AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4899
RESEARCH ARTICLE

Design, fabrication, and evaluation of a novel 3D-printed temporomandibular joint prosthesis enhanced with elastic layers

Junqi Jiang1 Zhiwei Jiao2 Bingxue Cheng3 Jianmin Han4 Xiangliang Xu1* Chuanbin Guo1*
Show Less
1 Department of Oral and Maxillofacial Surgery, National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
2 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
3 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
4 Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Department, Tianjin, China
Submitted: 20 September 2024 | Accepted: 20 November 2024 | Published: 20 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Artificial temporomandibular joint (TMJ) replacement is a common intervention for the treatment of advanced TMJ diseases and ankylosis. The present study addresses the insufficient elasticity of existing artificial TMJs through the development of a composite material by incorporating high-density polyethylene into ultra-high-molecular-weight polyethylene. This was processed using fused deposition modeling 3D-printing technology to produce porous elastic layers with an elastic modulus similar to that of joint discs. An artificial TMJ prosthesis with physiological elasticity was successfully fabricated, applied to the surface of porous Ti–6Al–4V alloy, and validated through mechanical experiments. The results demonstrated that the elastic modulus of the synthetic cartilage exhibits a negative correlation with the number of staggered layers, while no significant relationship was observed between the elastic modulus and the alternating angle between the harnesses. The elastic modulus of the cartilage was measured to be 127.5 ± 16.1 MPa, while the maximum compressive strength was found to be 8.0 ± 1.3 MPa. Optimal performance was observed for a staggered layer count of five and a cross-angle of 90°. The bonding strength to the metal mandibular prosthesis was measured to be 2.62 ± 0.98 MPa, and the surface roughness was determined to be 1.6 μm. An elastic artificial TMJ process prosthesis in this study was successfully designed, fabricated, and validated through in vitro experiments, offering valuable insights for future advancements in artificial TMJ design.  

Graphical abstract
Keywords
3D printing
Artificial temporomandibular joint replacement
Elasticity
Porous elastic layers
Ultra-high-molecular-weight polyethylene
Ti–6Al–4V alloy
Funding
This work was supported by grants from Beijing Municipal Science & Technology Commission (Z201100005520055) and Clinical Research Foundation of Peking University School and Hospital of Stomatology (PKUSS-2023CRF205).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Yoda T, Ogi N, Yoshitake H, et al. Clinical guidelines for total temporomandibular joint replacement. Jpn Dent Sci Rev. 2020,56(1):77-83. doi: 10.1016/j.jdsr.2020.03.001
  2. Elledge R, Mercuri LG, Attard A, et al. Review of emerging temporomandibular joint total joint replacement systems. Br J Oral Maxillofac Surg. 2019,57(8):722-728. doi: 10.1016/j.bjoms.2019.08.009
  3. De Meurechy N, Mommaerts MY. Alloplastic temporomandibular joint replacement systems: a systematic review of their history. Int J Oral Maxillofac Surg. 2018;47(6):743-754. doi: 10.1016/j.ijom.2018.01.014
  4. Tanaka E, van Eijden T. Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med. 2003;14(2):138-150. doi: 10.1177/154411130301400207
  5. Jibiki M, Shimoda S, Nakagawa Y, et al. Calcifications of the disc of the temporomandibular joint. J Oral Pathol Med. 1999;28(9):413-419. doi: 10.1111/j.1600-0714
  6. Barrientos E, Pelayo F, Tanaka E, et al. Dynamic and stress relaxation properties of the whole porcine temporomandibular joint disc under compression. J Mech Behav Biomed Mater. 2016;57:109-115. doi: 10.1016/j.jmbbm.2015.12.003
  7. Xu X, Zhang J, Luo D, et al. Biomechanical comparison between the custom-made mandibular condyle prosthesis and total temporomandibular joint prosthesis in finite element analysis. Acta Bioeng Biomech. 2020;22(4):151-160. doi: 10.37190/ABB-01721-2020-03
  8. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Nat Sci Mater. 2009;54(3):397-425. doi: 10.1016/j.pmatsci.2008.06.004
  9. Kurtz S., ed. UHMWPE Biomaterials Handbook–Ultra-high Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices, third ed. Amsterdam: Elsevier Inc.; 2016.
  10. Ponader S, von Wilmowsky C, Widenmayer M, et al. In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res A. 2010;92:56-62. doi: 10.1002/jbm.a.32337
  11. Ramli MS, Wahab MS, Ahmad M, and Bala AS. FDM preparation of bio-compatible UHMWPE polymer for artificial implant. ARPN J Engd Appl Sci. 2016;11(8). 5474-5480.
  12. Musib MK. A review of the history and role of UHMWPE as a component in total joint replacements. Int J Biol Sci. 2012;1(1):6-10. doi: 10.5923/j.ijbe.20110101.02
  13. Shokrgozar MA, Farokhi M, Rajaei F, etc. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells. J Biomed Mater Res A. 2010;95(4):1074-1083. doi: 10.1002/jbm.a.32892
  14. Amancio-Filho ST, Santos JFD. Joining of polymers and polymer-metal hybrid structures: recent developments and trends. Polym Eng Sci. 2009;49(8):1461-1476. doi: 10.1002/pen.21424
  15. Wolf M, Kleffel T, Leisen C, Drummer D. Joining of incompatible polymer combinations by form fit using the vibration welding process. Int J Polym Sci. 2017; 2017:1-8. doi: 10.1155/2017/6809469
  16. Wolf M, Hertle S, Drummer D. Influence of the thermomechanical properties on the joining of adhesion incompatible polymers by form-fit using the vibration welding process. eXPRESS Polym Lett. 2019,13(4):365-378. doi: 10.3144/expresspolymlett.2019.30
  17. Matsuzaki R, Tsukamoto N, Taniguchi J. Mechanical interlocking by imprinting of undercut micropatterns for improving adhesive strength of polypropylene. Int J Adhes Adhesiv. 2016;68:124-132. doi: 10.1016/j.ijadhadh.2016.03.002
  18. Barrios JM, Romero PE. Decision tree methods for predicting surface roughness in fused deposition modeling parts. Materials (Basel). 2019;12(16):2574. doi: 10.3390/ma12162574
  19. Jedenmalm A, Affatato S, Taddei P, et al. Effect of head surface roughness and sterilization on wear of UHMWPE acetabular cups. J Biomed Mater Res A. 2009;90(4):1032-1042. doi: 10.1002/jbm.a.32161
  20. Xu X, Luo D, Guo C, Rong Q. A custom-made temporomandibular joint prosthesis for fabrication by selective laser melting: Finite element analysis. Med Eng Phys. 2017;46:1-11. doi: 10.1016/j.medengphy.2017.04.012
  21. Liu H, Ahlinder A, Yassin MA, et al. Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds. Mater Design. 2020;188:11. doi: 10.1016/j.matdes.2020.108488
  22. Vega LG, González-García R, Louis PJ. Reconstruction of acquired temporomandibular joint defects. Oral Maxillofac Surg Clin North Am. 2013;25(2):251-269. doi: 10.1016/j.coms.2013.02.008
  23. Mercuri LG. Costochondral graft versus total alloplastic joint for temporomandibular joint reconstruction. Oral Maxillofac Surg Clin North Am. 2018;30(3):335-342. doi: 10.1016/j.coms.2018.05.003
  24. Burgess M, Bowler M, Jones R, et al. Improved outcomes after alloplastic TMJ replacement: analysis of a multicenter study from Australia and New Zealand. J Oral Maxil Surg. 2014;72(7):1251-1257. doi: 10.1016/j.joms.2014.02.019
  25. Stanković S, Vlajković S, Bošković M, et al. Morphological and biomechanical features of the temporomandibular joint disc: an overview of recent findings. Arch Oral Biol. 2013;58(10):1475-1482. doi: 10.1016/j.archoralbio.2013.06.014. Epub 2013 Jul 18. PMID: 23871384. doi: 10.1016/j.jmbbm.2015.12.003
  26. Nickel JC, Iwasaki LR, Beatty MW, Marx DB. Laboratory stresses and tractional forces on the TMJ disc surface. J Dent R. 2004;83(8):650-654. doi: 10.1177/154405910408300813
  27. Jiang N, Yang YT, Bi RY, et al. Comprehensive measurement and quantification of bio-mechanical properties of the temporomandibular joint disc. Zhonghua Kou Qiang Yi Xue Za Zhi. 2021;56(8):764-768. Chinese. doi: 10.3760/cma.j.cn112144-20210322-00133
  28. Yildirim D, Dergin G, Tamam C, et al. Indirect measurement of the temporomandibular joint disc elasticity with magnetic resonance imaging. Dentomaxillofac Radiol. 2011;40(7):422-428. doi: 10.1259/dmfr/98030980
  29. Hagandora CK, Chase TW, Almarza AJ. A comparison of the mechanical properties of the goat temporomandibular joint disc to the mandibular condylar cartilage in unconfined compression. J Dent Biomech. 2011;2011:212385. doi: 10.4061/2011/212385
  1. Hu S, Yi Y, Ye C, et al. Advances in 3D printing techniques for cartilage regeneration of temporomandibular joint disc and mandibular condyle. Int J Bioprint. 2023;9(5):761. doi: 10.18063/ijb.761
  2. Jiang N, Yang Y, Zhang L, et al. 3D-printed polycaprolactone reinforced hydrogel as an artificial TMJ disc. J Dent Res. 2021;100(8):839-846. doi: 10.1177/00220345211000629
  3. Jiang N, Chen H, Zhang J, et al. Decellularized-disc based allograft and xenograft prosthesis for the long-term precise reconstruction of temporomandibular joint disc. Acta Biomater. 2023;159:173-187. doi: 10.1016/j.actbio.2023.01.042
  4. Chen H, Han Q, Wang C, et al. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020;8:609. doi: 10.3389/fbioe.2020.00609
  5. Huiskes HWJ. Stress shielding and bone resorption in THA: clinical versus computer-simulation studies. Acta Orthop Belg. 1993; 59(Suppl 1):118-129.
  6. Trebse R, Milosev I, Kovac S, et al. Poor results from the isoelastic total hip replacement. Acta Orthop. 2005;76(2): 169-176. doi: 10.1080/00016470510030535
  7. Wang D, Li Q, Xu M, et al. A novel approach to fabrication of three-dimensional porous titanium with controllable structure. Mater Sci Eng C Mater Biol Appl. 2017;71:1046-1051. doi: 10.1016/j.msec.2016.11.119
  8. Barui S, Chatterjee S, Mandal S, et al. Microstructure and compression properties of 3D powder printed T scaffolds with designed porosity: experimental and computational analysis. Mater Sci Eng C Mater Biol Appl. 2017;70(1):812-823. doi: 10.1016/j.msec.2016.09.040
  9. Li F, Li J, Huang T, Kou H, Zhou L. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications. J Mech Behav Biomed Mater. 2017;65:814-823. doi: 10.1016/j.jmbbm.2016.09.035.
  10. Salimon AI, Statnik ES, Zadorozhnyy MY, et al. Porous open-cell UHMWPE: experimental study of structure and mechanical properties. Materials (Basel). 2019;12(13):2195. doi: 10.3390/ma12132195
  11. Cheng KJ, Liu YF, Wang JH, et al. 3D-printed porous condylar prosthesis for temporomandibular joint replacement: design and biomechanical analysis. Technol Health Care. 2022;30(4):1017-1030. doi: 10.3233/THC-213534
  12. Bekcioglu B, Bulut E, Bas B. The effects of unilateral alloplastic temporomandibular joint replacement on the opposite-side natural joint: a finite-element analysis. J Oral Maxillofac Surg. 2017;75(11):2316-2322. doi: 10.1016/j.joms.2017.05.017
  13. Feistauer EE, Dos Santos JF, Amancio-Filho ST. A review on direct assembly of through-the-thickness reinforced metal-polymer composite hybrid structures. Polym Eng Sci. 2019;59(4):661-674. doi: 10.1002/pen.25022
  14. Lai W-FT, Bowley J, Burch JG. Evaluation of shear stress of the human temporomandibular joint disc. J Orofac Pain. 1998;12(2):153-159. doi: 10.1016/S0278-2391(98)90138-0
  15. Sagbas B, Durakbasa MN. Measurement of wear in orthopedic prosthesis. Proc Int Cong Adv Appl Phys Mater Sci. 2012;121(1):131-134. doi: 10.12693/APhysPolA.121.131
  16. Alonso A, Kaimal S, Look J, et al. A quantitative evaluation of inflammatory cells in human temporomandibular joint tissues from patients with and without implants. J Oral Maxillofac Surg. 2009; 67(4):788-796. doi: 10.1016/j.joms.2008.09.010
  17. Sinno H, Tahiri Y, Gilardino M, Bobyn D. Engineering alloplastic temporomandibular joint replacements. McGill J Med. 2010; 13(1):63. doi: 10.26443/mjm.v13i1.252
  18. De Meurechy N, Aktan MK, Boeckmans B, et al. Surface wear in a custom manufactured temporomandibular joint prosthesis. J Biomed Mater Res B Appl Biomater. 2022;110(6):1425-1438. doi: 10.1002/jbm.b.35010
  19. Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomaterial. 2019;90: 37-48. doi: 10.1016/j.actbio.2019.03.041

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing