Flexural and biological properties of gradient sheet-network TPMS zirconia specimens printed by vat photopolymerization

Zirconia (ZrO2) implants have shown promising outcomes in the restoration of tooth loss. However, the discrepancy between the elastic modulus of ZrO2 implants and alveolar bone can cause a stress-shielding effect at the bone–implant interface, leading to progressive damage and possibly resulting in the clinical failure of the implant treatment. Functionally graded porous implants present a promising solution to this issue. Triply periodic minimal surfaces (TPMS) have attracted growing interest due to their ability to create 3D interconnected and continuous pore structures. Dental implants, especially around the neck region, experience both compressive and tensile stresses within the surrounding bone. ZrO2, being a brittle material, is more susceptible to tensile stress than compressive stress, making flexural strength a critical property for evaluating its performance. The objective of this research is to assess the flexural properties, biological performance, and permeability of gradient sheet-network TPMS ZrO2 specimens printed by vat photopolymerization (VPP). In vitro evaluations of the biological properties revealed that the Schwarz-P structure had the most significant effects in promoting the proliferation of rat bone marrow stem cells and enhancing the expression of osteogenic-related genes. However, it also exhibited the lowest flexural strength and permeability. In contrast, the Diamond structure displayed good flexural strength, structural stability, and effectively promoted osteogenic-related gene expression, presenting a well-balanced combination of mechanical and biological properties. This suggests its potential for further development into 3D-printed functional gradient ZrO2 implants.

- Spanemberg JC, Cardoso JA, Slob E, López-López J. Quality of life related to oral health and its impact in adults. J Stomatol Oral Maxillofac Surg. 2019;120(3): 234-239. doi: 10.1016/j.jormas.2019.02.004
- Guo J, Ban JH, Li G, et al. Status of tooth loss and denture restoration in chinese adult population: findings from the 4th National Oral Health Survey. Chin J Dent Res. 2018;21(4):249-257. doi: 10.3290/j.cjdr.a41083
- Peng KH, Zhou YP, Dai YH, Wang QX, Hu YJ, Dai Q. The effect of denture restoration and dental implant restoration in the treatment of dentition defect: a systematic review and meta-analysis. Ann Palliat Med. 2021;10(3):3267-3276. doi: 10.21037/apm-21-421
- Regish KM, Sharma D, Prithviraj DR. An overview of immediate root analogue zirconia implants. J Oral Implantol. 2013;39(2):225-233. doi: 10.1563/aaid-joi-d-10-00208
- Carinci F, Pezzetti F, Volinia S, et al. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials. 2004; 25(2):215-228. doi: 10.1016/s0142-9612(03)00486-1
- Saldaña L, Méndez-Vilas A, Jiang L, et al. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials. 2007;28(30):4343-4354. doi: 10.1016/j.biomaterials.2007.06.015
- Mehrali M, Shirazi FS, Mehrali M, Metselaar HSC, Bin Kadri NA, Abu Osman NA. Dental implants from functionally graded materials. J Biomed Mater Res A. 2013;101(10):3046-3057. doi: 10.1002/jbm.a.34588
- Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000; 246(1-2):1-11. doi: 10.1016/s0043-1648(00)00488-9
- Brizuela A, Herrero-Climent M, Rios-Carrasco E, et al. Influence of the elastic modulus on the osseointegration of dental implants. Materials. 2019;12(6):980. doi: 10.3390/ma12060980
- Tan S, Gu J, Han SC, Lee DW, Kang K. Design and fabrication of a non-clogging scaffold composed of semi-permeable membrane. Mater Design. 2018;142:229-239. doi: 10.1016/j.matdes.2018.01.033
- Al-Ketan O, Abu Al-Rub RK. The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J Mater Res. 2018;33(3):343-359. doi: 10.1557/jmr.2018.1
- Schoen AH. Infinite Periodic Minimal Surfaces Without Self-Intersections vol. 5541. National Aeronautics and Space Administration; 1970.
- Shi JP, Zhu LY, Li L, Li ZA, Yang JQ, Wang XS. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci Rep. 2018;8(1):7395. doi: 10.1038/s41598-018-25750-9
- Han L, Che SA. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater. 2018;30(17):1705708. doi: 10.1002/adma.201705708
- Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE. Minimal surface scaffold designs for tissue engineering. Biomaterials. 2011;32(29):6875-6882. doi: 10.1016/j.biomaterials.2011.06.012
- Al-Ketan O, Abu Al-Rub RK, Rowshan R. Mechanical properties of a new type of architected interpenetrating phase composite materials. Adv Mater Technol. 2017;2(2):1600235. doi: 10.1002/admt.201600235
- Bonatti C, Mohr D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments. J Mech Phys Solids. 2019;122:1-26. doi: 10.1016/j.jmps.2018.08.022
- Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf. 2018;19:167-183. doi: 10.1016/j.addma.2017.12.006
- Lakhdar Y, Tuck C, Binner J, Terry A, Goodridge R. Additive manufacturing of advanced ceramic materials. Prog Mater Sci. 2021;116:100736. doi: 10.1016/j.pmatsci.2020.100736
- Ma Q, Ding Q, Zhang L, Sun Y, Xie Q. Surface characteristics and flexural strength of porous-surface designed zirconia manufactured via stereolithography. J Prosthodont. 2023;32(4):e81-e89. doi: 10.1111/jopr.13565
- Chen H, Han Q, Wang CY, Liu Y, Chen BP, Wang JC. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020;8:609. doi: 10.3389/fbioe.2020.00609
- de Aquino DA, Maskery I, Longhitano GA, Jardini AL, del Conte EG. Investigation of load direction on the compressive strength of additively manufactured triply periodic minimal surface scaffolds. Int J Adv Manuf Technol. 2020;109(3-4):771-779. doi: 10.1007/s00170-020-05706-y
- Al-Ketan O, Abu Al-Rub RK. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun (USA). 2021;3(6):e205. doi: 10.1002/mdp2.205
- ISO-Standards. ISO 6872 Dentistry—Ceramic materials. Geneve: International Organization for Standardization; 2015.
- Scherrer SS, Lohbauer U, Della Bona A, et al. ADM guidance-ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dent Mater. 2017;33(6):599-620. doi: 10.1016/j.dental.2017.03.004
- Quinn GD, Quinn GD. Fractography of Ceramics and Glasses, Vol. 960. National Institute of Standards and Technology Washington, DC; 2016. doi: 10.6028/NIST.SP.960-16e2
- Han LS. Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts. J Appl Mech. 1960;27(3):403-409. doi: 10.1115/1.3644015
- Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
- Shen MH, Qin W, Xing BH, et al. Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures. J Eur Ceram Soc. 2021;41(2):1481-1489. doi: 10.1016/j.jeurceramsoc.2020.09.062
- Zhang K, Meng Q, Zhang X, Qu Z, He R. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography. J Mater Sci Technol. 2022;118:144-157. doi: 10.1016/j.jmst.2021.11.060
- Yang C, Wu W, Fu Z, Zheng H. Preparation and thermal insulation properties of TPMS 3Y-TZP ceramics using DLP 3D printing technology. J Mater Sci. 2023;58(29):11992-12007. doi: 10.1007/s10853-023-08749-0
- Duque-Uribe C, López-Vargas V, Moreno-Florez AI, et al. Production of ceramic alumina scaffolds via ceramic stereolithography with potential application in bone tissue regeneration. Mater Today Commun. 2024;40:109535. doi: 10.1016/j.mtcomm.2024.109535
- Ejeh CJ, Barsoum I, Abu Al-Rub RK. Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams. Int J Mech Sci. 2022;223:107293. doi: 10.1016/j.ijmecsci.2022.107293
- Wu Y, Qi X, Sun L, et al. Sound transmission loss and bending properties of sandwich structures based on triply periodic minimal surfaces. Thin-Walled Struct. 2024;204:112324. doi: 10.1016/j.tws.2024.112324
- Li X, Qu P, Kong H, et al. Enhanced mechanical properties of sandwich panels via integrated 3D printing of continuous fiber face sheet and TPMS core. Thin-Walled Struct. 2024;204:112312. doi: 10.1016/j.tws.2024.112312
- Liu P, Qi W, Luo K, et al. Bending performance and failure mechanisms of composite sandwich structures with 3D printed hybrid triply periodic minimal surface cores. J Sandwich Struct Mater. 2024;26(6):990-1011. doi: 10.1177/10996362241272792
- Bouakaz I, Sadeghian Dehkord E, Meille S, et al. 3D printed triply periodic minimal surfaces calcium phosphate bone substitute: the effect of porosity design on mechanical properties. Ceram Int. 2024;50(2):2623-2636. doi: 10.1016/j.ceramint.2023.10.238
- Jiang CL, Ding MT, Zhang J, et al. 3D printed porous zirconia biomaterials based on triply periodic minimal surfaces promote osseointegration in vitro by regulating osteoimmunomodulation and osteo/angiogenesis. ACS Appl Mater Interfaces. 2024;16(12):14548-14560. doi: 10.1021/acsami.3c18799
- Wang H, Pallav P, Isgro G, Feilzer AJ. Fracture toughness comparison of three test methods with four dental porcelains. Dent Mater. 2007; 23(7):905-910. doi: 10.1016/j.dental.2006.06.033
- Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JWC. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater. 2013;2(1): 186-194. doi: 10.1002/adhm.201200159
- Gamsjäger E, Bidan CM, Fischer FD, Fratzl P, Dunlop JWC. Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater. 2013;9(3):5531-5543. doi: 10.1016/j.actbio.2012.10.020
- Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater. 2023;25:374-386. doi: 10.1016/j.bioactmat.2023.02.012
- Santos J, Pires T, Gouveia BP, Castro APG, Fernandes PR. On the permeability of TPMS scaffolds. J Mech Behav Biomed Mater. 2020;110:103932. doi: 10.1016/j.jmbbm.2020.103932
- Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J Mech Behav Biomed Mater. 2021;124:104804. doi: 10.1016/j.jmbbm.2021.104804
- Xu W, Yu AH, Jiang Y, et al. Gyroid-based functionally graded porous titanium scaffolds for dental application: design, simulation and characterizations. Mater Design. 2022;224:111300. doi: 10.1016/j.matdes.2022.111300
- Pan C, Han Y, Lu J. Design and optimization of lattice structures: a review. Appl Sci. 2020;10(18):6374. doi: 10.3390/app10186374
- Chen A, Su J, Zhou M, et al. Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses. Mater Sci Eng: R: Rep. 2025;162:100876. doi: 10.1016/j.mser.2024.100876