chem Eng J. 2021;426:130561. doi: 10.1016/j.cej.2021.130561
  178. Than A, Zan P, Chen P. Transdermal theranostics. View. 2020;1(2):e21. doi: 10.1002/viw2.21
  179. Makvandi P, Jamaledin R, Chen G, et al. Stimuli-responsive transdermal microneedle patches. Mater Today (Kidlington). 2021;47:206-222. doi: 10.1016/j.mattod.2021.03.012
  180. Liu TQ, Sun YF, Jiang GH, et al. Porcupine-inspired microneedles coupled with an adhesive back patching as dressing for accelerating diabetic wound healing. Acta Biomater. 2023;160:32-44. doi: 10.1016/j.actbio.2023.01.059
  181. Lyu S, Liu Q, Yuen H-Y, et al. A differential-targeting core– shell microneedle patch with coordinated and prolonged

release of mangiferin and MSC-derived exosomes for scarless skin regeneration. Mater Horiz. 2024;11(11):2667-2684. doi: 10.1039/D3MH01910A

  1. Miao MY, Wu QL, Zhou XW, Wang LL, Chen L, Zhu JX. Interfacing hydrogel microneedle patch for diagnosis. Surf Interfaces. 2024;55:105474. doi: 10.1016/j.surfin.2024.105474
  2. Wang J, Ye Y, Yu J, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano. 2018;12(3): 2466-2473. doi: 10.1021/acsnano.7b08152
  3. Bangert C, Brunner PM, Stingl G. Immune functions of the skin. Clin Dermatol. 2011;29(4):360-376. doi: 10.1016/j.clindermatol.2011.01.006
  4. Scalise A, Bianchi A, Tartaglione C, et al. Microenvironment and Microbiology of Skin Wounds: The Role of Bacterial Biofilms and Related Factors. Elsevier; 2015:151-159.
  5. Singh S, Young A, McNaught C-E. The physiology of wound healing. Surgery (Oxford). 2017;35(9):473-477. doi: 10.1016/j.mpsur.2017.06.004
  6. Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol. 2024;15:1395479. doi: 10.3389/fimmu.2024.1395479
  7. Wang H, Yang L. Applications of injectable hemostatic materials in wound healing: principles, strategies, performance requirements, and future perspectives. Theranostics. 2023;13(13):4615-4635. doi: 10.7150/thno.86930
  8. Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022;140:23-42. doi: 10.1016/j.actbio.2021.12.006
  9. Grazul-Bilska AT, Johnson ML, Bilski JJ, et al. Wound healing: the role of growth factors. Drugs Today (Barc). 2003;39(10):787-800. doi: 10.1358/dot.2003.39.10.799472
  10. Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel). 2021;8(5):63. doi: 10.3390/bioengineering8050063
  11. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560-582. doi: 10.1089/wound.2015.0635
  12. Jiang P, Li Q, Luo Y, et al. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne). 2023;14:1221705. doi: 10.3389/fendo.2023.1221705
  13. Liu M, Jiang J, Wang Y, Liu H, Lu Y, Wang X. Smart drug delivery and responsive microneedles for wound healing. Mater Today Bio. 2024;29:101321. doi: 10.1016/j.mtbio.2024.101321
  14. Yin M, Wu J, Deng M, et al. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano. 2021;15(11):17842-17853. doi: 10.1021/acsnano.1c06036
  15. Liu Y, Liang Y, Yuhong J, et al. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des Devel Ther. 2024;18:1469-1495. doi: 10.2147/DDDT.S447496
  16. Yang X, Cao W, Gu X, et al. Simvastatin nanocrystals-based dissolving microneedles for wound healing. Int J Pharm. 2023;647:123543. doi: 10.1016/j.ijpharm.2023.123543
  17. Sun L, Fan L, Bian F, Chen G, Wang Y, Zhao Y. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research (Wash D C). 2021;2021:9838490. doi: 10.34133/2021/9838490
  18. Zhang XX, Chen GP, Liu YX, Sun LY, Sun LY, Zhao YJ. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901-5908. doi: 10.1021/acsnano.0c01059
  19. Yao S, Wang Y, Chi J, et al. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv Sci (Weinh). 2022;9(3):e2103449. doi: 10.1002/advs.202103449
  20. Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. Microneedle patches: a new vantage point for diabetic wound treatments. Biomater Sci. 2025;13(2):379-407. doi: 10.1039/d4bm01229a
  21. Mo R, Zhang H, Xu Y, et al. Transdermal drug delivery via microneedles to mediate wound microenvironment. Adv Drug Deliv Rev. 2023;195:114753. doi: 10.1016/j.addr.2023.114753
  22. Yuan R, Yang N, Huang Y, et al. Layer-by-layer microneedle-mediated rhegf transdermal delivery for enhanced wound epidermal regeneration and angiogenesis. ACS Appl Mater Interfaces. 2023;15(18):21929-21940. doi: 10.1021/acsami.3c02254
  23. Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5(2):253-259. doi: 10.1016/j.bioactmat.2020.02.004
  24. Nasseri S, Sharifi M. Therapeutic potential of antimicrobial peptides for wound healing. Int J Peptide Res Therap. 2022;28(1):38. doi: 10.1007/s10989-021-10350-5
  25. Ziesmer J. Hybrid Antibacterial Microneedle Patches Against Skin Infections. Sweden: Karolinska Institutet; 2023.
  26. Wang GY, Wang W, Chen ZS, et al. Photothermal microneedle patch loaded with antimicrobial peptide/MnO2 hybrid nanoparticles for chronic wound healing. Chem Eng J. 2024;482:148938. doi: 10.1016/j.cej.2024.148938
  27. Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater. 2024;19(5):025001. doi: 10.1088/1748-605X/ad525c
  28. Lee K, Xue Y, Lee J, et al. A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv Funct Mater. 2020;30(23):2000086. doi: 10.1002/adfm.202000086
  29. Ma W, Zhang X, Liu Y, et al. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv Sci (Weinh). 2022;9(13):e2103317. doi: 10.1002/advs.202103317
  30. Deng Y, Yang C, Zhu Y, et al. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement. Nano Lett. 2022;22(7):2702-2711. doi: 10.1021/acs.nanolett.1c04573
  31. Cao Y, Sun J, Qin S, Zhou Z, Xu Y, Liu C. Advances and challenges in immune-modulatory biomaterials for wound healing applications. Pharmaceutics. 2024;16(8):990. doi: 10.3390/pharmaceutics16080990
  32. Zhao ZQ, Liang L, Jing LY, et al. Microneedles: a novel strategy for wound management. Biomater Sci. 2023;11(13):4430-4451. doi: 10.1039/d3bm00262d

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing