AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4811
RESEARCH ARTICLE

Improved osseointegration and segmental stability of 3D-printed porous tantalum cages with micro-scale structures for spinal fusion

Hang Liang1 Jingyao Tu2 Bingjin Wang1 Kun Wang1 Xiaobo Feng1 Wenbin Hua1 Shuai Li1 Xinyi Chen2 Lei Tan1* Cao Yang1*
Show Less
1 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
2 Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Submitted: 10 September 2024 | Accepted: 21 November 2024 | Published: 22 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Spinal fusion surgery is an effective therapy for patients with disc herniation and degenerative disc disease. In this procedure, the intervertebral cage plays a key role in reconstructing stability and achieving fusion, though its clinical efficacy is limited by inadequate osseointegration. In this study, we developed a tantalum (Ta) cage, featuring micro-scale roughness and a porous microstructure, using advanced three-dimensional (3D) printing techniques. The aim of the study was to investigate its osteogenic potential in vitro and intervertebral fusion capability in vivo. Compared with conventional polyetheretherketone cages, in vitro biological experiments demonstrated that the 3D-printed porous Ta (3D-pTa) cages significantly enhanced osteoblast adhesion, proliferation, and differentiation. In vivo spinal fusion studies in a sheep model demonstrated significant increases in bone-implant contact and bone volume to total volume ratios (p < 0.05) with the 3D-pTa cages, indicating marked bone ingrowth and effective spinal fusion. Additionally, mechanical tests revealed that the 3D-pTa cages provided consistent stability and stiffness, significantly reducing the range of motion at various time points (p < 0.05). Our findings indicate that the 3D-pTa cage effectively facilitates bone fusion and possesses reliable biosafety, highlighting its potential for future clinical application in spinal surgery.

Graphical abstract
Keywords
3D printing
Interbody fusion cage
Osseointegration
Porous Ta
Spine surgery
Funding
The work was supported by the National Natural Science Foundation of China (NSFC; No. 82130072 and No. 82302669).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Buser Z, Brodke DS, Youssef JA, et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;25:509-516. doi: 10.3171/2016.1.Spine151005
  2. Hirvonen T, Siironen J, Marjamaa J, Niemela M, Koski- Palken A. Anterior cervical discectomy and fusion in young adults leads to favorable outcome in long-term follow-up. Spine J. 2020;20:1073-1084. doi: 10.1016/j.spinee.2020.03.016
  3. Gu X, Sun X, Sun Y, et al. Bioinspired modifications of PEEK implants for bone tissue engineering. Front Bioeng Biotechnol. 2020;8:631616. doi: 10.3389/fbioe.2020.631616
  4. Feng X, Yu H, Liu H, et al. Three-dimensionally-printed polyether-ether-ketone implant with a cross-linked structure and acid-etched microporous surface promotes integration with soft tissue. Int J Mol Sci. 2019;20:3811. doi: 10.3390/ijms20153811
  5. Buck E, Li H, Cerruti M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites. Macromol Biosci. 2020;20:e1900271. doi: 10.1002/mabi.201900271
  6. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27:1-11. doi: 10.1007/s10856-016-5731-4
  7. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845- 4869. doi: 10.1016/j.biomaterials.2007.07.013
  8. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27:324-334. doi: 10.1016/j.biomaterials.2005.07.011
  9. Zhang W, Liu L, Zhou H, et al. Surface bisphosphonation of polyetheretherketone to manipulate immune response for advanced osseointegration. Mater Design. 2023; 232:112151. doi: 10.1016/j.matdes.2023.112151
  10. Al-Tamimi AA, Fernandes PRA, Peach C, Cooper G, Diver C, Bartolo PJ. Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototy. 2017;12:141-151. doi: 10.1080/17452759.2017.1307769
  11. Pobloth AM, Checa S, Razi H, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med. 2018;10:eaam8828. doi: 10.1126/scitranslmed.aam8828
  12. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3:278-314. doi: 10.1016/j.bioactmat.2017.10.001
  13. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27:4671-4681. doi: 10.1016/j.biomaterials.2006.04.041
  14. Sumner DR. Long-term implant fixation and stress-shielding in total hip replacement. J Biomech. 2015;48:797-800. doi: 10.1016/j.jbiomech.2014.12.021
  15. Tang Z, Xie YT, Yang F, et al. Porous tantalum coatings prepared by vacuum plasma spraying enhance BMSCs osteogenic differentiation and bone regeneration. PLoS One. 2013;8:e66263. doi: 10.1371/journal.pone.0066263
  16. Alipal J, Pu’ad NASM, Nayan NHM, et al. An updated review on surface functionalisation of titanium and its alloys for implants applications. Mater Today Proc. 2021; 42:270-282. doi: 10.1016/j.matpr.2021.01.499
  17. Han Q, Wang CY, Chen H, Zhao X, Wang JC. Porous Tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng. 2019;5:5798-5824. doi: 10.1021/acsbiomaterials.9b00493
  18. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res. 2011;29:609-616. doi: 10.1002/jor.21251
  19. Huang G, Pan ST, Qiu JX. The clinical application of porous tantalum and its new development for bone tissue engineering. Materials. 2021;14:2647. doi: 10.3390/ma14102647
  20. Balla VK, Banerjee S, Bose S, Bandyopadhyay A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010; 6: 2329-2334. doi: 10.1016/j.actbio.2009.11.021
  21. Guo Y, Xie K, Jiang WB, et al. In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater Sci Eng. 2019;5:1123-1133. doi: 10.1021/acsbiomaterials.8b01094
  22. Wang LN, Yuan B, Chen F, et al. Ability of a novel biomimetic titanium alloy cage in avoiding subsidence and promoting fusion: a goat spine model study. Mater Design. 2022;213:110361. doi: 10.1016/j.matdes.2021.110361
  23. Pei X, Wang LN, Wu LN, et al. In-situ synthesized hydroxyapatite whiskers on 3D printed titanium cages enhanced osteointegration in a goat spinal fusion model. Mater Design. 2023; 233: 112270. doi: 10.1016/j.matdes.2023.112270
  24. Laratta JL, Vivace BJ, Lopez-Pena M, et al. 3D-printed titanium cages without bone graft outperform PEEK cages with autograft in an animal model. Spine J. 2022; 22:1016- 1027. doi: 10.1016/j.spinee.2021.12.004
  25. Wang XY, Zhang DC, Peng HT, Yang JZ, Li Y, Xu JX. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. Biomater Adv. 2023;154:213638. doi: 10.1016/j.bioadv.2023.213638
  26. Jiao JY, Hong QM, Zhang DC, et al. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Front Bioeng Biotech. 2023;11:1117954. doi: 10.3389/fbioe.2023.1117954
  27. Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
  28. Yang J, Gao H, Zhang D, et al. Static compressive behavior and material failure mechanism of trabecular tantalum scaffolds fabricated by laser powder bed fusion-based additive manufacturing. Int J Bioprint. 2022; 8: 438. doi: 10.18063/ijb.v8i1.438
  29. Jin J, Wang D, Qian H, et al. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: a proof-of-concept study. Biomaterials. 2025;313:122756. doi: 10.1016/j.biomaterials.2024.122756
  30. Chen W, Yang J, Kong H, et al. Fatigue behaviour and biocompatibility of additively manufactured bioactive tantalum graded lattice structures for load-bearing orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 2021;130:112461. doi: 10.1016/j.msec.2021.112461
  31. Yuan K, Zhang K, Yang YQ, et al. Evaluation of interbody fusion efficacy and biocompatibility of a polyetheretherketone/calcium silicate/porous tantalum cage in a goat model. J Orthop Transl. 2022;36:109-119. doi: 10.1016/j.jot.2022.06.006
  32. Zhang CX, Zhou ZW, Liu N, et al. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects. Front Bioeng Biotech. 2023;11:1258030. doi: 10.3389/fbioe.2023.1258030
  33. Fan HQ, Deng S, Tang WT, et al. Highly porous 3D printed tantalum scaffolds have better biomechanical and microstructural properties than titanium scaffolds. Biomed Res Int. 2021;2021:2899043. doi: 10.1155/2021/2899043
  34. Cheers GM, Weimer LP, Neuerburg C, et al. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci. 2024;12:4875-4902. doi: 10.1039/d4bm00848k
  35. de Silva L, Bernal PN, Rosenberg A, Malda J, Levato R, Gawlitta D. Biofabricating the vascular tree in engineered bone tissue. Acta Biomater. 2023;156:250-268. doi: 10.1016/j.actbio.2022.08.051
  36. Loenen ACY, Peters MJM, Bevers RTJ, et al. Early bone ingrowth and segmental stability of a trussed titanium cage versus a polyether ether ketone cage in an ovine lumbar interbody fusion model. Spine J. 2022;22:174-182. doi: 10.1016/j.spinee.2021.07.011
  37. Li MM, Yin SH, Lin MZ, et al. Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J Mater Chem B. 2022;10:5105-528. doi: 10.1039/d2tb00742h
  38. Huang G, Pan ST, Qiu JX. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloid Surface B. 2022;210:112229. doi: 10.1016/j.colsurfb.2021.112229
  39. Babuska V, Kasi PB, Chocholata P, et al. Nanomaterials in bone regeneration. Appl Sci Basel. 2022;12:6793. doi: 10.3390/app12136793
  40. Barberi J, Spriano S. Titanium and protein adsorption: an overview of mechanisms and effects of surface features. Materials (Basel). 2021;14:1590. doi: 10.3390/ma14071590
  41. Ji S, Guvendiren M. 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines (Basel). 2019;11:31. doi: 10.3390/mi11010031
  42. Wang X, Liu W, Yu X, et al. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: a thematic review. Front Bioeng Biotechnol. 2022; 10:983695. doi: 10.3389/fbioe.2022.983695
  43. McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18:1250-1260. doi: 10.1016/j.spinee.2018.02.018
  44. Xu CC, Wu FH, Yang J, et al. 3D printed long-term structurally stable bioceramic dome scaffolds with controllable biodegradation favorable for guided bone regeneration. Chem Eng J. 2022; 450:138003. doi: 10.1016/j.cej.2022.138003
  45. Wei XH, Zhou WH, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2023;20:16-28. doi: 10.1016/j.bioactmat.2022.05.011
  46. Qian H, Lei T, Hua L, et al. Fabrication, bacteriostasis and osteointegration properties researches of the additively-manufactured porous tantalum scaffolds loading vancomycin. Bioact Mater. 2023;24:450-462. doi: 10.1016/j.bioactmat.2022.12.013
  47. Liguori A, Gino ME, Panzavolta S, et al. Tantalum nanoparticles enhance the osteoinductivity of multiscale composites based on poly(lactide-co-glycolide) electrospun fibers embedded in a gelatin hydrogel. Mater Today Chem. 2022;24:100804. doi: 10.1016/j.mtchem.2022.100804
  48. Jia CQ, Zhang Z, Cao SQ, et al. A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater. 2023;23:234-246. doi: 10.1016/j.bioactmat.2022.11.003
  49. Feng XB, Ma L, Liang H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega. 2020;5:26655-26666. doi: 10.1021/acsomega.0c03489
  50. Shen YW, Yang Y, Liu H, et al. Preliminary results in anterior cervical discectomy and fusion with the uncovertebral joint fusion cage in a goat model. BMC Musculoskel Dis. 2021;22:1-10. doi: 10.1186/s12891-021-04412-4
  51. Sheng SR, Wang XY, Xu HZ, Zhu GQ, Zhou YF. Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J. 2010;19:46-56. doi: 10.1007/s00586-009-1192-5
  52. Kandziora F, Pflugmacher R, Scholz M, et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine (Phila Pa 1976). 2001;26:1028-1037. doi: 10.1097/00007632-200105010-00008
  53. Godlewski B, Bebenek A, Dominiak M, Karpinski G, Cieslik P, Pawelczyk T. Subsidence following cervical discectomy and implant-to-bone ratio. BMC Musculoskelet Disord. 2022;23:750. doi: 10.1186/s12891-022-05698-8
  54. Mathieu L, Marie-Solenne F, Cécile B, et al. Biocompatibility of four common orthopedic biomaterials following neuroelectromyostimulation: an study. J Biomed Mater Res B. 2018;106:1156-1164. doi: 10.1002/jbm.b.33927
  55. Bernard M, Jubeli E, Pungente MD, Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices - regulations, screening and risk-management. Biomater Sci Uk 2018;6:2025-2053. doi: 10.1039/c8bm00518d
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing