AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.7788
RESEARCH ARTICLE

Laser-induced forward transfer in picosecond regime for cell bioprinting

Lucas Duvert1,2 Clarissa Murru1 Ahmed Al-Kattana1 Anne-Patricia Alloncle1 Frederique Magdinier2 Stefano Testa2* Adrien Casanova1*
Show Less
1 Laser, Plasmas et Procédés Photoniques (LP3), Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Marseille, France
2 Marseille Medical genetics (MMG), Aix-Marseille University, Institut national de la santé et de la recherche médicale (INSERM), Marseille, France
Submitted: 17 December 2024 | Accepted: 24 January 2025 | Published: 24 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Based on interdisciplinary approaches, bioprinting methods aim to create and design highly organized 2D and 3D cultures. In this context, it has been more than a decade since laser-induced forward transfer (LIFT) was studied on a lab scale for its ability to transfer biomaterials, specifically bioink loaded with living cells, onto a substrate. Extreme physical and mechanical phenomena contribute to the jetting dynamic of the targeted bioink, raising a spontaneous biological question: does this process negatively affect the survival rate of transferred cells? This study demonstrates that laser pulse durations in the range of picoseconds to nanoseconds do not directly affect cell viability, indicating that LIFT is a valuable bioprinting method for transferring living cells. Moreover, we highlight the necessity of using hydrogel coatings on the surface of the receiver substrate to guarantee optimal post-printing viability of the cells. We demonstrate that the nature of the hydrogel also contributes to the resolution of the printed pattern. Among the tested materials, Matrigel demonstrated all the qualities required to ensure successful printing and should therefore be considered for future work. Overall, the results show the suitability of our LIFT setup for printing living cells in the picosecond regime with a high survival rate, paving the way for a wide range of biological applications.

Graphical abstract
Keywords
Cell viability
Laser-assisted bioprinting
LIFT bioprinting
Living cells printing
Regenerative medicine
Skeletal muscle
Tissue engineering
Funding
The work was funded by the French National Research Agency (ANR Medilibs and Diagem projects) together with the French Defense Innovation Agency (ANR— DGA/AID—ICELARE Project ID: ANR—20—ASTR— 0004). The PhD thesis of Lucas Duvert was co-funded by Aix-Marseille University, the French Defense Innovation Agency and the MarMaRa funding scheme. This work received support from the French government under the France 2030 investment plan, as part of the Initiative d’Excellence d’Aix-Marseille Université – A*MIDEX “AMX-23-CPJ-05”. The project leading to this publication has received funding from the Excellence Initiative of Aix- Marseille University-A*Midex, a French “investissement d’avenir programme” AMX-19-IET-007, through the MarMaRa funding scheme. This work was conducted using LaMP facilities at LP3. The authors also acknowledge the “Region SUD” for their financial support.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Tarassoli SP, Jessop ZM, Al-Sabah A, et al. Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg. 2018;71(5):615-623. doi: 10.1016/j.bjps.2017.12.006
  2. Guillemot F, Souquet A, Catros S, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6(7):2494-2500. doi: 10.1016/j.actbio.2009.09.029
  3. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  4. Kačarević Ž, Rider P, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199. doi: 10.3390/ma11112199
  5. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14(1):271. doi: 10.1186/s12967-016-1028-0
  6. Vinson BT, Sklare SC, Chrisey DB. Laser-based cell printing techniques for additive biomanufacturing. Curr Opin Biomed Eng. 2017;2:14-21. doi: 10.1016/j.cobme.2017.05.005
  7. Raees S, Ullah F, Javed F, et al. Classification, processing, and applications of bioink and 3D bioprinting: a detailed review. Int J Biol Macromol. 2023;232:123476. doi: 10.1016/j.ijbiomac.2023.123476
  8. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1):14023. doi: 10.1038/s41598-020-70086-y
  9. Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. J Appl Phys. 1986;60(4):1538-1539. doi: 10.1063/1.337287
  10. Bohandy J, Kim BF, Adrian FJ, Jette AN. Metal deposition at 532 nm using a laser transfer technique. J Appl Phys. 1988;63(4):1158-1162. doi: 10.1063/1.340023
  11. Rapp L, Cibert C, Nénon S, et al. Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication. Appl Surf Sci. 2011;257(12):5245-5249. doi: 10.1016/j.apsusc.2010.10.147
  12. Rapp L, Constantinescu C, Delaporte P, Alloncle AP. Laser-induced forward transfer of polythiophene-based derivatives for fully polymeric thin film transistors. Org Electron. 2014;15(8):1868-1875. doi: 10.1016/j.orgel.2014.04.029
  13. Rapp L, Cibert C, Alloncle AP, et al. LIFT of organic materials for application in plastic micro-electronics. In: 3eme Russian-French Laser Physics Worshop for Young Scientist; 2008. Accessed December 3, 2024. https://hal.science/hal-00446484
  14. Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005;20(8):1638-1642. doi: 10.1016/j.bios.2004.08.047
  15. Serra P, Colina M, Fernández-Pradas JM, Sevilla L, Morenza JL. Preparation of functional DNA microarrays through laser-induced forward transfer. Appl Phys Lett. 2004;85(9):1639-1641. doi: 10.1063/1.1787614
  16. Fernández-Pradas JM, Colina M, Serra P, Domínguez J, Morenza JL. Laser-induced forward transfer of biomolecules. Thin Solid Films. 2004;453-454:27-30. doi: 10.1016/j.tsf.2003.11.154
  17. Barron JA, Spargo BJ, Ringeisen BR. Biological laser printing of three dimensional cellular structures. Appl Phys A. 2004;79(4-6):1027-1030. doi: 10.1007/s00339-004-2620-3
  18. Ringeisen BR, Kim H, Barron JA, et al. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10(3-4):483-491. doi: 10.1089/107632704323061843
  19. Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29(4):183-190. doi: 10.1016/j.tibtech.2010.12.008
  20. Koch L, Deiwick A, Chichkov B. Capillary-like formations of endothelial cells in defined patterns generated by laser bioprinting. Micromachines (Basel). 2021;12(12):1538. doi: 10.3390/mi12121538
  21. Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855-1863. doi: 10.1002/bit.24455
  22. Bosmans C, Rodriguez NG, Karperien M, et al. Towards single-cell bioprinting: micropatterning tools for organ-on-chip development. Trends Biotechnol. 2024;42(6):739-759. doi: 10.1016/j.tibtech.2023.11.014
  23. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication. 2020;12(3):035001. doi: 10.1088/1758-5090/ab7cb8
  24. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
  25. Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol. 2023;11:1255782. doi: 10.3389/fbioe.2023.1255782
  26. Curley JL, Sklare SC, Bowser DA, Saksena J, Moore MJ, Chrisey DB. Isolated node engineering of neuronal systems using laser direct write. Biofabrication. 2016;8(1):015013. doi: 10.1088/1758-5090/8/1/015013
  27. Colina M, Duocastella M, Fernández-Pradas JM, Serra P, Morenza JL. Laser-induced forward transfer of liquids: study of the droplet ejection process. J Appl Phys. 2006;99(8):084909. doi: 10.1063/1.2191569
  28. Fernández-Pradas JM, Florian C, Caballero-Lucas F, Sopeña P, Morenza JL, Serra P. Laser-induced forward transfer: propelling liquids with light. Appl Surf Sci. 2017;418:559-564. doi: 10.1016/j.apsusc.2016.10.197
  29. Gruene M, Unger C, Koch L, Deiwick A, Chichkov B. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. BioMed Eng OnLine. 2011;10(1):19. doi: 10.1186/1475-925X-10-19
  30. Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng. 2005;33(2):121-130. doi: 10.1007/s10439-005-8971-x
  31. Mézel C, Souquet A, Hallo L, Guillemot F. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication. 2010;2(1):014103. doi: 10.1088/1758-5082/2/1/014103
  32. Koch L, Brandt O, Deiwick A, Chichkov B. Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study. Int J Bioprint. 2017;3(1):001. doi: 10.18063/IJB.2017.01.001
  33. Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Amer. 1996;100(1):148-165. doi: 10.1121/1.415878
  34. Duocastella M, Fernández-Pradas JM, Morenza JL, Serra P. Time-resolved imaging of the laser forward transfer of liquids. J Appl Phys. 2009;106(8):084907. doi: 10.1063/1.3248304
  35. Deng Y, Renaud P, Guo Z, Huang Z, Chen Y. Single cell isolation process with laser induced forward transfer. J Biol Eng. 2017;11(1):2. doi: 10.1186/s13036-016-0045-0
  36. Koch L, Kuhn S, Sorg H, et al. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods. 2010;16(5):847-854. doi: 10.1089/ten.tec.2009.0397
  37. Hopp B, Smausz T, Kresz N, et al. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 2005;11(11-12):1817-1823. doi: 10.1089/ten.2005.11.1817
  38. Schiele NR, Chrisey DB, Corr DT. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C Methods. 2011;17(3):289-298. doi: 10.1089/ten.tec.2010.0442
  39. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250-7256. doi: 10.1016/j.biomaterials.2010.05.055
  40. Karakaidos P, Kryou C, Simigdala N, Klinakis A, Zergioti I. Laser bioprinting of cells using UV and visible wavelengths: a comparative DNA damage study. Bioengineering. 2022;9(8):378. doi: 10.3390/bioengineering9080378
  41. Kryou C, Theodorakos I, Karakaidos P, Klinakis A, Hatziapostolou A, Zergioti I. Parametric study of Jet/Droplet formation process during LIFT printing of living Cell-Laden bioink. Micromachines. 2021;12(11):1408. doi: 10.3390/mi12111408
  42. Murru C, Duvert L, Magdinier F, et al. Assessment of laser-synthesized Si nanoparticle effects on myoblast motility, proliferation and differentiation: towards potential tissue engineering applications. Nanoscale Adv. 2024;6(8):2104-2112. doi: 10.1039/D3NA01020A
  43. Hanawa T. Biocompatibility of titanium from the viewpoint of its surface. Sci Technol Adv Mater. 2022;23(1):457-472. doi: 10.1080/14686996.2022.2106156
  44. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. doi: 10.1038/nmeth.2019
  45. Zhang Z, Xu C, Xiong R, Chrisey DB, Huang Y. Effects of living cells on the bioink printability during laser printing. Biomicrofluidics. 2017;11(3):034120. doi: 10.1063/1.4985652
  46. Xiong R, Zhang Z, Chai W, Chrisey DB, Huang Y. Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication. 2017;9(2):024103. doi: 10.1088/1758-5090/aa74f2
  47. Catros S, Guillotin B, Bačáková M, Fricain JC, Guillemot F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl Surf Sci. 2011;257(12):5142-5147. doi: 10.1016/j.apsusc.2010.11.049
  48. Riester D. High speed photography of laser induced forward transfer (LIFT) of single and double-layered transfer layers for single cell transfer. JLMN. 2016;11(2):199-203. doi: 10.2961/jlmn.2016.02.0010
  49. Antoshin AA, Churbanov SN, Minaev NV, et al. LIFT-bioprinting, is it worth it? Bioprinting. 2019;15:e00052. doi: 10.1016/j.bprint.2019.e00052
  50. Liu X, Zu E, Chang X, et al. Bi-phasic effect of gelatin in myogenesis and skeletal muscle regeneration. Dis Model Mech. 2021;14(12):dmm049290. doi: 10.1242/dmm.049290
  51. Minaev NV, Yusupov VI, Zhigarkov VS, et al. Laser Printing of Gel Microdrops with Living Cells and Microorganisms. KnE Energy. 2018;3(3):23-31. doi: 10.18502/ken.v3i3.2010
  52. Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication. 2014;6(4):045001. doi: 10.1088/1758-5082/6/4/045001

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing