AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.5678
RESEARCH ARTICLE

Sericin improves alginate-gelatin hydrogels’ mechanical properties, porosity, durability, and viability of fibroblasts in cardiac spheroids

Martine Tarsitano1,2 Clara Liu Chung Ming1,3 Dana Idais1,3 Hadi Mahmodi4 Kaitlin Wyllie5,6 Benedetta Isella7 Thomas R. Cox5,6 Irina Kabakova4 Donatella Paolino2,8 Carmine Gentile1,3*
Show Less
1 School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
2 Department of Experimental and Clinical Medicine, School of Medicine and Surgery, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
3 Heart Research Institute, Newtown, Sydney, NSW, Australia
4 School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
5 The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
6 School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW, Australia
7 Fibrothelium GmbH, Philipsstraße 8, Aachen, Germany
8 Research Center “ProHealth Translational Hub”, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
Submitted: 29 October 2024 | Accepted: 26 November 2024 | Published: 27 November 2024
(This article belongs to the Special Issue 3D Bioprinting DownUnder: Innovation, Advancements and Perspectives)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Biofabrication of cardiac patches is a challenging strategy proposed as an alternative to transplantation for end-stage heart failure patients. The optimization of the bioink used for this strategy can be limited by costs, properties, and biocompatibility of its building blocks. Lately, sericin has emerged within a wide range of natural proteins, thanks to its bioadhesive and biocompatibility potential. In this study, we assessed for the first time the effects of adding silk sericin on alginate-gelatin hydrogels, proposed for cardiac applications. To this aim, we first biofabricated sericin-containing hydrogels with increasing protein concentrations. Thus, we characterized hydrogels’ mechanical behavior, porosity and structure through rheology, Brillouin microspectroscopy, and scanning electron microscopy. Then, we bioprinted the formulated hydrogels and evaluated their effects on human cardiac spheroids (CSs) in vitro. Our mechanical characterization demonstrated that adding sericin significantly enhanced the elasticity and the viscosity of alginate-gelatin hydrogels. Sericin also modified hydrogels’ swelling behavior and their pore size, increasing by 20%, 62%, and 92% in Ser1%, Ser2%, and Ser3%, respectively. Although Ser1% did not exhibit significant effects on CSs, Ser2% and Ser3% enhanced cardiac cell viability for up to 14 days compared to the sericin-free hydrogel by acting on the fibroblast population. Sericin-based bioinks showed better printability and durability with +33% and +28% intact patches after 28 days of culture at 37°C compared to alginate-gelatin. Taken together, our results validated the use of sericin as a promising component for the optimization of bioink intended for cardiac applications.

Graphical abstract
Keywords
Sericin
Hydrogels
Cardiac spheroids
Myocardial infarction
Biomaterials
Alginate
Gelatin
3D bioprinting
Funding
Dr. Carmine Gentile was supported by a UTS Seed Funding, Heart Research Australia Grant, Perpetual IMPACT Grant, Catholic Archdiocese of Sydney Grant for Adult Stem Cell Research, and a Heart Research Institute Grant. Irina Kabakova and Hadi Mahmodi are supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science (CE230100006) and the Australian Research Council Centre of Excellence in Quantum Biotechnology (CE230100021). Thomas R. Cox is supported by the National Health and Medical Research Council (NHMRC). Kaitlin Wyllie is supported by the University Postgraduate Award (UPA) from the University of New South Wales (UNSW). Donatella Paolino was supported by grants from the Italian Ministry of Health (PSC SALUTE 2014–2020-POS4 “Cal-Hub-Ria”- T4-AN-09), and PNRR MAD-2022-12376814).
Conflict of interest
Carmine Gentile serves as the Guest Editor of the special issue: 3D Bioprinting DownUnder: Innovation, Advancements and Perspectives, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declare they have no competing interests.
References
  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93-e621. doi: 10.1161/CIR.0000000000001123
  2. Cooke JP. Is cardiovascular regeneration possible? Methodist Debakey Cardiovasc J. 2023;19(5):1-4. doi: 10.14797/mdcvj.1307
  3. Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 2022;43(27):2549-2561. doi: 10.1093/eurheartj/ehac223
  4. Schwinger RHG. Pathophysiology of heart failure. Cardiovasc Diagn Ther. 2021;11(1):263-276. doi: 10.21037/cdt-20-302
  5. Awad MA, Shah A, Griffith BP. Current status and outcomes in heart transplantation: a narrative review. Rev Cardiovasc Med. 2022;23(1):11. doi: 10.31083/j.rcm2301011
  6. Mantha A, Lee RO, Jr., Wolfson AM. Patient selection for heart transplant: balancing risk. Curr Opin Organ Transplant. 2022;27(1):36-44. doi: 10.1097/mot.0000000000000943
  7. Benck L, Kransdorf EP, Emerson DA, et al. Recipient and surgical factors trigger severe primary graft dysfunction after heart transplant. J Heart Lung Transplant. 2021;40(9):970-980. doi: 10.1016/j.healun.2021.06.002
  8. Huang K, Ozpinar EW, Su T, et al. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci Transl Med. 2020;12(538):eaat9683. doi: 10.1126/scitranslmed.aat9683
  9. Wu CA, Zhu Y, Woo YJ. Advances in 3D bioprinting: techniques, applications, and future directions for cardiac tissue engineering. Bioengineering (Basel). 2023; 10(7):842. doi: 10.3390/bioengineering10070842
  10. Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden cardiac patch: a promising alternative for myocardial repair. APL Bioeng. 2021;5(3):031508. doi: 10.1063/5.0030353
  11. Budharaju H, Sundaramurthi D, Sethuraman S. Efficient dual crosslinking of protein-in-polysaccharide bioink for biofabrication of cardiac tissue constructs. Biomater Adv. 2023;152:213486. doi: 10.1016/j.bioadv.2023.213486
  12. Zheng Z, Tang W, Li Y, et al. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev. 2024;29(3):599-613. doi: 10.1007/s10741-023-10367-6
  13. Yao Y, Li A, Wang S, et al. Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo. Biomaterials. 2022;282: 121382. doi: 10.1016/j.biomaterials.2022.121382
  14. Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism. Dev Cell. 2022;57(4):424-439. doi: 10.1016/j.devcel.2022.01.012
  15. Liu Chung Ming C, Ben-Sefer E, Gentile C. Stem cell-based 3D bioprinting for cardiovascular tissue regeneration. In: Zhang J, Serpooshan V, eds. Advanced Technologies in Cardiovascular Bioengineering. Springer International Publishing; 2022:281-312. doi: 10.1007/978-3-030-86140-7_13
  16. Brazhkina O, Park JH, Park HJ, et al. Designing a 3D printing based auxetic cardiac patch with hiPSC-CMs for heart repair. J Cardiovasc Dev Dis. 2021;8(12):172. doi: 10.3390/jcdd8120172
  17. Matthews N, Pandolfo B, Moses D, Gentile C. Taking it personally: 3D bioprinting a patient-specific cardiac patch for the treatment of heart failure. Bioengineering. 2022;9(3):93. doi: 10.3390/bioengineering9030093
  18. Budharaju H, Subramanian A, Sethuraman S. Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomater Sci. 2021;9(6):1974-1994. doi: 10.1039/D0BM01428A
  19. Lu TY, Xiang Y, Tang M, Chen S. 3D printing approaches to engineer cardiac tissue. Curr Cardiol Rep. 2023;25(6):505-514. doi: 10.1007/s11886-023-01881-y
  20. Baheiraei N, Razavi M, Ghahremanzadeh R. Reduced graphene oxide coated alginate scaffolds: potential for cardiac patch application. Biomater Res. 2023; 27(1):109. doi: 10.1186/s40824-023-00449-9
  21. Fischer B, Gwinner F, Gepp MM, et al. A highly versatile biopolymer-based platform for the maturation of human pluripotent stem cell-derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. J Biomed Mater Res A. 2023;111(10):1600-1615. doi: 10.1002/jbm.a.37558
  22. Loureiro J, Miguel SP, Galván-Chacón V, et al. Three-dimensionally printed hydrogel cardiac patch for infarct regeneration based on natural polysaccharides. Polymers. 2023;15(13):2824. doi: 10.3390/polym15132824
  23. Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym. 2023;300:120266. doi: 10.1016/j.carbpol.2022.120266
  24. Sharma P, Gentile C. Cardiac spheroids as in vitro bioengineered heart tissues to study human heart pathophysiology. J Vis Exp. 2021;167(167):33554972. doi: 10.3791/61962
  25. Polonchuk L, Chabria M, Badi L, et al. Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep. 2017;7(1):7005. doi: 10.1038/s41598-017-06385-8
  26. Sharma P, Liu Chung Ming C, Wang X, et al. Biofabrication of advanced in vitro 3D models to study ischaemic and doxorubicin-induced myocardial damage. Biofabrication. 2022;14(2):109-116. doi: 10.1088/1758-5090/ac47d8
  27. Sharma P, Wang X, Ming CLC, et al. Considerations for the bioengineering of advanced cardiac in vitro models of myocardial infarction. Small. 2021;17(15):e2003765. doi: 10.1002/smll.202003765
  28. Roche CD, Lin H, Huang Y, et al. 3D bioprinted alginate-gelatin hydrogel patches containing cardiac spheroids recover heart function in a mouse model of myocardial infarction. Bioprinting. 2023;30:e00263. doi: 10.1016/j.bprint.2023.e00263
  29. Polonchuk L, Surija L, Lee MH, et al. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication. 2021;13(4):34265755. doi: 10.1088/1758-5090/ac14ca
  30. Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, durability, contractility and vascular network formation in 3D bioprinted cardiac endothelial cells using alginate-gelatin hydrogels. Front Bioeng Biotechnol. 2021;9:636257. doi: 10.3389/fbioe.2021.636257
  31. Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023;250:126067. doi: 10.1016/j.ijbiomac.2023.126067
  32. Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem. 2023;7(5):302-318. doi: 10.1038/s41570-023-00486-x
  33. Liu J, Shi L, Deng Y, et al. Silk sericin-based materials for biomedical applications. Biomaterials. 2022;287:121638. doi: 10.1016/j.biomaterials.2022.121638
  34. Capar G, Pilevneli T. Cost-effective process development for sericin recovery from silk degumming wastewater. Sustain Chem Pharm. 2024;37:101405. doi: 10.1016/j.scp.2023.101405
  35. Silva AS, Costa EC, Reis S, et al. Silk sericin: a promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers. 2022;14(22):4931. doi: 10.3390/polym14224931
  36. Song Y, Zhang C, Zhang J, et al. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater. 2016;41:210-223. doi: 10.1016/j.actbio.2016.05.039
  37. Han L, Wang W, Chen Z, et al. Sericin-reinforced dual-crosslinked hydrogel for cartilage defect repair. Colloids Surf B Biointerfaces. 2023;222:113061. doi: 10.1016/j.colsurfb.2022.113061
  38. Zhang Y, Liu J, Huang L, Wang Z, Wang L. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci Rep. 2015; 5:12374. doi: 10.1038/srep12374
  39. Li Y, Wei Y, Zhang G, Zhang Y. Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers. 2023;15(13):2941. doi: 10.3390/polym15132941
  40. Rahimpour S, Jabbari H, Yousofi H, et al. Regulatory effect of sericin protein in inflammatory pathways; a comprehensive review. Pathol Res Pract. 2023;243:154369. doi: 10.1016/j.prp.2023.154369
  41. Rujimongkon K, Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. Pharm Biol. 2022;60(1):708-721. doi: 10.1080/13880209.2022.2055088
  42. Zhu Y, Liu H, Qin S, et al. Antibacterial sericin cryogels promote hemostasis by facilitating the activation of coagulation pathway and platelets. Adv Healthc Mater. 2022;11(11):2102717. doi: 10.1002/adhm.202102717
  43. Mukherjee S, Krishnan A, Athira RK, Kasoju N, Sah MK. Chapter 13 - silk fibroin and silk sericin in skin tissue engineering and wound healing: retrospect and prospects. In: Sah MK, Kasoju N, Mano JF, eds. Natural Polymers in Wound Healing and Repair. Elsevier; 2022: 301-331. doi: 10.1016/B978-0-323-90514-5.00005-5
  44. Vettori L, Sharma P, Rnjak-Kovacina J, Gentile C. 3D bioprinting of cardiovascular tissues for in vivo and in vitro applications using hybrid hydrogels containing silk fibroin: state of the art and challenges. Curr Tissue Microenviron Rep. 2020;1(4):261-276. doi: 10.1007/s43152-020-00026-5
  45. Song Y, Wang H, Yue F, et al. Silk-based biomaterials for cardiac tissue engineering. Adv Healthc Mater. 2020;9(23):e2000735. doi: 10.1002/adhm.202000735
  46. Tarsitano M, Mancuso A, Cristiano MC, Paolino D, Fresta M. In situ swelling formulation of glycerol-monooleate-derived lyotropic liquid crystals proposed for local vaginal application. Molecules. 2022;27(19):6295. doi: 10.3390/molecules27196295
  47. Mancuso A, Cianflone E, Cristiano MC, et al. Lyotropic liquid crystals: a biocompatible and safe material for local cardiac application. Pharmaceutics. 2022;14(2):452. doi: 10.3390/pharmaceutics14020452
  48. Mahmodi H, Piloni A, Utama RH, Kabakova I. Mechanical mapping of bioprinted hydrogel models by brillouin microscopy. Bioprinting. 2021;23:e00151. doi: 10.1016/j.bprint.2021.e00151
  49. Baptista M, Joukhdar H, Alcala-Orozco CR, et al. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering. Biomater Sci. 2020;8(24):7093-7105. doi: 10.1039/d0bm01010c
  50. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. doi: 10.1038/nmeth.2089
  51. Tarsitano M, Liu Chung Ming C, Bennar L, et al. Chlorella-enriched hydrogels protect against myocardial damage and reactive oxygen species production in an in vitro ischemia/ reperfusion model using cardiac spheroids. Biofabrication. 2025;17(1):015006. doi: 10.1088/1758-5090/ad8266
  52. Zhang Y, Cao X, Zhang J, et al. A novel injectable sericin hydrogel with strong fluorescence for tracing. Int J Biol Macromol. 2024;258:129000. doi: 10.1016/j.ijbiomac.2023.129000
  53. Li J-X, Zhao S-X, Zhang Y-Q. Silk protein composite bioinks and their 3D scaffolds and in vitro characterization. Int J Mol Sci. 2022;23(2):910. doi: 10.3390/ijms23020910
  54. Vettori L, Tran HA, Mahmodi H, et al. Silk fibroin increases the elasticity of alginate-gelatin hydrogels and regulates cardiac cell contractile function in cardiac bioinks. Biofabrication. 2024;16(3):035025. doi: 10.1088/1758-5090/ad4f1b
  55. Baptista-Silva S, Borges S, Costa-Pinto AR, et al. In situ forming silk sericin-based hydrogel: a novel wound healing biomaterial. ACS Biomater Sci Eng. 2021;7(4):1573-1586. doi: 10.1021/acsbiomaterials.0c01745
  56. Chlapanidas T, Faragò S, Lucconi G, et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int J Biol Macromol. 2013;58:47-56. doi: 10.1016/j.ijbiomac.2013.03.054
  57. Rocha LK, Favaro LI, Rios AC, et al. Sericin from Bombyx mori cocoons. Part I: extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem. 2017;61:163-177. doi: 10.1016/j.procbio.2017.06.019
  58. Sellimi S, Younes I, Ayed HB, et al. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed. Int J Biol Macromol. 2015;72:1358-1367. doi: 10.1016/j.ijbiomac.2014.10.016
  59. Rad MA, Mahmodi H, Filipe EC, Cox TR, Kabakova I, Tipper JL. Micromechanical characterisation of 3D bioprinted neural cell models using Brillouin microspectroscopy. Bioprinting. 2022;25:e00179. doi: 10.1016/j.bprint.2021.e00179
  60. Avallone PR, Romano M, Sarrica A, Delmonte M, Pasquino R, Grizzuti N. Effect of sugars on gelation kinetics of gelatin gels. Fluids. 2022;7(5):163. doi: 10.3390/fluids7050163
  61. Ahmad MI, Li Y, Pan J, et al. Collagen and gelatin: structure, properties, and applications in food industry. Int J Biol Macromol. 2024;254:128037. doi: 10.1016/j.ijbiomac.2023.128037
  62. Poon C, Chou J, Cortie M, Kabakova I. Brillouin imaging for studies of micromechanics in biology and biomedicine: from current state-of-the-art to future clinical translation. J Phys Photonics. 2021;3(1):012002. doi: 10.1088/2515-7647/abbf8c
  63. Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez- Gaviro MV. Brillouin spectroscopy: from biomedical research to new generation pathology diagnosis. Int J Mol Sci. 2021;22(15):8055. doi: 10.3390/ijms22158055
  64. Kabakova I, Zhang J, Xiang Y, et al. Brillouin microscopy. Nature Revs Methods Primers. 2024;4(1):8. doi: 10.1038/s43586-023-00286-z
  65. Wu P-J, Kabakova IV, Ruberti JW, et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat Methods. 2018;15(8): 561-562. doi: 10.1038/s41592-018-0076-1
  66. Tao G, Cai R, Wang Y, Zuo H, He H. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater Sci Eng C. 2021;119:111597. doi: 10.1016/j.msec.2020.111597
  67. Ekasurya W, Sebastian J, Puspitasari D, Asri PPP, Asri LATW. Synthesis and degradation properties of Sericin/ PVA hydrogels. Gels. 2023;9(2):76. doi: 10.3390/gels9020076
  68. Zhang Y, Chen H, Li Y, et al. A transparent sericin-polyacrylamide interpenetrating network hydrogel as visualized dressing material. Polymer Test. 2020; 87:106517. doi: 10.1016/j.polymertesting.2020.106517
  69. Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting resolution in tissue model fabrication. Lab Chip. 2019;19(11):2019-2037. doi: 10.1039/C8LC01037D
  70. Schwartz R, Malpica M, Thompson GL, Miri AK. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution. J Mech Behav Biomed Mater. 2020; 103:103524. doi: 10.1016/j.jmbbm.2019.103524

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing