AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4718
REVIEW ARTICLE

3D-printed microfluidic cell culture devices and hydrogel integration: Trends, challenges, and solutions

Katharina V. Meyer1,2,3 Steffen Winkler1 Janina Bahnemann1,4*
Show Less
1 Department of Technical Biology, Institute of Physics, University of Augsburg, Augsburg, Bavaria, Germany
2 Department of Physiology, Institute of Theoretical Medicine, University of Augsburg, Bavaria, Germany
3 Institute of Technical Chemistry, Leibniz University Hannover, Lower Saxony, Germany
4 Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Bavaria, Germany
Submitted: 30 October 2024 | Accepted: 19 November 2024 | Published: 21 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) cell cultures are increasingly being used in a variety of contexts (e.g., drug discovery, disease modeling, and tissue engineering), as they offer the potential to increase physiological relevance compared to traditional monolayer cultures, while simultaneously reducing cost and time compared to in vivo models. Taking a cue from nature, researchers often create 3D cell cultures using hydrogels that can closely mimic the extracellular matrix that most mammalian cells are surrounded by in vivo. However, aside from the collective physical 3D arrangement itself, the physiology of the culture depends highly on the microenvironment, which is defined by the 3D cell culture shape and the complex combination of biochemical, biophysical, and biomechanical stimuli. Microfluidic devices offer researchers the tantalizing opportunity to precisely define and influence this microenvironment. Furthermore, they additionally enable the integration of external functional components for active stimulation and monitoring of cultured cells. Pushing for ever-more-realistic culture conditions has, however, increased the complexity that is required of these microfluidic culture systems, making their fabrication more difficult. In this regard, 3D printing is becoming an increasingly popular solution, as it offers researchers not only the ability to fabricate highly complex structures but also to benefit from rapid prototyping and customization of existing designs. This review discusses common challenges that researchers currently face when integrating hydrogel-embedded cells into 3D-printed microfluidic cell culture devices and seeks to offer a comprehensive overview of recent advancements aimed at addressing these challenges.  

 

Graphical abstract
Keywords
3D cell culture
3D printing
Hydrogel
Microfluidics
Microphysiological system
Organ-on-chip
Funding
The authors acknowledge the financial support of the German Research Foundation (DFG) via the Emmy Noether Programme (346772917).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Castiaux AD, Spence DM, Martin RS. Review of 3D cell culture with analysis in microfluidic systems. Anal Method. 2019;11(33):4220-4232. doi: 10.1039/C9AY01328H
  2. Sośniak J, Opiela J. 3D cell culture technology - a new insight into in vitro research - a review. Ann Anim Sci. 2021;21(4):1257-1273. doi: 10.2478/aoas-2021-0039
  3. Rosser J, Olmos Calvo I, Schlager M, Purtscher M, Jenner F, Ertl P. Recent advances of biologically inspired 3D microfluidic hydrogel cell culture systems. Cell Biol Cell Metab. 2015;2(1):1-14. doi: 10.24966/cbcm-1943/100005
  4. Saydé T, Hamoui O El, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for three-dimensional cell culture: from applications in oncology to nanotechnology. Nanomaterials. 2021;11(2):1-29. doi: 10.3390/nano11020481
  1. Zommiti M, Connil N, Tahrioui A, et al. Organs-on-chips platforms are everywhere: a zoom on biomedical investigation. Bioengineering. 2022;9(11):646. doi: 10.3390/bioengineering9110646
  2. Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The fabrication and application mechanism of microfluidic systems for high throughput biomedical screening: a review. Micromachines (Basel). 2020;11(3):297. doi: 10.3390/mi11030297
  3. Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic M. Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS Biomater Sci Eng. 2021;7(7):2880-2899. doi: 10.1021/acsbiomaterials.0c00640
  4. Shinha K, Nihei W, Ono T, Nakazato R, Kimura H. A pharmacokinetic–pharmacodynamic model based on multi-organ-on-a-chip for drug–drug interaction studies. Biomicrofluidics. 2020;14(4):044108. doi: 10.1063/5.0011545
  5. Khan I, Prabhakar A, Delepine C, Tsang H, Pham V, Sur M. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. Biomicrofluidics. 2021;15(2):024105. doi: 10.1063/5.0041027
  6. Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv. 2020;10(71):43682-43703. doi: 10.1039/d0ra08566a
  7. Tenje M, Cantoni F, Porras Hernández AM, et al. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. Organs-on-a-Chip. 2020;2:100003. doi: 10.1016/j.ooc.2020.100003
  8. Saraswathibhatla A, Indana D, Chaudhuri O. Cell– extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516. doi: 10.1038/s41580-023-00583-1
  9. Yan Z, Kavanagh T, da Silva Harrabi R, et al. FRET sensor‐modified synthetic hydrogels for real‐time monitoring of cell‐derived matrix metalloproteinase activity using fluorescence lifetime imaging. Adv Funct Mater. 2024; 34(21):adfm.202309711. doi: 10.1002/adfm.202309711
  10. Young EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010;39(3):1036. doi: 10.1039/b909900j
  11. An S, Han SY, Cho S-W. Hydrogel-integrated microfluidic systems for advanced stem cell engineering. Biochip J. 2019;13(4):306-322. doi: 10.1007/s13206-019-3402-5
  12. Paggi CA, Venzac B, Karperien M, Leijten JCH, Le Gac S. Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage. Sens Actuators B Chem. 2020;315:127917. doi: 10.1016/j.snb.2020.127917
  13. Moldero IL, Chandra A, Cavo M, et al. Probing the pH microenvironment of mesenchymal stromal cell cultures on additive-manufactured scaffolds. Small. 2020;16(34):e2002258. doi: 10.1002/smll.202002258
  14. Leung CM, de Haan P, Ronaldson-Bouchard K, et al. A guide to the organ-on-a-chip. Nat Rev Methods Primers. 2022;2(1):33. doi: 10.1038/s43586-022-00118-6
  15. Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng. 2021;5(3):031509. doi: 10.1063/5.004607620.
  16. Siller IG, Enders A, Gellermann P, et al. Characterization of a customized 3D-printed cell culture system using clear, translucent acrylate that enables optical online monitoring. Biomed Mater. 2020;15(5):055007. doi: 10.1088/1748-605X/ab8e97
  17. Khan S, Ullah A, Ullah K, Rehman N. Insight into hydrogels. Des Monomers Polym. 2016;19(5):456-478. doi: 10.1080/15685551.2016.1169380
  18. Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf. 2021;4(2):311-343. doi: 10.1007/s42242-020-00112-5
  19. Heuer C, Preuß J, Habib T, Enders A, Bahnemann J. 3D printing in biotechnology—an insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Eng Life Sci. 2022;22(12):744-759. doi: 10.1002/elsc.202100081
  20. Kotz F, Helmer D, Rapp BE. Emerging technologies and materials for high-resolution 3D printing of microfluidic chips. In: Advances in Biochemical Engineering/Biotechnology, Vol 179. Deutschland GmbH: Springer Science and Business Media; 2020:37-66. doi: 10.1007/10_2020_141
  21. Carvalho V, Gonçalves I, Lage T, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review. Sensors. 2021;21(9):3304. doi: 10.3390/S21093304
  22. Bunea A-I, del Castillo Iniesta N, Droumpali A, Wetzel AE, Engay E, Taboryski R. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system. Micro. 2021;1(2):164-180. doi: 10.3390/micro1020013
  23. Luitz M, Kırpat Konak BM, Sherbaz A, et al. Fabrication of embedded microfluidic chips with single micron resolution using two‐photon lithography. Adv Mater Technol. 2023;8(22):2300667. doi: 10.1002/admt.202300667
  24. Li F, Macdonald NP, Guijt RM, Breadmore MC. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip. 2019;19(1):35-49. doi: 10.1039/C8LC00826D
  25. Song Q, Chen Y, Hou P, et al. Fabrication of multi-material pneumatic actuators and microactuators using stereolithography. Micromachines (Basel). 2023; 14(2):244. doi: 10.3390/mi14020244
  26. Winkler S, Menke J, Meyer KV, Kortmann C, Bahnemann J. Automation of cell culture assays using a 3D-printed servomotor-controlled microfluidic valve system. Lab Chip. 2022;22(23):4656-4665. doi: 10.1039/d2lc00629d
  27. van den Driesche S, Lucklum F, Bunge F, Vellekoop M. 3D printing solutions for microfluidic chip-to-world connections. Micromachines (Basel). 2018;9(2):71. doi: 10.3390/mi9020071
  28. Meyer KV, Winkler S, Lienig P, Dräger G, Bahnemann J. 3D-printed microfluidic perfusion system for parallel monitoring of hydrogel-embedded cell cultures. Cells. 2023;12(14):1816. doi: 10.3390/cells12141816
  29. Priyadarshini BM, Dikshit V, Zhang Y. 3D-printed bioreactors for in vitro modeling and analysis. Int J Bioprint. 2020;6(4):267. doi: 10.18063/ijb.v6i4.267
  30. Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B. 2020;8(31):6667-6685. doi: 10.1039/D0TB00718H
  31. Maji S, Lee H. Engineering hydrogels for the development of three-dimensional in vitro models. Int J Mol Sci. 2022;23(5):2662. doi: 10.3390/ijms23052662
  32. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: hydrogel‐based strategy for recapitulating dynamic ECM mechanics. Adv Funct Mater. 2021;31(24):2100848. doi: 10.1002/adfm.202100848
  33. El-Husseiny HM, Mady EA, Hamabe L, et al. Smart/stimuli-responsive hydrogels: cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio. 2022;13:100186. doi: 10.1016/j.mtbio.2021.100186
  34. Kim YT, Bohjanen S, Bhattacharjee N, Folch A. Partitioning of hydrogels in 3D-printed microchannels. Lab Chip. 2019; 19(18):3086-3093. doi: 10.1039/C9LC00535H
  35. Fuchs S, Rieger V, Tjell A, et al. Optical glucose sensor for microfluidic cell culture systems. Biosens Bioelectron. 2023;237:115491. doi: 10.1016/j.bios.2023.11549140.
  36. Nie J, Fu J, He Y. Hydrogels: the next generation body materials for microfluidic chips? Small. 2020;16(46): 1-26. doi: 10.1002/smll.202003797
  37. Haefner S, Koerbitz R, Frank P, Elstner M, Richter A. High integration of microfluidic circuits based on hydrogel valves for MEMS control. Adv Mater Technol. 2018;3(1):1-10. doi: 10.1002/admt.201700108
  38. Hsu M-C, Mansouri M, Ahamed NNN, et al. A miniaturized 3D printed pressure regulator (μPR) for microfluidic cell culture applications. Sci Rep. 2022;12(1):10769. doi: 10.1038/s41598-022-15087-9
  39. Yazdi SAFF, Corigliano A, Ardito R. 3-D design and simulation of a piezoelectric micropump. Micromachines (Basel). 2019;10(4):259. doi: 10.3390/mi10040259
  40. Ameri AR, Imanparast A, Passandideh-Fard M, Mousavi Shaegh SA. A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications. Anal Chim Acta. 2022;1221:340093. doi: 10.1016/j.aca.2022.340093
  41. Vollertsen AR, de Boer D, Dekker S, et al. Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board. Microsyst Nanoeng. 2020;6(1):107. doi: 10.1038/s41378-020-00216-z
  42. Beckwith AL, Borenstein JT, Velasquez-Garcia LF. Monolithic, 3D-printed microfluidic platform for recapitulation of dynamic tumor microenvironments. J Microelectromech Syst. 2018;27(6):1009-1022. doi: 10.1109/JMEMS.2018.2869327
  43. Huang C, Wippold JA, Stratis-Cullum D, Han A. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures. Biomed Microdevices. 2020; 22(4):76. doi: 10.1007/s10544-020-00529-w
  44. Xu J, Vaillant R, Attinger D. Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluidics. 2010;9(4–5):765-772. doi: 10.1007/s10404-010-0592-5
  45. Fritschen A, Bell AK, Königstein I, Stühn L, Stark RW, Blaeser A. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip. Biomater Sci. 2022;10(8): 1981-1994. doi: 10.1039/D1BM01794B
  46. Winkler S, Meyer KV, Heuer C, Kortmann C, Dehne M, Bahnemann J. In vitro biocompatibility evaluation of a heat-resistant 3D printing material for use in customized cell culture devices. Eng Life Sci. 2022;22(11):699-708. doi: 10.1002/elsc.202100104
  47. Ferràs-Tarragó J, Sabalza-Baztán O, Sahuquillo-Arce JM, et al. Autoclave sterilization of an in-house 3D-printed polylactic acid piece: biological safety and heat-induced deformation. Eur J Trauma Emerg Surg. 2022;48(5):3901-3910. doi: 10.1007/s00068-021-01672-6
  48. Valls-Esteve A, Lustig-Gainza P, Adell-Gomez N, Tejo-Otero A, Englí-Rueda M, Julian-Alvarez E. A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: a comparative study. Int J Bioprint. 2023;9(5):756. doi: 10.18063/ijb.756
  49. Told R, Ujfalusi Z, Pentek A, et al. A state-of-the-art guide to the sterilization of thermoplastic polymers and resin materials used in the additive manufacturing of medical devices. Mater Des. 2022;223:111119. doi: 10.1016/j.matdes.2022.111119
  50. Guttridge C, Shannon A, O’Sullivan A, O’Sullivan KJ, O’Sullivan LW. Biocompatible 3D printing resins for medical applications: a review of marketed intended use, biocompatibility certification, and post-processing guidance. Ann 3D Printed Med. 2021;5:100044. doi: 10.1016/j.stlm.2021.100044
  51. Grab M, Jaud S, Thierfelder N, et al. Flexible 3D-printable materials for application in medical research: a comprehensive comparison of commercially available materials. 3D Print Addit Manuf. 2024. doi: 10.1089/3dp.2023.0179
  52. Williams DF. There is no such thing as a biocompatible material. Biomaterials. 2014;35(38):10009-10014. doi: 10.1016/j.biomaterials.2014.08.035
  53. Williams DF. The language of biomaterials-based technologies. Regen Eng Transl Med. 2019;5(1):53-60. doi: 10.1007/s40883-018-0088-5
  54. Bernard M, Jubeli E, Pungente MD, Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management. Biomater Sci. 2018;6(8):2025-2053. doi: 10.1039/C8BM00518D
  55. Trebuňová M, Petroušková P, Balogová AF, et al. Evaluation of biocompatibility of PLA/PHB/TPS polymer scaffolds with different additives of ATBC and OLA plasticizers. J Funct Biomater. 2023;14(8):412. doi: 10.3390/jfb14080412
  56. Chakraborty R, Anoop AG, Thakur A, Mohanta GC, Kumar P. Strategies to modify the surface and bulk properties of 3D-printed solid scaffolds for tissue engineering applications. ACS Omega. 2023;8(6):5139-5156. doi: 10.1021/acsomega.2c05984
  57. Diniță A, Neacșa A, Portoacă AI, Tănase M, Ilinca CN, Ramadan IN. Additive manufacturing post-processing treatments, a review with emphasis on mechanical characteristics. Materials. 2023;16(13):4610. doi: 10.3390/ma16134610
  58. Karakurt I, Lin L. 3D printing technologies: techniques, materials, and post-processing. Curr Opin Chem Eng. 2020;28:134-143. doi: 10.1016/j.coche.2020.04.001
  59. Männel MJ, Weigel N, Hauck N, Heida T, Thiele J. Combining hydrophilic and hydrophobic materials in 3D printing for fabricating microfluidic devices with spatial wettability. Adv Mater Technol. 2021;6(9):2100094. doi: 10.1002/admt.202100094
  60. Sharaf A, Roos B, Timmerman R, Kremers GJ, Bajramovic JJ, Accardo A. Two-photon polymerization of 2.5D and 3D microstructures fostering a Ramified resting phenotype in primary microglia. Front Bioeng Biotechnol. 2022;10:926642. doi: 10.3389/fbioe.2022.926642
  61. Hart C, Didier CM, Sommerhage F, Rajaraman S. Biocompatibility of blank, post-processed and coated 3D printed resin structures with electrogenic cells. Biosensors (Basel). 2020;10(11):152. doi: 10.3390/BIOS10110152
  62. Jeršovaitė J, Šarachovaitė U, Matulaitienė I, Niaura G, Baltriukienė D, Malinauskas M. Biocompatibility enhancement via post-processing of microporous scaffolds made by optical 3D printer. Front Bioeng Biotechnol. 2023;11:1-14. doi: 10.3389/fbioe.2023.1167753
  63. Del Rosario M, Heil HS, Mendes A, Saggiomo V, Henriques R. The field guide to 3D printing in optical microscopy for life sciences. Adv Biol. 2022;6(4):e2100994. doi: 10.1002/adbi.202100994
  64. Mora-Boza A, Mulero-Russe A, Caprio ND, Burdick JA, Singh A, García AJ. Facile photopatterning of perfusable microchannels in synthetic hydrogels to recreate microphysiological environments. Adv Mater. 2023;35(52):2306765. doi: 10.1002/adma.202306765
  65. Virumbrales-Muñoz M, Ayuso JM, Lacueva A, et al. Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. Sci Rep. 2019;9(1):6199. doi: 10.1038/s41598-019-42529-8
  66. Shanti A, Samara B, Abdullah A, et al. Multi-compartment 3D-cultured organ-on-a-chip: towards a biomimetic lymph node for drug development. Pharmaceutics. 2020; 12(5):464. doi: 10.3390/pharmaceutics12050464
  67. Schneider S, Gruner D, Richter A, Loskill P. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications. Lab Chip. 2021;21(10):1866-1885. doi: 10.1039/d1lc00188d
  68. Warr CA, Crawford NG, Nordin GP, Pitt WG. Surface modification of 3D printed microfluidic devices for controlled wetting in two-phase flow. Micromachines (Basel). 2023;14(1):6. doi: 10.3390/mi14010006
  69. Stöbener DD, Weinhart M. “Fuzzy hair” promotes cell sheet detachment from thermoresponsive brushes already above their volume phase transition temperature. Biomater Adv. 2022;141:213101. doi: 10.1016/j.bioadv.2022.213101
  70. Ying G, Jiang N, Parra‐Cantu C, et al. Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape‐memory properties. Adv Funct Mater. 2020;30(46):2003740. doi: 10.1002/adfm.202003740
  71. Li S, Li H, Shang X, He J, Hu Y. Recent advances in 3D printing sacrificial templates for fabricating engineered vasculature. MedComm - Biomater Appl. 2023;2(3):e46. doi: 10.1002/mba2.46
  72. Advincula RC, Dizon JRC, Caldona EB, et al. On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 2021;11(5):539-553. doi: 10.1557/s43579-021-00069-1
  73. Miksch CE, Skillin NP, Kirkpatrick BE, et al. 4D printing of extrudable and degradable poly(ethylene glycol) microgel scaffolds for multidimensional cell culture. Small. 2022;18(36):2200951. doi: 10.1002/smll.202200951
  74. Tabatabaei Rezaei N, Kumar H, Liu H, Lee SS, Park SS, Kim K. Recent advances in organ‐on‐chips integrated with bioprinting technologies for drug screening. Adv Healthc Mater. 2023;12(20):e202203172. doi: 10.1002/adhm.202203172
  75. Raees S, Ullah F, Javed F, et al. Classification, processing, and applications of bioink and 3D bioprinting: a detailed review. Int J Biol Macromol. 2023;232:123476. doi: 10.1016/j.ijbiomac.2023.123476
  76. Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. Bioinks and bioprinting: a focused review. Bioprinting. 2020;18:e00080. doi: 10.1016/j.bprint.2020.e00080
  77. Rothbauer M, Eilenberger C, Spitz S, et al. Recent advances in additive manufacturing and 3D bioprinting for organs-on-a-chip and microphysiological systems. Front Bioeng Biotechnol. 2022;10:837087. doi: 10.3389/fbioe.2022.837087
  78. Barros da Silva P, Coelho M, Bidarra SJ, Neves SC, Barrias CC. Reshaping in vitro models of breast tissue: integration of stromal and parenchymal compartments in 3D printed hydrogels. Front Bioeng Biotechnol. 2020;8:494. doi: 10.3389/fbioe.2020.00494
  79. Yang J, Bai R, Chen B, Suo Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv Funct Mater. 2020;30(2):1901693. doi: 10.1002/adfm.201901693
  80. Qiao Y, Gong J, Jin Z, Tu Y, Yang X. An optimized method of culturing neurons based on polyacrylamide gel. Biophys Rep. 2024;10(1):41. doi: 10.52601/bpr.2023.230033
  81. Sun W, Liu T, Zhang X, et al. Aquatic diatoms‐inspired universal adhesive coacervates triggered by water. Adv Healthc Mater. 2023;12(24):e2300669. doi: 10.1002/adhm.202300669
  82. Gao Y, Chen J, Han X, et al. A universal strategy for tough adhesion of wet soft material. Adv Funct Mater. 2020;30(36):2003207. doi: 10.1002/adfm.202003207
  83. Hernández-Castro JA, Li K, Daoud J, Juncker D, Veres T. Two-level submicron high porosity membranes (2LHPM) for the capture and release of white blood cells (WBCs). Lab Chip. 2019;19(4):589-597. doi: 10.1039/C8LC01256C
  84. Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. ACS Biomater Sci Eng. 2021;7(7):2926-2948. doi: 10.1021/acsbiomaterials.0c01110
  85. Ma HL, Urbaczek AC, Zeferino Ribeiro de Souza F, et al. Rapid fabrication of microfluidic devices for biological mimicking: a survey of materials and biocompatibility. Micromachines (Basel). 2021;12(3):346. doi: 10.3390/mi12030346
  86. Yao Y, Li L, Jiang J, Zhang Y, Chen G, Fan Y. Reversible bonding for microfluidic devices with UV release tape. Microfluid Nanofluidics. 2022;26(3):23. doi: 10.1007/s10404-022-02532-4
  87. Kim YT, Ahmadianyazdi A, Folch A. A ‘print–pause–print’ protocol for 3D printing microfluidics using multimaterial stereolithography. Nat Protoc. 2023;18(4):1243-1259. doi: 10.1038/s41596-022-00792-6
  88. Fernandes A, Hosseini V, Vogel V, Lovchik RD. Engineering solutions for biological studies of flow-exposed endothelial cells on orbital shakers. PLoS One. 2022; 17(1 January):e262044. doi: 10.1371/journal.pone.0262044
  89. Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol. 2023;20(11):738-753. doi: 10.1038/s41569-023-00883-1
  90. Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584(7822):535-546. doi: 10.1038/s41586-020-2612-2
  91. Lavrentieva A, Fleischhammer T, Enders A, Pirmahboub H, Bahnemann J, Pepelanova I. Fabrication of stiffness gradients of GelMA hydrogels using a 3D printed micromixer. Macromol Biosci. 2020;20(7):2000107. doi: 10.1002/mabi.202000107
  92. Bhattacharjee I, Sudhiram S, Nithya M, Kumar B, Sarangi BR. Diffusion mediated rigidity-gradient hydrogel substrate for cellular mechanosensing. Eur Phys J Spec Top. 2024;233:3123-3131. doi: 10.1140/epjs/s11734-024-01125-2
  93. Kaliaraj G, Shanmugam D, Dasan A, Mosas K. Hydrogels—a promising materials for 3d printing technology. Gels. 2023;9(3):260. doi: 10.3390/gels9030260 doi: 10.1021/acsnano.0c05197
  94. Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart hydrogels – synthetic stimuli-responsive antitumor drug release systems. Int J Nanomedicine. 2020;15:4541-4572. doi: 10.2147/IJN.S248987
  95. Lei L, Ma B, Xu C, Liu H. Emerging tumor-on-chips with electrochemical biosensors. TrAC Trends Anal Chem. 2022;153:116640. doi: 10.1016/j.trac.2022.116640
  96. Lyu Z, Park J, Kim KM, et al. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng. 2021;5(8):847-863. doi: 10.1038/s41551-021-00744-7
  97. Melo-Fonseca F, Carvalho O, Gasik M, Miranda G, Silva FS. Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Biodes Manuf. 2023;6(3):340-371. doi: 10.1007/s42242-023-00232-8
  98. Shiwarski DJ, Tashman JW, Eaton AF, Apodaca G, Feinberg AW. 3D printed biaxial stretcher compatible with live fluorescence microscopy. HardwareX. 2020;7:e00095. doi: 10.1016/j.ohx.2020.e00095
  99. Hinnen H, Viglione M, Munro TR, Woolley AT, Nordin GP. 3D-printed microfluidic one-way valves and pumps. Micromachines (Basel). 2023;14(7):1286. doi: 10.3390/mi14071286
  100. Yang C, Xiao Y, Hu L, et al. Stimuli‐triggered multishape, multimode, and multistep deformations designed by microfluidic 3D droplet printing. Small. 2023;19(11):e2207073. doi: 10.1002/smll.202207073
  101. Arik YB, De Sa Vivas A, Laarveld D, et al. Collagen i based enzymatically degradable membranes for organ-on-a-chip barrier models. ACS Biomater Sci Eng. 2021;7(7):2998-3005. doi: 10.1021/acsbiomaterials.0c00297
  102. Buchanan BC, Yoon J-Y. Microscopic imaging methods for organ-on-a-chip platforms. Micromachines (Basel). 2022;13(2):328. doi: 10.3390/mi13020328
  103. Hamed H, Eldiasty M, Seyedi-Sahebari S-M, Abou-Ziki JD. Applications, materials, and fabrication of micro glass parts and devices: An overview. Mater Today. 2023;66: 194-220. doi: 10.1016/j.mattod.2023.03.005
  104. Kotz F, Helmer D, Rapp BE. In: Heinrich A, ed. 3D Printing of Transparent Glasses; 2021:169-184. doi: 10.1007/978-3-030-58960-8_4
  105. Zavadakova A, Vistejnova L, Belinova T, Tichanek F, Bilikova D, Mouton PR. Novel stereological method for estimation of cell counts in 3D collagen scaffolds. Sci Rep. 2023;13(1):7959. doi: 10.1038/s41598-023-35162-z
  106. Eschweiler D, Smith RS, Stegmaier J. Robust 3D cell segmentation: extending the view of cellpose. In: Proceedings - International Conference on Image Processing, ICIP. IEEE Computer Society; 2022:191-195. doi: 10.1109/ICIP46576.2022.9897942
  107. Ko J, Park D, Lee J, et al. Microfluidic high-throughput 3D cell culture. Nat Rev Bioeng. 2024;2(6):453-469. doi: 10.1038/s44222-024-00163-8
  108. Gonçalves IM, Rodrigues RO, Moita AS, et al. Recent trends of biomaterials and biosensors for organ-on-chip platforms. Bioprinting. 2022;26:e00202. doi: 10.1016/j.bprint.2022.e00202
  109. Buttkewitz MA, Heuer C, Bahnemann J. Sensor integration into microfluidic systems: trends and challenges. Curr Opin Biotechnol. 2023;83(1):102978. doi: 10.1016/j.copbio.2023.102978
  110. Fedi A, Vitale C, Giannoni P, Caluori G, Marrella A. Biosensors to monitor cell activity in 3d hydrogel-based tissue models. Sensors. 2022;22(4):1517. doi: 10.3390/s22041517
  111. Lou C, Yang H, Hou Y, et al. Microfluidic platforms for real-time in situ monitoring of biomarkers for cellular processes. Adv Mater. 2024;36(6):e2307051. doi: 10.1002/adma.202307051
  112. Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ. 2022;10:e13338. doi: 10.7717/peerj.13338
  113. Li Z, Zhang R, Xu F, Yang J, Zhou L, Mao H. A cell state monitoring system with integrated in situ imaging and pH detection. Sensors (Basel). 2023;23(23):9340. doi: 10.3390/s23239340
  114. McLennan HJ, Blanch AJ, Wallace SJ, et al. Nano-liter perfusion microfluidic device made entirely by two-photon polymerization for dynamic cell culture with easy cell recovery. Sci Rep. 2023;13(1):562. doi: 10.1038/s41598-023-27660-x
  115. Simão D, Gomes CM, Alves PM, Brito C. Capturing the third dimension in drug discovery: spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv. 2022;55:107883. doi: 10.1016/j.biotechadv.2021.107883
  116. Mahboubian AR, Vllasaliu D, Dorkoosh FA, Stolnik S. Temperature-responsive methylcellulose-hyaluronic hydrogel as a 3D cell culture matrix. Biomacromolecules. 2020;21(12):4737-4746. doi: 10.1021/acs.biomac.0c00906
  1. Mahboubian AR, Vllasaliu D, Dorkoosh FA, Stolnik S. Temperature-responsive methylcellulose-hyaluronic hydrogel as a 3D cell culture matrix. Biomacromolecules. 2020;21(12):4737-4746. doi: 10.1021/acs.biomac.0c00906

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing