Advanced 3D-printed microneedle patches for smart drug delivery in wound care

Microneedle (MN) patches have emerged as a promising drug delivery technology for wound healing treatments, offering several advantages over traditional administration methods, including minimal invasiveness, precise drug delivery, and minimal pain. This review explores the basic principles of MN patch technology, three-dimensional (3D) printing-assisted fabrication techniques, and the key considerations in designing effective MN patches for regenerative medicine. Moreover, the in vivo applications of the MN patches in wound healing, tissue regeneration, and drug delivery are discussed in detail. Finally, the challenges and future research directions of the MN patch technology are discussed, highlighting its potential to revolutionize personalized medication.

- Dąbrowska A, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body‐dependent factors. Skin Res Technol. 2018;24(2):165-174. doi: 10.1111/srt.12424
- Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. The dynamic anatomy and patterning of skin. Exp Dermatol. 2016;25(2):92-98. doi: 10.1111/exd.12832
- Menon GK, Kligman AM. Barrier functions of human skin: a holistic view. Skin Pharmacol Physiol. 2009;22(4):178-189. doi: 10.1159/000231523
- Danso MO, Berkers T, Mieremet A, Hausil F, Bouwstra JA. An ex vivo human skin model for studying skin barrier repair. Exp Dermatol. 2015;24(1):48-54. doi: 10.1111/exd.12579
- Serrano-Castañeda P, Escobar-Chávez JJ, Rodríguez-Cruz IM, Melgoza LM, Martínez-Hernández J. Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Pharm Sci. 2018;21:73-93. doi: 10.18433/jpps29610
- Jepps OG, Dancik Y, Anissimov YG, Roberts MS. Modeling the human skin barrier--towards a better understanding of dermal absorption. Adv Drug Deliv Rev. 2013;65(2):152-168. doi: 10.1016/j.addr.2012.04.003
- Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7(3):90-105. doi: 10.3390/pharmaceutics7030090
- Javadzadeh Y, Bahari LA. Therapeutic nanostructures for dermal and transdermal drug delivery. In: Nano-and Microscale Drug Delivery Systems. Elsevier; 2017:131-146. doi: 10.1016/B978-0-323-52727-9.00008-X
- Larrañeta E, Lutton RE, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng Rep. 2016;104:1-32. doi: 10.1016/j.mser.2016.03.001
- Kermode M. Unsafe injections in low-income country health settings: need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot Int. 2004;19(1):95-103. doi: 10.1093/heapro/dah110
- Drucker E, Alcabes PG, Marx PA. The injection century: massive unsterile injections and the emergence of human pathogens. Lancet. 2001;358(9297):1989-1992. doi: 10.1016/S0140-6736(01)06967-7
- Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165-169. doi: 10.1034/j.1600-0625.2000.009003165.x
- Seah BC, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine. 2018;13:7749-7763. doi: 10.2147/IJN.S174759
- Ita K. Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target. 2016;24(5):386-391. doi: 10.3109/1061186X.2015.1090442
- Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv. 2010;7(12):1415-1432. doi: 10.1517/17425247.2010.538679
- Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922-925. doi: 10.1021/js980042+
- Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187-207. doi: 10.3109/10717541003667798
- Caffarel-Salvador E, Tuan-Mahmood TM, McElnay JC, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1-2):158-169. doi: 10.1016/j.ijpharm.2015.04.076
- Tuan-Mahmood TM, McCrudden MT, Torrisi BM, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623-637. doi: 10.1016/j.ejps.2013.05.005
- Le ZC, Yu JM, Quek YJ, et al. Design principles of microneedles for drug delivery and sampling applications. Materials Today. 2023;63:137-169. doi: 10.1016/j.mattod.2022.10.025
- Queiroz MLB, Shanmugam S, Santos LNS, et al. Microneedles as an alternative technology for transdermal drug delivery systems: a patent review. Exp Opin Therap Pat. 2020;30(6):433-452. doi: 10.1080/13543776.2020.1742324
- Moffatt K, Wang Y, Raj Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14-21. doi: 10.1016/j.coph.2017.07.007
- Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116-1127. doi: 10.1016/j.biopha.2017.07.019
- Yang D, Chen M, Sun Y, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119-133. doi: 10.1016/j.actbio.2020.12.004
- Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio. 2023;19:100579. doi: 10.1016/j.mtbio.2023.100579
- Peng T, Chen Y, Hu W, et al. Microneedles for enhanced topical treatment of skin disorders: applications, challenges, and prospects. Engineering. 2023;30:170-189. doi: 10.1016/j.eng.2023.05.009
- Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-1258. doi: 10.1016/j.biopha.2018.10.078
- Donnelly RF. How can microneedles overcome challenges facing transdermal drug delivery? Ther Deliv. 2017;8(9):725-728. doi: 10.4155/tde-2017-0028
- Gowda BJ, Ahmed MG, Sanjana A. Can microneedles replace hypodermic needles? Painless drug delivery. Resonance. 2022;27(1):63-85. doi: 10.1007/s12045-022-1294-5
- Gomaa Y, Prausnitz MR. Delivery of drugs, vaccines, and cosmeceuticals to skin using microneedle patches. Percutaneous Absorption. CRC Press; 2021:585-608.
- Avcil M, Celik A. Microneedles in drug delivery: progress and challenges. Micromachines (Basel). 2021;12(11):1321. doi: 10.3390/mi12111321
- Al-Nimry SS, Daghmash RM. Three dimensional printing and its applications focusing on microneedles for drug delivery. Pharmaceutics. 2023;15(6):1597. doi: 10.3390/pharmaceutics15061597
- Hong X, Wei L, Wu F, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945-952. doi: 10.2147/DDDT.S44401
- Wang M, Hu L, Xu C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip. 2017;17(8):1373-1387. doi: 10.1039/c7lc00016b
- Hwa KY, Chang VHS, Cheng YY, et al. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery. Biomed Microdevices. 2017;19(4):84. doi: 10.1007/s10544-017-0224-x
- Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;494(2):593-602. doi: 10.1016/j.ijpharm.2015.01.038
- Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019;9(3):469-483. doi: 10.1016/j.apsb.2019.03.007
- Iliescu F, Dumitrescu-Ionescu D, Petrescu M, Iliescu C. A review on transdermal drug delivery using microneedles: Current research and perspective. Ann Acad Rom Sci Ser Sci Technol Inf. 2014;7:7-34.
- Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581-587. doi: 10.1016/j.addr.2003.10.023
- Wu Y, Tang Z, Ma S, Du L. The promising application of hydrogel microneedles in medical application. J Pharm Pharmacol. 2023;75(8):1011-1020. doi: 10.1093/jpp/rgad058
- van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645-655. doi: 10.1016/j.jconrel.2012.01.042
- van der Maaden K, Sekerdag E, Jiskoot W, Bouwstra J. Impact-insertion applicator improves reliability of skin penetration by solid microneedle arrays. AAPS J. 2014;16(4):681-684. doi: 10.1208/s12248-014-9606-7
- Witting M, Obst K, Pietzsch M, Friess W, Hedtrich S. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array. Int J Pharm. 2015;486(1-2):52-58. doi: 10.1016/j.ijpharm.2015.03.046
- Ghosh P, Pinninti RR, Hammell DC, Paudel KS, Stinchcomb AL. Development of a codrug approach for sustained drug delivery across microneedle-treated skin. J Pharm Sci. 2013;102(5):1458-1467. doi: 10.1002/jps.23469
- Kalluri H, Banga AK. Formation and closure of microchannels in skin following microporation. Pharm Res. 2011;28(1):82-94. doi: 10.1007/s11095-010-0122-x
- Wei-Ze L, Mei-Rong H, Jian-Ping Z, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1-2):122-129. doi: 10.1016/j.ijpharm.2010.01.024
- Kulkarni D, Damiri F, Rojekar S, et al. Recent advancements in microneedle technology for multifaceted biomedical applications. Pharmaceutics. 2022;14(5):1097. doi: 10.3390/pharmaceutics14051097
- Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-1568. doi: 10.1016/j.addr.2012.04.005
- Cheung K, Das DB. Microneedles for drug delivery: trends and progress. Drug Deliv. 2016;23(7):2338-2354. doi: 10.3109/10717544.2014.986309
- Karelin AM, Orekhov YD, Luchinin VV, Gareev KG, Khmelnitskiy IK, Testov DO. Development of a Modular Reconfigurable Mold for Prototyping of Hollow Microneedles. IEEE; 2022:1531-1533.
- Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1): 104-113. doi: 10.1007/s11095-005-8498-8
- Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16):2815. doi: 10.3390/polym13162815
- Zhu DD, Zhang XP, Zhang BL, Hao YY, Guo XD. Safety assessment of microneedle technology for transdermal drug delivery: a review. Adv Therap. 2020;3(8):2000033. doi: UNSP 200003310.1002/adtp.202000033
- Dang N, Liu T, Prow T. Nano-and microtechnology in skin delivery of vaccines. Micro and Nanotechnology in Vaccine Development. Elsevier; 2017:327-341. doi: 10.1016/B978-0-323-39981-4.00017-8
- Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi- Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: a brief review of two decades. Int J Pharm. 2021;597:120301. doi: 10.1016/j.ijpharm.2021.120301
- Zhang PY, Dalton CL, Jullien G. Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst Technol. 2009;15(7):1073-1082. doi: 10.1007/s00542-009-0883-5
- Chen Y, Chen BZ, Wang QL, Jin X, Guo XD. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release. 2017;265:14-21. doi: 10.1016/j.jconrel.2017.03.383
- Donnelly RF, Majithiya R, Singh TR, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41-57. doi: 10.1007/s11095-010-0169-8
- DeMuth PC, Moon JJ, Suh H, Hammond PT, Irvine DJ. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano. 2012;6(9):8041-8051. doi: 10.1021/nn302639r
- Duong HTT, Kim NW, Thambi T, et al. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release. 2018;269: 225-234. doi: 10.1016/j.jconrel.2017.11.025
- Jeong HR, Jun H, Cha HR, Lee JM, Park JH. Safe coated microneedles with reduced puncture occurrence after administration. Micromachines (Basel). 2020;11(8):710. doi: 10.3390/mi11080710
- Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11-23. doi: 10.1016/j.jconrel.2017.02.011
- Miyano T, Tobinaga Y, Kanno T, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevices. 2005;7(3):185-188. doi: 10.1007/s10544-005-3024-7
- Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics. 2020;12(6):569. doi: 10.3390/pharmaceutics12060569
- Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. Med Devices (Auckl). 2019;12:379-398. doi: 10.2147/MDER.S198220
- Swathi HP, Anusha Matadh V, Paul Guin J, et al. Effect of gamma sterilization on the properties of microneedle array transdermal patch system. Drug Dev Ind Pharm. 2020;46(4):606-620. doi: 10.1080/03639045.2020.1742144
- Donnelly RF, McCrudden MTC, Alkilani AZ, et al. Hydrogel-forming microneedles prepared from “Super Swelling’’ polymers combined with lyophilised wafers for transdermal drug delivery. PLos One. 2014;9(10):e111547. doi: 10.1371/journal.pone.0111547
- Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48-56. doi: 10.1016/j.ijbiomac.2017.07.178
- Donnelly RF, Singh TR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22(23):4879-4890. doi: 10.1002/adfm.201200864
- Yang G, He M, Zhang S, Wu M, Gao Y. An acryl resin-based swellable microneedles for controlled release intradermal delivery of granisetron. Drug Dev Ind Pharm. 2018;44(5):808-816. doi: 10.1080/03639045.2017.1414230
- Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK. Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C Mater Biol Appl. 2019;103:109717. doi: 10.1016/j.msec.2019.05.002
- Gowda BHJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an emerging platform for transdermal delivery of phytochemicals. Mol Pharma. 2024;21(12):6007-6033. doi: 10.1021/acs.molpharmaceut.4c00894
- Sargioti N, Levingstone TJ, O’Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic microneedles for transdermal drug delivery: applications, fabrication techniques and the effect of geometrical characteristics. Bioengineering (Basel). 2022;10(1):24. doi: 10.3390/bioengineering10010024
- Liu G, Yang J, Zhang K, et al. Recent progress on the development of bioinspired surfaces with high aspect ratio microarray structures: from fabrication to applications. J Control Release. 2024;367:441-469. doi: 10.1016/j.jconrel.2024.01.054
- Singh TRR, McMillan H, Mooney K, Alkilani AZ, Donnelly RF. Fabrication of microneedles. In: Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. IEEE: Springer; 2017:305-323. doi: 10.1007/978-3-662-53273-7_19
- Makvandi P, Kirkby M, Hutton ARJ, et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nanomicro Lett. 2021;13(1):93. doi: 10.1007/s40820-021-00611-9
- Li W, Li S, Fan X, Prausnitz MR. Microneedle patch designs to increase dose administered to human subjects. J Control Release. 2021;339:350-360. doi: 10.1016/j.jconrel.2021.09.036
- Kochhar JS, Quek T, Soon WJ, Choi J, Zou S, Kang LF. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100-4108. doi: 10.1002/jps.23724
- Aldawood FK, Andar A, Desai S. Investigating laser ablation process parameters for the fabrication of customized microneedle arrays for therapeutic applications. Pharmaceutics. 2024;16(7):885. doi: 10.3390/pharmaceutics16070885
- Xiu X, Gao G, Liu Y, Ma F. Drug delivery with dissolving microneedles: skin puncture, its influencing factors and improvement strategies. J Drug Deliv Sci Technol. 2022;76:103653. doi: 10.1016/j.jddst.2022.103653
- Gittard SD, Chen B, Xu H, et al. The effects of geometry on skin penetration and failure of polymer microneedles. J Adhes Sci Technol. 2013;27(3):227-243. doi: 10.1080/01694243.2012.705101
- Ebrahiminejad V, Prewett PD, Davies GJ, Rad ZF. Microneedle arrays for drug delivery and diagnostics: toward an optimized design, reliable insertion, and penetration. Adv Mater Interfaces. 2022;9(6):2101856. doi: 10.1002/admi.202101856
- Romgens AM, Bader DL, Bouwstra JA, Baaijens FPT, Oomens CWJ. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater. 2014;40:397-405. doi: 10.1016/j.jmbbm.2014.09.015
- Huang D, Li JS, Li TY, Wang ZY, Wang QN, Li ZH. Recent advances on fabrication of microneedles on the flexible substrate. J Micromech Microeng. 2021;31(7):073001. doi: 10.1088/1361-6439/ac0513
- Zhang HF, Shao Y, Gao BB, Li JS. Spidroin-based multifunctional microneedles with controlled drug release for efficient wound management. Eur Polym J. 2023;198:112429. doi: 10.1016/j.eurpolymj.2023.112429
- Olatunji O, Das DB, Garland MJ, Belaid L, Donnelly RF. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharm Sci. 2013;102(4):1209-1221. doi: 10.1002/jps.23439
- Li Y, Hu X, Dong Z, et al. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur J Pharm Sci. 2020;151:105361. doi: 10.1016/j.ejps.2020.105361
- Loizidou EZ, Inoue NT, Ashton-Barnett J, Barrow DA, Allender CJ. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur J Pharm Biopharm. 2016;107:1-6. doi: 10.1016/j.ejpb.2016.06.023
- Kim MJ, Park SC, Rizal B, et al. Fabrication of circular obelisk-type multilayer microneedles using micro-milling and spray deposition. Front Bioeng Biotechnol. 2 018;6:54. doi: 10.3389/fbioe.2018.00054
- Lee J, Park SH, Seo IH, Lee KJ, Ryu W. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur J Pharm Biopharm. 2015;94:11-19. doi: 10.1016/j.ejpb.2015.04.024
- Gomaa YA, Morrow DI, Garland MJ, Donnelly RF, El- Khordagui LK, Meidan VM. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol In Vitro. 2010;24(7):1971-1978. doi: 10.1016/j.tiv.2010.08.012
- Lyu S, Dong Z, Xu X, et al. Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater. 2023;27:303-326. doi: 10.1016/j.bioactmat.2023.04.003
- Battisti EM. Novel procedures for the production of multi-compartmental biodegradable polymeric. Microneedles. 2017.
- Damiri F, Kommineni N, Ebhodaghe SO, et al. Microneedle-based natural polysaccharide for drug delivery systems (DDS): progress and challenges. Pharmaceuticals (Basel). 2022;15(2):190. doi: 10.3390/ph15020190
- Yuan M, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology. 2022;20(1):147. doi: 10.1186/s12951-022-01354-4
- Ita K. Reflections on the insertion and fracture forces of microneedles. Curr Drug Deliv. 2017;14(3):357-363. doi: 10.2174/1567201813666160630125636
- O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16(3):333-343. doi: 10.1007/s10544-014-9836-6
- Watanabe T, Hagino K, Sato T. Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation. Biomed Microdevices. 2014;16(4):591-597. doi: 10.1007/s10544-014-9861-5
- Rajput A, Patil A, Kandhare P, Pawar A. Application of microneedle arrays in cosmetics: promises, advances, and challenges. Med Novel Technol Dev. 2024;24:100325. doi: 10.1016/j.medntd.2024.100325
- Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem. 2012;19(19):3070-3102. doi: 10.2174/092986712800784702
- Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. Anal Methods. 2021;13(30):3326-3347. doi: 10.1039/d1ay00954k
- Dabholkar N, Gorantla S, Waghule T, et al. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int J Biol Macromol. 2021;170:602-621. doi: 10.1016/j.ijbiomac.2020.12.177
- McCrudden MT, Alkilani AZ, Courtenay AJ, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. 2015;5(1):3-14. doi: 10.1007/s13346-014-0211-1
- Health UDo, Services H. Use of International Standard ISO 10993-1, Biological Evaluation of Medical Devices–Part 1: Evaluation and Testing Within a Risk Management Process. Silver Spring, MD: US Department of Health and Human Services. Food and Drug Administration, Center for Devices and Radiological Health; 2016.
- Lutton REM, Moore J, Larrañeta E, Ligett S, Woolfson AD, Donnelly RF. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res. 2015;5(4):313-331. doi: 10.1007/s13346-015-0237-z
- Ashique S, Khatun T, Upadhyay A, et al. Micro-needles as an effective drug delivery system and associated patents in pharmaceutical field: a review. Biol Sci. 2021;1(1):53-66. doi: 10.55006/biolsciences.2021.1106
- Rajesh NU, Coates I, Driskill MM, et al. 3D-printed microarray patches for transdermal applications. JACS Au. 2022;2(11):2426-2445. doi: 10.1021/jacsau.2c00432
- Raikar AS, Kalaskar DM, Bhilegaonkar S, Somnache SN, Bodaghi M. Revolutionizing drug delivery by bioinspired 4D transdermal microneedles: advances and future horizons. Eur Polym J. 2024;210:112952. doi: 10.1016/j.eurpolymj.2024.112952
- Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1):24. doi: 10.1186/s40824-021-00226-6
- Lin YH, Lee IC, Hsu WC, Hsu CH, Chang KP, Gao SS. Rapid fabrication method of a microneedle mold with controllable needle height and width. Biomed Microdevices. 2016;18(5):85. doi: 10.1007/s10544-016-0113-8
- Gerstel M, Place V. Drug delivery device. US Pat. 1976;964482:89.
- Fu XY, Gu J, Ma M, et al. Unique benefits and challenges of 3D-printed microneedles. Int J Bioprinting. 2024;10(4):1896. doi: 10.36922/ijb.1896
- Gibson I, Rosen D, Stucker B, Gibson I, Rosen D, Stucker B. Vat photopolymerization processes. In: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2015:63-106. doi: 10.1007/978-3-030-56127-7
- Subedi S, Liu S, Wang W, Naser Shovon SA, Chen X, Ware HOT. Multi-material vat photopolymerization 3D printing: a review of mechanisms and applications. NPJ Adv Manuf. 2024;1(1):9. doi: 10.1038/s44334-024-00005-w
- Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers (Basel). 2021;13(18):3101. doi: 10.3390/polym13183101
- Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5(1):42. doi: 10.1038/s41378-019-0088-8
- Choo S, Jin S, Jung J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics. 2022;14(4):766. doi: 10.3390/pharmaceutics14040766
- Oliveira C, Teixeira JA, Oliveira N, Ferreira S, Botelho CM. Microneedles’ device: design, fabrication, and applications. Macromol. 2024;4(2):320-355. doi: 10.3390/macromol4020019
- Economidou SN, Pissinato Pere CP, Okereke M, Douroumis D. Optimisation of design and manufacturing parameters of 3d printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines (Basel). 2021;12(2):117. doi: 10.3390/mi12020117
- Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C Mater Biol Appl. 2019;102:743-755. doi: 10.1016/j.msec.2019.04.063
- Economidou SN, Uddin MJ, Marques MJ, et al. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit Manuf. 2021;38:101815. doi: 10.1016/j.addma.2020.101815
- Hu Y, Luo Z, Bao Y. Trends in photopolymerization 3d printing for advanced drug delivery applications. Biomacromolecules. 2025;26(1):85-117. doi: 10.1021/acs.biomac.4c01004
- Gong J, Qian Y, Lu K, et al. Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives. Biomed Mater. 2022;17(6):062004. doi: 10.1088/1748-605X/ac96ba
- Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication. 2017;9(1):015010. doi: 10.1088/1758-5090/9/1/015010
- Lin L, Wang Y, Cai M, et al. Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv Funct Mater. 2022;32(21):2109187. doi: 10.1002/adfm.202109187
- Yao W, Li D, Zhao Y, et al. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines (Basel). 2019;11(1):17. doi: 10.3390/mi11010017
- El-Sayed N, Vaut L, Schneider M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur J Pharm Biopharm. 2020;154:166-174. doi: 10.1016/j.ejpb.2020.07.005
- Yang Q, Zhong W, Xu L, et al. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm. 2021;593:120106. doi: 10.1016/j.ijpharm.2020.120106
- Joshi A, Kaur T, Joshi A, Gugulothu SB, Choudhury S, Singh N. Light-mediated 3D printing of micro-pyramid-decorated tailorable wound dressings with endogenous growth factor sequestration for improved wound healing. ACS Appl Mater Interfaces. 2023;15(1):327-337. doi: 10.1021/acsami.2c16418
- Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349-1352. doi: 10.1126/science.aaa2397
- Nadda R, Singh PK, Das DB. Revolutionizing microneedle array fabrication using additive manufacturing technologies: potential applications and clinical translation. J Drug Deliv Sci Technol. 2024;101:106288. doi: 10.1016/j.jddst.2024.106288
- Geng Q, Wang D, Chen P, Chen SC. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 2019;10(1):2179. doi: 10.1038/s41467-019-10249-2
- Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J. Biocompatible 3D printed magnetic micro needles. Biomed Phys Eng Express. 2017;3(2):025005. doi: 10.1088/2057-1976/aa5ccb
- Faraji Rad Z, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3(1):17034. doi: 10.1038/micronano.2017.34
- Holmes R, Yang XB, Dunne A, Florea L, Wood D, Tronci G. Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties. Polymers (Basel). 2017;9(6):226. doi: 10.3390/polym9060226
- Nazir A, Gokcekaya O, Billah KMM, et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Design. 2023;226:111661. doi: 10.1016/j.matdes.2023.111661
- Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem. 2020;16:100248. doi: 10.1016/j.mtchem.2020.100248
- Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021;330:821-841. doi: 10.1016/j.jconrel.2020.10.056
- Tang TO, Holmes S, Dean K, Simon GP. Design and fabrication of transdermal drug delivery patch with milliprojections using material extrusion 3D printing. J Appl Polym Sci. 2020;137(23):48777. doi: 10.1002/app.48777
- Derakhshandeh H, Aghabaglou F, McCarthy A, et al. A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv Funct Mater. 2020;30(13):1905544. doi: 10.1002/adfm.201905544
- Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C Mater Biol Appl. 2020;117:111299. doi: 10.1016/j.msec.2020.111299
- Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: a 3D printing technology for diverse materials. Adv Mater. 2022;34(28):2108855. doi: 10.1002/adma.202108855
- Li Y, Chen K, Pang Y, et al. Multifunctional microneedle patches via direct ink drawing of nanocomposite Inks for personalized transdermal drug delivery. ACS Nano. 2023;17(20):19925-19937. doi: 10.1021/acsnano.3c04758
- Gülcan O, Günaydın K, Tamer A. The state of the art of material jetting—a critical review. Polymers. 2021;13(16):2829. doi: 10.3390/polym13162829
- Allen EA, O’Mahony C, Cronin M, O’Mahony T, Moore AC, Crean AM. Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int J Pharm. 2016;500(1-2):1-10. doi: 10.1016/j.ijpharm.2015.12.052
- Barnum L, Quint J, Derakhshandeh H, et al. 3D-printed hydrogel-filled microneedle arrays. Adv Healthc Mater. 2021;10(13):e2001922. doi: 10.1002/adhm.202001922
- Joshua RJN, Raj SA, Hameed Sultan MT, et al. Powder bed fusion 3D printing in precision manufacturing for biomedical applications: a comprehensive review. Materials (Basel). 2024;17(3):769. doi: 10.3390/ma17030769
- Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24(1):102012. doi: 10.1016/j.isci.2020.102012
- Gieseke M, Senz V, Vehse M, et al. Additive manufacturing of drug delivery systems. Biomed Eng-Biomedizinische Technik. 2012;57(SI-1-Track-S):398-401. doi: 10.1515/bmt-2012-4109
- Konda Gokuldoss P, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials (Basel). 2017;10(6):672. doi: 10.3390/ma10060672
- Kumar MB, Sathiya P, Varatharajulu M. Selective laser sintering. In: Jeyaprakash N, Muralimohan C, Che-Hua Y, eds. Advances in Additive Manufacturing Processes. Beijing, China: China Bentham Books; 2021:28. doi: 10.2174/97898150363361210101
- Krieger KJ, Liegey J, Cahill EM, Bertollo N, Lowery MM, O’Cearbhaill ED. Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv Mater Technol. 2020;5(10):2000518. doi: 10.1002/admt.202000518
- Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-responsive microneedles as a transdermal drug delivery system: a demand-supply strategy. Biomacromolecules. 2022;23(4):1519-1544. doi: 10.1021/acs.biomac.1c01691
- Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc. 2011;133(44):17560-17563. doi: 10.1021/ja207150n
- Zhou Q, Hou Y, Zhang L, et al. Dual-pH sensitive charge-reversal nanocomplex for tumor-targeted drug delivery with enhanced anticancer activity. Theranostics. 2017;7(7):1806-1819. doi: 10.7150/thno.18607
- Bercea M, Lupu A. Recent insights into glucose-responsive concanavalin a-based smart hydrogels for controlled insulin delivery. Gels. 2024;10(4):260. doi: 10.3390/gels10040260
- Kost J, Horbett TA, Ratner BD, Singh M. Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. J Biomed Mater Res. 1985;19(9):1117-1133. doi: 10.1002/jbm.820190920
- Gao NL, You H. Recent applications of point-of-care devices for glucose detection on the basis of stimuli-responsive volume phase transition of hydrogel. Biochip J. 2021;15(1):23-41. doi: 10.1007/s13206-021-00001-8
- GhavamiNejad A, Li J, Lu B, et al. Glucose-responsive composite microneedle patch for hypoglycemia-triggered delivery of native glucagon. Adv Mater. 2019;31(30):e1901051. doi: 10.1002/adma.201901051
- Gao F, Xiong Z. Reactive oxygen species responsive polymers for drug delivery systems. Front Chem. 2021;9:649048. doi: 10.3389/fchem.2021.649048
- Tao W, He Z. ROS-responsive drug delivery systems for biomedical applications. Asian J Pharm Sci. 2018;13(2):101-112. doi: 10.1016/j.ajps.2017.11.002
- Bi D, Qu F, Xiao W, et al. Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano. 2023;17(5):4346-4357. doi: 10.1021/acsnano.2c08979
- Huang L, Guo Z, Yang X, et al. Advancements in GelMA bioactive hydrogels: strategies for infection control and bone tissue regeneration. Theranostics. 2025;15(2):460-493. doi: 10.7150/thno.103725
- Zhang Y, Yu J, Wang J, et al. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation. Adv Mater. 2017;29(4):10.1002/adma.201604043. doi: 10.1002/adma.201604043
- Xu Q, Li X, Zhang P, Wang Y. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B. 2020;8(19):4331-4339. doi: 10.1039/d0tb00105h
- Deng X, Shao Z, Zhao Y. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv Sci (Weinh). 2021;8(3):2002504. doi: 10.1002/advs.202002504
- Zhang Y, Chai DN, Gao MY, Xu B, Jiang GH. Thermal ablation of separable microneedles for transdermal delivery of metformin on diabetic rats. Int J Polym Mater Polym Biomater. 2019;68(14):850-858. doi: 10.1080/00914037.2018.1517347
- Liang M, Shang L, Yu Y, et al. Ultrasound activatable microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Acta Biomater. 2023;158:811-826. doi: 10.1016/j.actbio.2022.12.041
- Nanglu K, de Carle D, Cullen TM, et al. The nature of science: the fundamental role of natural history in ecology, evolution, conservation, and education. Ecol Evol. 2023;13(10): e10621. doi: 10.1002/ece3.10621
- Makvandi P, Maleki A, Shabani M, et al. Bioinspired microneedle patches: Biomimetic designs, fabrication, and biomedical applications. Matter. 2022;5(2):390-429. doi: 10.1016/j.matt.2021.11.021
- Guo M, Wang Y, Gao B, He B. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano. 2021;15(9):15316-15327. doi: 10.1021/acsnano.1c06279
- Zhang XX, Chen GP, Sun LY, Ye FF, Shen X, Zhao YJ. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem Eng J. 2021;406:126741. doi: 10.1016/j.cej.2020.126741
- Gan N, Li X, Wei M, Li ZJ, Zhou S, Gao BB. Tongue prick bionic angularly adjustable microneedles for enhanced scarless wound healing. Adv Funct Mater. 2025;35:2422602. doi: 10.1002/adfm.202422602
- Zhang XX, Chen GP, Cai LJ, Wang YT, Sun LY, Zhao YJ. Bioinspired pagoda-like microneedle patches with strong fixation and hemostasis capabilities. Chem Eng J. 2021;414:128905. doi: 10.1016/j.cej.2021.128905
- Zhang X, Wang F, Yu Y, et al. Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci Bull (Beijing). 2019;64(15):1110-1117. doi: 10.1016/j.scib.2019.06.016
- Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med. 2019;11(503):eaaw3329. doi: 10.1126/scitranslmed.aaw3329
- Yang JB, Zhang HX, Hu TL, et al. Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chem Eng J. 2021;426:130561. doi: 10.1016/j.cej.2021.130561
- Than A, Zan P, Chen P. Transdermal theranostics. View. 2020;1(2):e21. doi: 10.1002/viw2.21
- Makvandi P, Jamaledin R, Chen G, et al. Stimuli-responsive transdermal microneedle patches. Mater Today (Kidlington). 2021;47:206-222. doi: 10.1016/j.mattod.2021.03.012
- Liu TQ, Sun YF, Jiang GH, et al. Porcupine-inspired microneedles coupled with an adhesive back patching as dressing for accelerating diabetic wound healing. Acta Biomater. 2023;160:32-44. doi: 10.1016/j.actbio.2023.01.059
- Lyu S, Liu Q, Yuen H-Y, et al. A differential-targeting core– shell microneedle patch with coordinated and prolonged
release of mangiferin and MSC-derived exosomes for scarless skin regeneration. Mater Horiz. 2024;11(11):2667-2684. doi: 10.1039/D3MH01910A
- Miao MY, Wu QL, Zhou XW, Wang LL, Chen L, Zhu JX. Interfacing hydrogel microneedle patch for diagnosis. Surf Interfaces. 2024;55:105474. doi: 10.1016/j.surfin.2024.105474
- Wang J, Ye Y, Yu J, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano. 2018;12(3): 2466-2473. doi: 10.1021/acsnano.7b08152
- Bangert C, Brunner PM, Stingl G. Immune functions of the skin. Clin Dermatol. 2011;29(4):360-376. doi: 10.1016/j.clindermatol.2011.01.006
- Scalise A, Bianchi A, Tartaglione C, et al. Microenvironment and Microbiology of Skin Wounds: The Role of Bacterial Biofilms and Related Factors. Elsevier; 2015:151-159.
- Singh S, Young A, McNaught C-E. The physiology of wound healing. Surgery (Oxford). 2017;35(9):473-477. doi: 10.1016/j.mpsur.2017.06.004
- Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol. 2024;15:1395479. doi: 10.3389/fimmu.2024.1395479
- Wang H, Yang L. Applications of injectable hemostatic materials in wound healing: principles, strategies, performance requirements, and future perspectives. Theranostics. 2023;13(13):4615-4635. doi: 10.7150/thno.86930
- Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022;140:23-42. doi: 10.1016/j.actbio.2021.12.006
- Grazul-Bilska AT, Johnson ML, Bilski JJ, et al. Wound healing: the role of growth factors. Drugs Today (Barc). 2003;39(10):787-800. doi: 10.1358/dot.2003.39.10.799472
- Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel). 2021;8(5):63. doi: 10.3390/bioengineering8050063
- Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560-582. doi: 10.1089/wound.2015.0635
- Jiang P, Li Q, Luo Y, et al. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne). 2023;14:1221705. doi: 10.3389/fendo.2023.1221705
- Liu M, Jiang J, Wang Y, Liu H, Lu Y, Wang X. Smart drug delivery and responsive microneedles for wound healing. Mater Today Bio. 2024;29:101321. doi: 10.1016/j.mtbio.2024.101321
- Yin M, Wu J, Deng M, et al. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano. 2021;15(11):17842-17853. doi: 10.1021/acsnano.1c06036
- Liu Y, Liang Y, Yuhong J, et al. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des Devel Ther. 2024;18:1469-1495. doi: 10.2147/DDDT.S447496
- Yang X, Cao W, Gu X, et al. Simvastatin nanocrystals-based dissolving microneedles for wound healing. Int J Pharm. 2023;647:123543. doi: 10.1016/j.ijpharm.2023.123543
- Sun L, Fan L, Bian F, Chen G, Wang Y, Zhao Y. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research (Wash D C). 2021;2021:9838490. doi: 10.34133/2021/9838490
- Zhang XX, Chen GP, Liu YX, Sun LY, Sun LY, Zhao YJ. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901-5908. doi: 10.1021/acsnano.0c01059
- Yao S, Wang Y, Chi J, et al. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv Sci (Weinh). 2022;9(3):e2103449. doi: 10.1002/advs.202103449
- Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. Microneedle patches: a new vantage point for diabetic wound treatments. Biomater Sci. 2025;13(2):379-407. doi: 10.1039/d4bm01229a
- Mo R, Zhang H, Xu Y, et al. Transdermal drug delivery via microneedles to mediate wound microenvironment. Adv Drug Deliv Rev. 2023;195:114753. doi: 10.1016/j.addr.2023.114753
- Yuan R, Yang N, Huang Y, et al. Layer-by-layer microneedle-mediated rhegf transdermal delivery for enhanced wound epidermal regeneration and angiogenesis. ACS Appl Mater Interfaces. 2023;15(18):21929-21940. doi: 10.1021/acsami.3c02254
- Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5(2):253-259. doi: 10.1016/j.bioactmat.2020.02.004
- Nasseri S, Sharifi M. Therapeutic potential of antimicrobial peptides for wound healing. Int J Peptide Res Therap. 2022;28(1):38. doi: 10.1007/s10989-021-10350-5
- Ziesmer J. Hybrid Antibacterial Microneedle Patches Against Skin Infections. Sweden: Karolinska Institutet; 2023.
- Wang GY, Wang W, Chen ZS, et al. Photothermal microneedle patch loaded with antimicrobial peptide/MnO2 hybrid nanoparticles for chronic wound healing. Chem Eng J. 2024;482:148938. doi: 10.1016/j.cej.2024.148938
- Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater. 2024;19(5):025001. doi: 10.1088/1748-605X/ad525c
- Lee K, Xue Y, Lee J, et al. A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv Funct Mater. 2020;30(23):2000086. doi: 10.1002/adfm.202000086
- Ma W, Zhang X, Liu Y, et al. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv Sci (Weinh). 2022;9(13):e2103317. doi: 10.1002/advs.202103317
- Deng Y, Yang C, Zhu Y, et al. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement. Nano Lett. 2022;22(7):2702-2711. doi: 10.1021/acs.nanolett.1c04573
- Cao Y, Sun J, Qin S, Zhou Z, Xu Y, Liu C. Advances and challenges in immune-modulatory biomaterials for wound healing applications. Pharmaceutics. 2024;16(8):990. doi: 10.3390/pharmaceutics16080990
- Zhao ZQ, Liang L, Jing LY, et al. Microneedles: a novel strategy for wound management. Biomater Sci. 2023;11(13):4430-4451. doi: 10.1039/d3bm00262d