AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8146
RESEARCH ARTICLE

Flexural and biological properties of gradient sheet-network TPMS zirconia specimens printed by vat photopolymerization

Zidi Zhai1,2,3,4,5 Qi Zhong1,2,3,4,5 Fang Qu1,2,3,4,5 Yaqin Wu1,2,3,4,5 Xinyu Zhang1,2,3,4,5 Jian Sun1,2,3,4,5* Chun Xu1,2,3,4,5*
Show Less
1 Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
3 National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
4 Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
5 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
Submitted: 23 December 2024 | Accepted: 31 January 2025 | Published: 31 January 2025
(This article belongs to the Special Issue Bioprinting of Dental Tissues and Materials)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Zirconia (ZrO2) implants have shown promising outcomes in the restoration of tooth loss. However, the discrepancy between the elastic modulus of ZrO2 implants and alveolar bone can cause a stress-shielding effect at the bone–implant interface, leading to progressive damage and possibly resulting in the clinical failure of the implant treatment. Functionally graded porous implants present a promising solution to this issue. Triply periodic minimal surfaces (TPMS) have attracted growing interest due to their ability to create 3D interconnected and continuous pore structures. Dental implants, especially around the neck region, experience both compressive and tensile stresses within the surrounding bone. ZrO2, being a brittle material, is more susceptible to tensile stress than compressive stress, making flexural strength a critical property for evaluating its performance. The objective of this research is to assess the flexural properties, biological performance, and permeability of gradient sheet-network TPMS ZrO2 specimens printed by vat photopolymerization (VPP). In vitro evaluations of the biological properties revealed that the Schwarz-P structure had the most significant effects in promoting the proliferation of rat bone marrow stem cells and enhancing the expression of osteogenic-related genes. However, it also exhibited the lowest flexural strength and permeability. In contrast, the Diamond structure displayed good flexural strength, structural stability, and effectively promoted osteogenic-related gene expression, presenting a well-balanced combination of mechanical and biological properties. This suggests its potential for further development into 3D-printed functional gradient ZrO2 implants.  

Graphical abstract
Keywords
Biological property
Functionally graded structure
Triply periodic minimal surfaces
Vat photopolymerization
Zirconia implant
Funding
This work was supported by the National Natural Science Foundation [grant number: 82071157]; Clinical Research Program of 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine [grant number: JYLJ202409]; and Original Exploration Project of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine [grant number: JYYC002].
Conflict of interest
The authors declare they have no competing interests.
References
  1. Spanemberg JC, Cardoso JA, Slob E, López-López J. Quality of life related to oral health and its impact in adults. J Stomatol Oral Maxillofac Surg. 2019;120(3): 234-239. doi: 10.1016/j.jormas.2019.02.004
  2. Guo J, Ban JH, Li G, et al. Status of tooth loss and denture restoration in chinese adult population: findings from the 4th National Oral Health Survey. Chin J Dent Res. 2018;21(4):249-257. doi: 10.3290/j.cjdr.a41083
  3. Peng KH, Zhou YP, Dai YH, Wang QX, Hu YJ, Dai Q. The effect of denture restoration and dental implant restoration in the treatment of dentition defect: a systematic review and meta-analysis. Ann Palliat Med. 2021;10(3):3267-3276. doi: 10.21037/apm-21-421
  4. Regish KM, Sharma D, Prithviraj DR. An overview of immediate root analogue zirconia implants. J Oral Implantol. 2013;39(2):225-233. doi: 10.1563/aaid-joi-d-10-00208
  5. Carinci F, Pezzetti F, Volinia S, et al. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials. 2004; 25(2):215-228. doi: 10.1016/s0142-9612(03)00486-1
  6. Saldaña L, Méndez-Vilas A, Jiang L, et al. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials. 2007;28(30):4343-4354. doi: 10.1016/j.biomaterials.2007.06.015
  7. Mehrali M, Shirazi FS, Mehrali M, Metselaar HSC, Bin Kadri NA, Abu Osman NA. Dental implants from functionally graded materials. J Biomed Mater Res A. 2013;101(10):3046-3057. doi: 10.1002/jbm.a.34588
  8. Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000; 246(1-2):1-11. doi: 10.1016/s0043-1648(00)00488-9
  9. Brizuela A, Herrero-Climent M, Rios-Carrasco E, et al. Influence of the elastic modulus on the osseointegration of dental implants. Materials. 2019;12(6):980. doi: 10.3390/ma12060980
  10. Tan S, Gu J, Han SC, Lee DW, Kang K. Design and fabrication of a non-clogging scaffold composed of semi-permeable membrane. Mater Design. 2018;142:229-239. doi: 10.1016/j.matdes.2018.01.033
  11. Al-Ketan O, Abu Al-Rub RK. The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J Mater Res. 2018;33(3):343-359. doi: 10.1557/jmr.2018.1
  12. Schoen AH. Infinite Periodic Minimal Surfaces Without Self-Intersections vol. 5541. National Aeronautics and Space Administration; 1970.
  13. Shi JP, Zhu LY, Li L, Li ZA, Yang JQ, Wang XS. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci Rep. 2018;8(1):7395. doi: 10.1038/s41598-018-25750-9
  14. Han L, Che SA. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater. 2018;30(17):1705708. doi: 10.1002/adma.201705708
  15. Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE. Minimal surface scaffold designs for tissue engineering. Biomaterials. 2011;32(29):6875-6882. doi: 10.1016/j.biomaterials.2011.06.012
  16. Al-Ketan O, Abu Al-Rub RK, Rowshan R. Mechanical properties of a new type of architected interpenetrating phase composite materials. Adv Mater Technol. 2017;2(2):1600235. doi: 10.1002/admt.201600235
  17. Bonatti C, Mohr D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments. J Mech Phys Solids. 2019;122:1-26. doi: 10.1016/j.jmps.2018.08.022
  18. Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf. 2018;19:167-183. doi: 10.1016/j.addma.2017.12.006
  19. Lakhdar Y, Tuck C, Binner J, Terry A, Goodridge R. Additive manufacturing of advanced ceramic materials. Prog Mater Sci. 2021;116:100736. doi: 10.1016/j.pmatsci.2020.100736
  20. Ma Q, Ding Q, Zhang L, Sun Y, Xie Q. Surface characteristics and flexural strength of porous-surface designed zirconia manufactured via stereolithography. J Prosthodont. 2023;32(4):e81-e89. doi: 10.1111/jopr.13565
  21. Chen H, Han Q, Wang CY, Liu Y, Chen BP, Wang JC. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020;8:609. doi: 10.3389/fbioe.2020.00609
  22. de Aquino DA, Maskery I, Longhitano GA, Jardini AL, del Conte EG. Investigation of load direction on the compressive strength of additively manufactured triply periodic minimal surface scaffolds. Int J Adv Manuf Technol. 2020;109(3-4):771-779. doi: 10.1007/s00170-020-05706-y
  23. Al-Ketan O, Abu Al-Rub RK. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun (USA). 2021;3(6):e205. doi: 10.1002/mdp2.205
  24. ISO-Standards. ISO 6872 Dentistry—Ceramic materials. Geneve: International Organization for Standardization; 2015.
  25. Scherrer SS, Lohbauer U, Della Bona A, et al. ADM guidance-ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dent Mater. 2017;33(6):599-620. doi: 10.1016/j.dental.2017.03.004
  26. Quinn GD, Quinn GD. Fractography of Ceramics and Glasses, Vol. 960. National Institute of Standards and Technology Washington, DC; 2016. doi: 10.6028/NIST.SP.960-16e2
  27. Han LS. Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts. J Appl Mech. 1960;27(3):403-409. doi: 10.1115/1.3644015
  28. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
  29. Shen MH, Qin W, Xing BH, et al. Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures. J Eur Ceram Soc. 2021;41(2):1481-1489. doi: 10.1016/j.jeurceramsoc.2020.09.062
  30. Zhang K, Meng Q, Zhang X, Qu Z, He R. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography. J Mater Sci Technol. 2022;118:144-157. doi: 10.1016/j.jmst.2021.11.060
  31. Yang C, Wu W, Fu Z, Zheng H. Preparation and thermal insulation properties of TPMS 3Y-TZP ceramics using DLP 3D printing technology. J Mater Sci. 2023;58(29):11992-12007. doi: 10.1007/s10853-023-08749-0
  32. Duque-Uribe C, López-Vargas V, Moreno-Florez AI, et al. Production of ceramic alumina scaffolds via ceramic stereolithography with potential application in bone tissue regeneration. Mater Today Commun. 2024;40:109535. doi: 10.1016/j.mtcomm.2024.109535
  33. Ejeh CJ, Barsoum I, Abu Al-Rub RK. Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams. Int J Mech Sci. 2022;223:107293. doi: 10.1016/j.ijmecsci.2022.107293
  34. Wu Y, Qi X, Sun L, et al. Sound transmission loss and bending properties of sandwich structures based on triply periodic minimal surfaces. Thin-Walled Struct. 2024;204:112324. doi: 10.1016/j.tws.2024.112324
  35. Li X, Qu P, Kong H, et al. Enhanced mechanical properties of sandwich panels via integrated 3D printing of continuous fiber face sheet and TPMS core. Thin-Walled Struct. 2024;204:112312. doi: 10.1016/j.tws.2024.112312
  36. Liu P, Qi W, Luo K, et al. Bending performance and failure mechanisms of composite sandwich structures with 3D printed hybrid triply periodic minimal surface cores. J Sandwich Struct Mater. 2024;26(6):990-1011. doi: 10.1177/10996362241272792
  37. Bouakaz I, Sadeghian Dehkord E, Meille S, et al. 3D printed triply periodic minimal surfaces calcium phosphate bone substitute: the effect of porosity design on mechanical properties. Ceram Int. 2024;50(2):2623-2636. doi: 10.1016/j.ceramint.2023.10.238
  38. Jiang CL, Ding MT, Zhang J, et al. 3D printed porous zirconia biomaterials based on triply periodic minimal surfaces promote osseointegration in vitro by regulating osteoimmunomodulation and osteo/angiogenesis. ACS Appl Mater Interfaces. 2024;16(12):14548-14560. doi: 10.1021/acsami.3c18799
  39. Wang H, Pallav P, Isgro G, Feilzer AJ. Fracture toughness comparison of three test methods with four dental porcelains. Dent Mater. 2007; 23(7):905-910. doi: 10.1016/j.dental.2006.06.033
  40. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JWC. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater. 2013;2(1): 186-194. doi: 10.1002/adhm.201200159
  41. Gamsjäger E, Bidan CM, Fischer FD, Fratzl P, Dunlop JWC. Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater. 2013;9(3):5531-5543. doi: 10.1016/j.actbio.2012.10.020
  42. Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater. 2023;25:374-386. doi: 10.1016/j.bioactmat.2023.02.012
  43. Santos J, Pires T, Gouveia BP, Castro APG, Fernandes PR. On the permeability of TPMS scaffolds. J Mech Behav Biomed Mater. 2020;110:103932. doi: 10.1016/j.jmbbm.2020.103932
  44. Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J Mech Behav Biomed Mater. 2021;124:104804. doi: 10.1016/j.jmbbm.2021.104804
  45. Xu W, Yu AH, Jiang Y, et al. Gyroid-based functionally graded porous titanium scaffolds for dental application: design, simulation and characterizations. Mater Design. 2022;224:111300. doi: 10.1016/j.matdes.2022.111300
  46. Pan C, Han Y, Lu J. Design and optimization of lattice structures: a review. Appl Sci. 2020;10(18):6374. doi: 10.3390/app10186374
  47. Chen A, Su J, Zhou M, et al. Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses. Mater Sci Eng: R: Rep. 2025;162:100876. doi: 10.1016/j.mser.2024.100876

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing