AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8411
REVIEW

3D bioprinting for tendon–bone interface regeneration

Yifan Wang1 Cong Chen2 Chuyue Zhang1 Junyao Cheng1 Bochen An1 Ning Zhang2* Jianheng Liu1* Zheng Wang1*
Show Less
1 Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
2 Department of Orthopedics, The Second Hospital of Shandong University, Jinan, China.
Submitted: 5 January 2025 | Accepted: 22 January 2025 | Published: 23 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

With the rapid advancement of three-dimensional (3D) bioprinting technology, its applications in tissue engineering and regenerative medicine have garnered increasing attention. Tendon–bone healing is a complex biological process, making injuries to the tendon–bone interface challenging to repair. Fortunately, 3D bioprinting provides numerous innovative solutions. Herein, we summarize the current state of 3D bioprinting technology in tendon–bone healing, exploring the latest developments in biomaterials, printing technologies, cell carriers, and preclinical research. In conclusion, the article discusses the current challenges faced in this field and outlines future research directions with careful consideration, providing valuable insights for ongoing investigations.

Graphical abstract
Keywords
3D bioprinting
Biomaterials
Cell carriers
Tendon–bone healing
Tissue engineering
Funding
This work was supported by the National Natural Science Foundation of China (82172392).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Xiaorui L, Fuyin Z, Xudong W, et al. Biomaterial inks for extrusion-based 3D bioprinting: property, classification, modification, and selection. Int J Bioprint. 2023; 9(2):649. doi: 10.18063/ijb.v9i2.649
  2. Yu J, Park SA, Kim WD, et al. Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers. 2020;12(12):2958. doi: 10.3390/polym12122958
  3. Fang Y, Guo Y, Liu T, et al. Advances in 3D bioprinting. Chin J Mechl Eng Addit Manuf Front. 2022;1(1):100011. doi: 10.1016/j.cjmeam.2022.100011
  4. Timofticiuc IA, Dragosloveanu S, Caruntu A, et al. 3D bioprinting in limb salvage surgery. J Funct Biomater. 2024;15(12):383. doi: 10.3390/jfb15120383
  5. Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci Mater Med. 2019;30(3):32. doi: 10.1007/s10856-019-6234-x
  6. Zhang L, Zhang Q, Cui L, Wu L, Gao S. Kartogenin combined platelet-rich plasma (PRP) promoted tendon-bone healing for anterior cruciate ligament (ACL) reconstruction by suppressing inflammatory response via targeting AKT/PI3K/ NF-κB. Appl Biochem Biotechnol. 2023;195(2):1284-1296. doi: 10.1007/s12010-022-04178-y
  7. Chen Z, Jin M, He H, et al. Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Transl. 2023;39:63-73. doi: 10.1016/j.jot.2022.12.005
  8. Yang C, Teng Y, Geng B, et al. Strategies for promoting tendon-bone healing: current status and prospects. Front Bioeng Biotechnol. 2023;11:1118468. doi: 10.3389/fbioe.2023.1118468
  9. Chen X, Xue C, Li K, et al. Finite element analysis of anterior cruciate ligament reconstruction techniques: a comparison of the mechanical properties of all-inside fixation and traditional fixation. Front Bioeng Biotechnol. 2024;12:1438839. doi: 10.3389/fbioe.2024.1438839
  10. Chalmers PN, Mall NA, Moric M, et al. Does ACL reconstruction alter natural history? A systematic literature review of long-term outcomes. J Bone Joint Surg Am. 2014;96(4):292-300. doi: 10.2106/jbjs.L.01713
  11. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86(2):219-224. doi: 10.2106/00004623-200402000-00002
  12. Maffulli N, Wong J, Almekinders LC. Types and epidemiology of tendinopathy. Clin Sports Med. 2003;22(4):675-692. doi: 10.1016/s0278-5919(03)00004-8
  13. Yang J, Kang Y, Zhao W, et al. Evaluation of patches for rotator cuff repair: a systematic review and meta-analysis based on animal studies. Bioact Mater. 2022;10:474-491. doi: 10.1016/j.bioactmat.2021.08.016
  14. Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A new tissue engineering strategy to promote tendon-bone healing: regulation of osteogenic and chondrogenic differentiation of tendon-derived stem cells. Orthop Surg. 2024;16(10):2311-2325. doi: 10.1111/os.14152
  15. Moses B, Orchard J, Orchard J. Systematic review: annual incidence of ACL injury and surgery in various populations. Res Sports Med. 2012;20(3-4):157-179. doi: 10.1080/15438627.2012.680633
  16. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269-273. doi: 10.1136/ard.2003.008136
  17. Albishi W, Baltow B, Albusayes N, Sayed AA, Alrabai HM. Hamstring autograft utilization in reconstructing anterior cruciate ligament: review of harvesting techniques, graft preparation, and different fixation methods. World J Orthop. 2022;13(10):876-890. doi: 10.5312/wjo.v13.i10.876
  18. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1(2):022001. doi: 10.1088/1758-5082/1/2/022001
  19. Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: methods, applications and future prospects. J Orthop Translat. 2023;42:94-112. doi: 10.1016/j.jot.2023.08.004
  20. Joshua RJN, Raj SA, Hameed Sultan MT, et al. Powder bed fusion 3D printing in precision manufacturing for biomedical applications: a comprehensive review. Materials (Basel). 2024;17(3):769. doi: 10.3390/ma17030769
  21. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127-141. doi: 10.1016/j.biomaterials.2016.01.012
  22. Tappa K, Jammalamadaka U, Weisman JA, et al. 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater. 2019;10(2):17. doi: 10.3390/jfb10020017
  23. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 2009;9(7):2763-2768. doi: 10.1021/nl901582f
  24. Raja N, Park H, Gal CW, Sung A, Choi YJ, Yun HS. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath. Biofabrication. 2023;15(3). doi: 10.1088/1758-5090/acc903
  25. Park S, Kim JE, Han J, et al. 3D-printed poly(ε-caprolactone)/ hydroxyapatite scaffolds modified with alkaline hydrolysis enhance osteogenesis in vitro. Polymers. 2021;13(2):257. doi: 10.3390/polym13020257
  26. Zhao C, Wang X, Gao L, Jing L, Zhou Q, Chang J. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018;73:509-521. doi: 10.1016/j.actbio.2018.04.030
  27. López-Valverde N, Flores-Fraile J, Ramírez JM, Sousa BM, Herrero-Hernández S, López-Valverde A. Bioactive surfaces vs. conventional surfaces in titanium dental implants: a comparative systematic review. J Clin Med. 2020;9(7):2047. doi: 10.3390/jcm9072047
  28. Shayeb MA, Elfadil S, Abutayyem H, et al. Bioactive surface modifications on dental implants: a systematic review and meta-analysis of osseointegration and longevity. Clin Oral Investig. 2024;28(11):592. doi: 10.1007/s00784-024-05958-y
  29. Acar K, Ersöz H. Comparison of three different surgical techniques in patients undergoing VATS and open thoracotomy. J Perianesth Nurs. 2022;37(4):479-484. doi: 10.1016/j.jopan.2021.10.007
  30. Liu W, Lipner J, Xie J, Manning CN, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces. 2014;6(4):2842-2849. doi: 10.1021/am405418g
  31. Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595-9606. doi: 10.1021/acsnano.9b04723
  32. Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in hydrogel-based drug sustained release systems for bone tissue engineering. Front Pharmacol. 2020;11:622. doi: 10.3389/fphar.2020.00622
  33. Zhang CY, Fu CP, Li XY, et al. Three-dimensional bioprinting of decellularized extracellular matrix-based bioinks for tissue engineering. Molecules. 2022;27(11):3442. doi: 10.3390/molecules27113442
  34. Panda S, Hajra S, Mistewicz K, et al. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci. 2022;10(18):5054-5080. doi: 10.1039/d2bm00797e
  35. Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: fundamental, environmental applications and challenges. Biotechnol Adv. 2023;69:108243. doi: 10.1016/j.biotechadv.2023.108243
  36. Ng WL, Shkolnikov V. Jetting-based bioprinting: process, dispense physics, and applications. Bio-Des Manuf. 2024;7(5):771-799. doi: 10.1007/s42242-024-00285-3
  37. Wang Y, Chen J, Yin Z, Li Y. A high-adaptability nozzle-array printing system based on a set covering printing planning model for printed display manufacturing. Sci Rep. 2023;13(1):156. doi: 10.1038/s41598-022-24135-3
  38. Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater. 2023;156:4-20. doi: 10.1016/j.actbio.2022.08.004
  39. Sun LMP, To AC. Inexpensive DIY bioprinting in a secondary school setting. J Microbiol Biol Educ. 2023;24(2): e00124-22. doi: 10.1128/jmbe.00124-22
  40. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1(1):75. doi: 10.1038/s43586-021-00073-8
  41. Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al. Light-based vat-polymerization bioprinting. Nat Rev Methods Primers. 2023;3(1):47. doi: 10.1038/s43586-023-00231-0
  42. Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent progress of the vat photopolymerization technique in tissue engineering: a brief review of mechanisms, methods, materials, and applications. Polymers (Basel). 2023;15(19):3940. doi: 10.3390/polym15193940
  43. Nagakura R, Yamamoto M, Jeong J, et al. Switching of Sox9 expression during musculoskeletal system development. Sci Rep. 2020;10(1):8425. doi: 10.1038/s41598-020-65339-9
  44. Yoshimoto Y, Oishi Y. Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther. 2023;243:108357. doi: 10.1016/j.pharmthera.2023.108357
  45. Matson A, Konow N, Miller S, Konow PP, Roberts TJ. Tendon material properties vary and are interdependent among turkey hindlimb muscles. J Exp Biol. 2012; 215(Pt 20):3552-3558. doi: 10.1242/jeb.072728
  46. Ma H, Yang C, Ma Z, et al. Multiscale hierarchical architecture-based bioactive scaffolds for versatile tissue engineering. Adv Healthc Mater. 2022;11(13): e2102837. doi: 10.1002/adhm.202102837
  47. Kuznetsov S, Pankow M, Peters K, Huang HS. A structural-based computational model of tendon-bone insertion tissues. Math Biosci. 2020;327:108411. doi: 10.1016/j.mbs.2020.108411
  48. Pedaprolu K, Szczesny SE. Mouse Achilles tendons exhibit collagen disorganization but minimal collagen denaturation during cyclic loading to failure. J Biomech. 2023;151:111545. doi: 10.1016/j.jbiomech.2023.111545
  49. Yang S, Shi X, Li X, Wang J, Wang Y, Luo Y. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration. Biomaterials. 2019;207:61-75. doi: 10.1016/j.biomaterials.2019.03.041
  50. Astill BD, Katsma MS, Cauthon DJ, et al. Sex-based difference in Achilles peritendinous levels of matrix metalloproteinases and growth factors after acute resistance exercise. J Appl Physiol (1985). 2017;122(2):361-367. doi: 10.1152/japplphysiol.00878.2016
  51. Basso O, Amis AA, Race A, Johnson DP. Patellar tendon fiber strains: their differential responses to quadriceps tension. Clin Orthop Relat Res. 2002;(400):246-253. doi: 10.1097/00003086-200207000-00030
  52. Samiric T, Parkinson J, Ilic MZ, Cook J, Feller JA, Handley CJ. Changes in the composition of the extracellular matrix in patellar tendinopathy. Matrix Biol. 2009; 28(4):230-236. doi: 10.1016/j.matbio.2009.04.001
  53. Attia M, Scott A, Carpentier G, et al. Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score. Br J Sports Med. 2014;48(6):469-475. doi: 10.1136/bjsports-2013-092633
  54. Danielson P, Alfredson H, Forsgren S. Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc Res Tech. 2006;69(10):808-819. doi: 10.1002/jemt.20351
  55. Das S, Sulaiman IM, Hussan F, Latiff AA, Suhaimi FH, Othman F. The additional tendons of the extensor digitorum muscle of the hand: an anatomical study with a clinical significance. Bratisl Lek Listy. 2008;109(12):584-586.
  56. Sbernardori MC, Pirino A, Fabbriciani C, Montella A. Localization of collagen type IV, fibronectin and elastin in the flexor digitorum tendons and in the perichondrium during prenatal development of the human hand. Ital J Anat Embryol. 2001;106(3):205-213.
  57. Ma L, Xu Y, Xu X, Pan Q, Xu Y. Application of biomimetic double-layer biofilm stent in arthroscopic rotator cuff repair: a protocol of randomized controlled trial. Medicine (Baltimore). 2021;100(1):e23960. doi: 10.1097/md.0000000000023960
  58. Li X, Shen P, Su W, Zhao S, Zhao J. Into-tunnel repair versus onto-surface repair for rotator cuff tears in a rabbit model. Am J Sports Med. 2018;46(7):1711-1719. doi: 10.1177/0363546518764685
  59. Chang CH, Chen CH, Liu HW, et al. Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel. Biomed J. 2012;35(6):473-480. doi: 10.4103/2319-4170.104412
  60. Xu Z, Xu W, Zhang T, Luo L. Mechanisms of tendon-bone interface healing: biomechanics, cell mechanics, and tissue engineering approaches. J Orthop Surg Res. 2024;19(1):817. doi: 10.1186/s13018-024-05304-8
  61. Dong Y, Li J, Jiang Q, et al. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Translat. 2024;48:70-88. doi: 10.1016/j.jot.2024.07.007
  62. Han F, Zhang P, Chen T, Lin C, Wen X, Zhao P. A LbL-assembled bioactive coating modified nanofibrous membrane for rapid tendon-bone healing in ACL reconstruction. Int J Nanomed. 2019;14:9159-9172. doi: 10.2147/ijn.S214359
  63. Bülow A, Schäfer B, Beier JP. Three-dimensional bioprinting in soft tissue engineering for plastic and reconstructive surgery. Bioengineering (Basel). 2023;10(10):1232. doi: 10.3390/bioengineering10101232
  64. Huang Y, He B, Wang L, et al. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11(1):496. doi: 10.1186/s13287-020-02005-x
  65. Wang L, Guan C, Zhang T, et al. Comparative effect of skeletal stem cells versus bone marrow mesenchymal stem cells on rotator cuff tendon-bone healing. J Orthop Transl. 2024;47:87-96. doi: 10.1016/j.jot.2024.05.005
  66. Fu S, Lan Y, Wang G, et al. External stimulation: a potential therapeutic strategy for tendon-bone healing. Front Bioeng Biotechnol. 2023;11:1150290. doi: 10.3389/fbioe.2023.1150290
  67. Wong CC, Yeh YY, Yang TL, Tsuang YH, Chen CH. Augmentation of tendon graft-bone tunnel interface healing by use of bioactive platelet-rich fibrin scaffolds. Am J Sports Med. 2020;48(6):1379-1388. doi: 10.1177/0363546520908849
  68. Zhao X, Wu G, Zhang J, Yu Z, Wang J. Activation of CGRP receptor-mediated signaling promotes tendon-bone healing. Sci Adv. 2024;10(10):eadg7380. doi: 10.1126/sciadv.adg7380
  69. Bian X, Liu X, Zhou M, et al. Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon-bone insertion healing: CCN2 plays an important regulatory role. Burns Trauma. 2024;12:tkae028. doi: 10.1093/burnst/tkae028
  70. Lu H, Chen C, Qu J, et al. Initiation timing of low-intensity pulsed ultrasound stimulation for tendon-bone healing in a rabbit model. Am J Sports Med. 2016;44(10):2706-2715. doi: 10.1177/0363546516651863
  71. Li S, Xu Z, Wang Z, Xiang J, Zhang T, Lu H. Acceleration of bone-tendon interface healing by low-intensity pulsed ultrasound is mediated by macrophages. Phys Ther. 2021;101(7):pzab055. doi: 10.1093/ptj/pzab055
  72. Huegel J, Chan PYW, Weiss SN, et al. Pulsed electromagnetic field therapy alters early healing in a rat model of rotator cuff injury and repair: Potential mechanisms. J Orthop Res. 2022;40(7):1593-1603. doi: 10.1002/jor.25185
  73. Nakazawa K, Toyoda H, Manaka T, et al. Non-thermal atmospheric pressure gas discharge plasma enhances tendon-to-bone junction repair in a rabbit model. J Shoulder Elbow Surg. 2024: S1058-2746(24)00640-2. doi: 10.1016/j.jse.2024.07.039
  74. Longo UG, Risi Ambrogioni L, Berton A, et al. Physical therapy and precision rehabilitation in shoulder rotator cuff disease. Int Orthop. 2020;44(5):893-903. doi: 10.1007/s00264-020-04511-2
  75. Schindler OS. Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):5-47. doi: 10.1007/s00167-011-1756-x
  76. Suchenski M, McCarthy MB, Chowaniec D, et al. Material properties and composition of soft-tissue fixation. Arthroscopy. 2010;26(6):821-831. doi: 10.1016/j.arthro.2009.12.026
  77. Gonzalez-Lomas G, Cassilly RT, Remotti F, Levine WN. Is the etiology of pretibial cyst formation after absorbable interference screw use related to a foreign body reaction? Clin Orthop Relat Res. 2011;469(4):1082-1088. doi: 10.1007/s11999-010-1580-5
  78. Warden WH, Chooljian D, Jackson DW. Ten-year magnetic resonance imaging follow-up of bioabsorbable poly-L-lactic acid interference screws after anterior cruciate ligament reconstruction. Arthroscopy. 2008;24(3):370.e1-370.e3. doi: 10.1016/j.arthro.2006.12.032
  79. Joshi YV, Bhaskar D, Phaltankar PM, Charalambous CP. Tibial tunnel cyst formation after anterior cruciate ligament reconstruction using a non-bioabsorbable interference screw. Knee Surg Relat Res. 2015;27(4):269-273. doi: 10.5792/ksrr.2015.27.4.269
  80. Chen CH, Chang WJ, Chen YS, et al. Development of a novel hybrid suture anchor for osteoporosis by integrating titanium 3D printing and traditional machining. Int J Bioprint. 2022;8(4):608.doi: 10.18063/ijb.v8i4.608
  81. Feng W, Jin Q, Ming-Yu Y, et al. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength. Biomaterials. 2021;279:121242. doi: 10.1016/j.biomaterials.2021.121242
  82. Guo D, Yang J, Liu D, Zhang P, Sun H, Wang J. Human umbilical cord mesenchymal stem cells overexpressing RUNX1 promote tendon-bone healing by inhibiting osteolysis, enhancing osteogenesis and promoting angiogenesis. Genes Genomics. 2024;46(4):461-473. doi: 10.1007/s13258-023-01478-3
  83. Liu Q, Yu Y, Reisdorf RL, et al. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials. 2019;192:189-198. doi: 10.1016/j.biomaterials.2018.10.037
  84. Kobayashi Y, Kida Y, Kabuto Y, et al. Healing effect of subcutaneous administration of granulocyte colony-stimulating factor on acute rotator cuff injury in a rat model. Tissue Eng Part A. 2021;27(17-18):1205-1212. doi: 10.1089/ten.tea.2020.0239.A
  85. Hu Y, Ran J, Zheng Z, et al. Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater. 2018;71:168-183. doi: 10.1016/j.actbio.2018.02.019
  86. Guan G, Qizhuang L, Liu S, Jiang Z, Zhou C, Liao W. 3D-bioprinted peptide coupling patches for wound healing. Mater Today Bio. 2022;13:100188. doi: 10.1016/j.mtbio.2021.100188
  87. Chen P, Cui L, Chen G, et al. The application of BMP-12- overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair. Int J Biol Macromol. 2019;138:79-88. doi: 10.1016/j.ijbiomac.2019.07.041
  88. Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging bioprinting for wound healing. Adv Mater. 2023:e2304738. doi: 10.1002/adma.202304738
  89. Zhong S, Lan Y, Liu J, et al. Advances focusing on the application of decellularization methods in tendon-bone healing. J Adv Res. 2025;67:361-372. doi: 10.1016/j.jare.2024.01.020
  90. Revathi S, Amanullah M, Al-Samghan AS, et al. Sustainable heavy metal (Cr(VI) ion) remediation: ternary blend approach with chitosan, carboxymethyl cellulose, and bioactive glass. Int J Biol Macromol. 2024;278(Pt 3):134769. doi: 10.1016/j.ijbiomac.2024.134769
  91. Liao H, Yu HP, Song W, et al. Amorphous calcium phosphate nanoparticles using adenosine triphosphate as an organic phosphorus source for promoting tendon-bone healing. J Nanobiotechnol. 2021;19(1):270. doi: 10.1186/s12951-021-01007-y
  92. Fang H, Xu J, Ma H, et al. Functional materials of 3D bioprinting for wound dressings and skin tissue engineering applications: a review. Int J Bioprint. 2023;9(5):757.
  93. Luo Y, Xu X, Ye Z, et al. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg. 2022;9:988843. doi: 10.3389/fsurg.2022.988843
  94. Mörö A, Samanta S, Honkamäki L, et al. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication. 2022;15(1). doi: 10.1088/1758-5090/acab34
  95. Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication. 2024;16(3). doi: 10.1088/1758-5090/ad467d
  96. Jeon O, Lee YB, Lee SJ, Guliyeva N, Lee J, Alsberg E. Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries. Bioact Mater. 2022;15:185-193. doi: 10.1016/j.bioactmat.2021.11.025
  97. Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med. 2021;15(6):546-555. doi: 10.1002/term.3194
  98. Jiang X, Wu S, Kuss M, et al. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioact Mater. 2020;5(3):636-643. doi: 10.1016/j.bioactmat.2020.04.017
  99. Cao Y, Yang S, Zhao D, et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Transl. 2020;23: 89-100. doi: 10.1016/j.jot.2020.01.004
  100. Chae S, Sun Y, Choi YJ, Ha DH, Jeon I, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/abd159
  101. Chae S, Yong U, Park W, et al. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater. 2023;19:611-625. doi: 10.1016/j.bioactmat.2022.05.004
  102. Zhang X, Li K, Wang C, et al. Facile and rapid fabrication of a novel 3D-printable, visible light-crosslinkable and bioactive polythiourethane for large-to-massive rotator cuff tendon repair. Bioact Mater. 2024;37:439-458. doi: 10.1016/j.bioactmat.2024.03.036
  103. Alkaissy R, Richard M, Morris H, et al. Manufacture of soft-hard implants from electrospun filaments embedded in 3D printed structures. Macromol Biosci. 2022; 22(12):e2200156. doi: 10.1002/mabi.202200156
  104. Han J, Han SC, Kim YK, et al. Bioactive scaffold with spatially embedded growth factors promotes bone-to-tendon interface healing of chronic rotator cuff tear in rabbit model. Am J Sports Med. 2023;51(9):2431-2442. doi: 10.1177/03635465231180289
  105. Han J, Han SC, Jeong HJ, et al. Recombinant human parathyroid hormone biocomposite promotes bone-to-tendon interface healing by enhancing tenogenesis, chondrogenesis, and osteogenesis in a rabbit model of chronic rotator cuff tears. Arthroscopy. 2024;40(4): 1093-1104.e2. doi: 10.1016/j.arthro.2023.09.034
  106. Wang T, Yu Z, Lin S, et al. 3D-printed Mg-incorporated PCL-based scaffolds improves rotator cuff tendon-bone healing through regulating macrophage polarization. Front Bioeng Biotechnol. 2024;12:1407512. doi: 10.3389/fbioe.2024.1407512
  107. Wu Z, Yang J, Chong H, et al. 3D-printed biomimetic scaffolds loaded with ADSCs and BMP-2 for enhanced rotator cuff repair. J Mater Chem B. 2024;12: 12365-12377. doi: 10.1039/d4tb01073f
  108. Chou YC, Yeh WL, Chao CL, et al. Enhancement of tendon-bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt. Int J Nanomed. 2016;11:4173-4186. doi: 10.2147/ijn.S108939
  109. Parry JA, Olthof MG, Shogren KL, et al. Three-dimension-printed porous poly(propylene fumarate) scaffolds with delayed rhBMP-2 release for anterior cruciate ligament graft fixation. Tissue Eng Part A. 2017;23(7-8):359-365. doi: 10.1089/ten.TEA.2016.0343
  110. Wang Y, Ren C, Bi F, Li P, Tian K. The hydroxyapatite modified 3D printed poly L-lactic acid porous screw in reconstruction of anterior cruciate ligament of rabbit knee joint: a histological and biomechanical study. BMC Musculoskeletal Disord. 2023;24(1):151. doi: 10.1186/s12891-023-06245-9
  111. Antoniac I, Popescu D, Zapciu A, Antoniac A, Miculescu F, Moldovan H. Magnesium filled polylactic acid (PLA) material for filament based 3D printing. Materials (Basel). 2019;12(5):719. doi: 10.3390/ma12050719
  112. Huang YM, Huang CC, Tsai PI, et al. Three-dimensional printed porous titanium screw with bioactive surface modification for bone-tendon healing: a rabbit animal model. Int J Mol Sci. 2020;21(10):3628. doi: 10.3390/ijms21103628
  113. Park SH, Choi YJ, Moon SW, et al. Three-dimensional bio-printed scaffold sleeves with mesenchymal stem cells for enhancement of tendon-to-bone healing in anterior cruciate ligament reconstruction using soft-tissue tendon graft. Arthroscopy. 2018;34(1):166-179. doi: 10.1016/j.arthro.2017.04.016

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing